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Abstract: PHM technology plays an increasingly significant role in modern aviation condition-based
maintenance. As an important part of prognostics and health management (PHM), a health assess-
ment can effectively estimate the health status of a system and provide support for maintenance
decision making. However, in actual conditions, various uncertain factors will amplify assessment
errors and cause large fluctuations in assessment results. In this paper, uncertain factors are incorpo-
rated into flight control system health assessment modeling. First, four uncertain factors of health
assessment characteristic parameters are quantified and described by the extended λ-PDF method to
acquire their probability distribution function. Secondly, a Monte Carlo simulation (MCS) is used
to simulate a flight control system health assessment process with uncertain factors. Thirdly, the
probability distribution of the output health index is solved by the maximum entropy principle.
Finally, the proposed model was verified with actual flight data. The comparison between assessment
results with and without uncertain factors shows that a health assessment conducted under uncertain
conditions can reduce the impact of the uncertainty of outliers on the assessment results and make
the assessment results more stable; therefore, the false alarm rate can be reduced.

Keywords: aircraft system; characteristic parameters; fuzzy comprehensive assessment; uncertainty
qualification; λ-PDF probability density; maximum entropy; Monte Carlo simulation

1. Introduction

The maintenance mode of modern aircraft is changing from scheduled to condition-
based maintenance (CBM). CBM can improve reliability, safety and availability, and mean-
while reduce the operating costs of an aircraft’s full life cycle [1]. The theory of CBM
originates from prognostics and health management (PHM). The core point of PHM is to
estimate the health status of the monitored equipment, predict the remaining useful life
and determine the optimal maintenance time, inspection interval and spare parts order
quantity, and then minimize economic costs or equipment failure risks. Therefore, the
premise of CBM is to make an accurate estimate of the system operating status, e.g., a health
assessment. As the core system of aircraft, the health status of a flight control system di-
rectly affects flight safety, and it is therefore necessary to perform its health assessment. On
the one hand, it can monitor the system’s operation status and warn of failure symptoms
in time, and on the other hand it can support maintenance decision making to improve
maintenance efficiency and reduce maintenance costs.

Some articles have studied the health monitoring/assessment of key aircraft systems or
components. Sun [2] proposed a method for extracting health indicators based on available
sensor parameters of an aircraft air-conditioning system, as case studies show that the pro-
posed health status indicators can effectively characterize degradation status and provide
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valuable information for CBM. Che [3] proposed a PHM model for status assessment, fault
classification and remaining useful life prediction of aircraft with multiple deep-learning
algorithms. The proposed method is verified with NASA’s C-MAPSS dataset, and the
results show that the error and deviation are lower than that of a traditional model. Lee [4]
proposed a method to effectively estimate flight response and capture upset precursors
based on a deep auto-encoder; real-time flight datasets were used to verify the proposed
method, which show that it can improve the situational awareness of pilots by providing an
early safety warning. Shahkar [5] proposed a fault diagnosis and prediction method based
on particle filter for various degradation modes of spoiler actuator’s electro-hydraulic
servo valve. Rito [6] studied model-based health-monitoring algorithms to detect faults of
UAV electromechanical actuators, developed two real-time position-tracking algorithms
based on different predictors and compared their effectiveness in anti-false alarm and fault
detection. Qiang Miao [7] presents a vibration-based fan-bearing health evaluation method
using comblet filtering and an exponentially weighted moving average. The analysis
results suggest that the health condition indicator can identify incipient fan-bearing failures
and describe the bearing degradation process. Len Gelman [8] applied health-monitoring
technology based on advanced signal processing to in-service intake separation diagnostics
in an aircraft engine and developed health-monitoring technology based on the integral
measure. Mirko Mazzoleni [9] presents a health-monitoring approach for electromechan-
ical actuators (EMAs) and verifies the approach using a dataset collected from a large
experimental campaign on a 1:1 scale EMA for primary flight controls of small aircrafts.

However, these studies have mostly conducted health assessments under certain
conditions, such as complete failure characteristics, known degradation data distribution,
etc. In an actual flight process, uncertainties are everywhere, such as data samples, trans-
missions, etc. Moreover, these uncertainties may couple and diffuse with each other. Thus,
an aircraft health assessment under uncertain conditions is more realistic.

Uncertainty is widespread in modeling and actual testing [10], which are generally
divided into two types: one is aleatory uncertainty, also known as inherent uncertainty;
the other is epistemic uncertainty caused by researchers’ lack of relevant knowledge, also
known as subjective uncertainty [11].

Uncertainty may affect system decision making. One of the key challenges is how to
use the uncertain information in system performance prediction due to input or parameter
uncertainty when comparing decision-making alternatives. There have been studies on the
impact of uncertainty on risk decision modeling. Fang Liu [12] investigates the fact that
fuzzy preference relations (FPRs) have no additively reciprocal property and addresses
their implication for decision making under uncertainty. Yimeng Zhang [13] addresses
the uncertainty measurement problem in interval-set decision tables and proposes an
alternative uncertainty measure based on the conditional information entropy. Mahdis
Haddadi [14] proposes a decision-making model to increase the robustness of optimal
power flow in the presence of off-shore wind farms (WFs).

Shankar [15] pointed out that any uncertain research can be divided into four parts:
uncertainty representation, quantification, propagation, and management. The traditional
method is a Monte Carlo simulation (MCS), based on input distributions, which samples
an output distribution accordingly. Despite the fact that many complex statistical models
have been proposed for uncertainty problems, MCS still remains the benchmark due to its
universality and stability [16].

There has been related research on the uncertainty of state assessment. In reliability
analysis (such as structural health monitoring), the uncertainty quantification domain (UQ)
can provide robust decision-making information [10]. Therefore, it is important to quantify
the uncertainty and choose a suitable model to study its propagation. With a prediction
model based on the Gaussian regression process, Zhou [17] evaluated the prediction
uncertainty with the data of different batches of lithium batteries. This model can not only
be used to determine the credibility of the prediction model but also screen training data.
Wang [18] proposed a four-step analysis framework to quantitatively evaluate the impact of
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parametric uncertainties on an energy storage system. Combined with a global sensitivity
analysis, the key parameters’ influences on the system cost are analyzed and show that
the proposed framework can quantitatively evaluate parameter uncertainty. Dong [19]
studied the uncertain factors affecting the status of wind turbines and constructed a unified
assessment method with deviation and stability indicators.

However, to the best of the authors’ knowledge, there is currently no research on the
health assessment of flight control systems under uncertain conditions. The objective of this
paper is to establish a health assessment model of a flight control system under uncertain
conditions and obtain the probability distribution of its health index. By comparing the
results of the health assessment under certain and uncertain conditions, the validity of the
proposed method is obtained.

More precisely, our contribution includes: (1) A health assessment model for the flight
control system under uncertain conditions is established. (2) The λ-PDF probability density
is improved to quantify the uncertainty of the input parameters. The improved probability
density function has better generalization. By changing the parameters of the probability
density function, the quantization effect similar is similar to the traditional probability
distribution in any finite interval. (3) MCS is used in the uncertainty propagation process
to generate data with the same distribution as the original data.

The rest of this paper is organized as follows. Section 2 establishes a health assessment
model for a flight control system under certain conditions. Section 3 regards the model pro-
posed in Section 2 as the uncertainty propagation process and proposes a health assessment
model under uncertain conditions, including uncertainty representation, interpretation,
quantification and propagation. Section 4 applies the proposed model to actual flight
data to obtain assessment results. The final section analyzes the results and presents the
conclusion of the whole paper.

2. Basic Theory

We have researched traditional flight control system health assessment in [20]. This
section will restate some important theories and models of flight control system health
assessment under certain conditions in the aforementioned studies, so as to facilitate the
development of subsequent sections.

In the aforementioned studies, the assessment process can be divided into the fol-
lowing steps: establishing health assessment indicators, dividing health levels, selecting
assessment models and choosing a weight distribution method. A detailed description of
these processes is given below.

2.1. Establishing Health Assessment Indicators

A flight control system is usually composed of a main control system and an auxiliary
control system. The former uses the elevator, aileron and rudder to complete the pitch, roll
and yaw actions, which can be divided into these three channels from the operating aspects
of the system. As an important part of the auxiliary control system, the flap system plays a
major role in providing lift and maintaining attitude. Therefore, failure mode and effect
analysis (FMEA) of the main control system and flap system is selected to filter possible
failures. Based on FMEA, all possible impacts on the system are studied to complete
characteristic parameters selection.

The definition of FMEA is as follows: by analyzing the various possible failures of a
system, failures are divided into their failure modes, respectively, and by analyzing the
influence of each failure mode on the upper module and entire system, the influence level
of the occurrence of these failures can be classified.

As shown in Figure 1, according to the FMEA of the flight control system, the trans-
mission coefficients from the control terminal to the acting surface of the three channels
are selected as the characteristic parameters, including the pitch channel, roll channel and
yaw channel, which indicate the health status of main control system; meanwhile, the main
hydraulic pressure is selected to indicate the health status of flap channel. In detail, each
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channel contains several parameters to evaluate the health status of the channel. According
to the flight control system health assessment process under certain conditions, the entire
assessment process is divided into two parts: the first assessment is used to evaluate the
health status of each channel, and the second assessment is used to evaluate the health
status of the whole flight control system.
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Then, the relative degradation degree method [21] is used to normalize each health
indicator to obtain the corresponding health index, d(x). The relative degradation degree
refers to the similarity between the current state of a characteristic parameter and the fault
state, and the value range is (0,1). A fault state is indicated by 1, and 0 indicates a healthy
state. For the analysis of the characteristic parameters, the intermediate method is used
for calculation:

d(x) =



1 x < xmin
x−xmin
xa−xmin

xmin ≤ x ≤ xa

0 xa ≤ x ≤ xb
x−xb

xmax−xb
xb ≤ x ≤ xmax

1 x > xmax

, (1)

where xmin represents the minimum value of characteristic parameters, xmax is the maxi-
mum value of feature parameters and xa and xb represent the optimal intervals of charac-
teristic parameters.

2.2. Dividing Health Levels

According to the grey health index theory [22], the health status of a flight control
system is divided into four levels, thereby the mapping relationship between comprehen-
sive health indicators and the health status is established. The definition of the system’s
comprehensive health index interval is shown in Table 1.

Table 1. System comprehensive health index range.

CHI Health State

0.75–1 Healthy
0.5–0.75 Slightly decline
0.25–0.5 Severe decline
0.0–0.25 Fault

The health index is divided into four intervals from 0 to 1: fault,(0,0.25); severe
decline,(0.25,0.5); slightly decline,(0.5,0.75); and healthy,(0.75,1). Among them, healthy
means that the system is healthy and does not require maintenance; slightly decline means
that the system function is slightly degraded and needs to be maintained as planned; severe
decline means that the system is near failure and needs immediate maintenance; and fault
means that a failure has occurredand the faulty module needs to be replaced.
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2.3. Assessment Model—Fuzzy Comprehensive Assessment Model

Because there are fewer fault records of the flight control system operating data,
common neural network methods and gray clustering methods are less accurate. Therefore,
a fuzzy comprehensive assessment method is selected to evaluate the health status. The
method divides the characteristic parameters into a number of intervals, constructs a fuzzy
assessment matrix of characteristic parameters in a specific channel, weights the matrix
row by row to obtain each channel’s assessment vector and finally outputs the channel
health index.

Step1: Establish a health status interval set: This interval is a collection of different
health levels of each channel’s characteristic. Assuming there arestatus levels, the health
status interval set can be expressed as:

L =
{

l1 l2 ... lm
}

, (2)

where L represents the health status of each characteristic parameter and li represents the
corresponding health level.

Step2: Calculate the membership vector of each characteristic parameter: through the
fuzzy calculation of a health status interval as mentioned above, the corresponding factor
membership vector can be obtained as:

rij =
{

r1
ij r2

ij ... rm
ij

}
, (3)

where rm
ij is the membership degree of the j-th characteristic parameter in the i-th channel

to the m-th health state.
Step3: Construct a fuzzy assessment matrix: by calculating the membership vec-

tor of each characteristic parameter and combining the membership vectors of all the
characteristic parameters in each channel, a fuzzy assessment matrix is constructed:

Ri =

 r1
i1 . . . rm

i1
...

. . .
...

r1
ini

. . . rm
ini

 =
(

r1
i r2

i . . . rm
i
)
, (4)

where i is the number of health state intervals and ni is the number of channel
characteristic parameters.

Step4: Determine the weight vector of characteristic parameters in each channel: based
on the characteristic parameter selection in Section 2.1, the rough set reduction method in
Section 2.4 below is used to identify the importance of the factor to the upper factor, and
then construct the weight vector as:

wi =
{

wi1 wi2 ... wini

}
, (5)

Step 5: Calculate the assessment vector:

bi = wiRi =
{

b1
i b2

i ... bm
i
}

, (6)

where bi represents the assessment vector of the i-th channel.
Step 6: Calculate the channel health index: the channel health index is obtained by

weighting and normalizing the assessment vector of each channel:

SCHIi =

m
∑

k=1
bk

i (m− k + 1)

m
m
∑

k=1
bk

i

, (7)

where m is the number of health levels in the health status interval and k is the number of
elements in bi.
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2.4. Objective Weighting Method Based on Rough Set Reduction

In the weight distribution process, it is necessary to minimize the subjective factors’
influence. Here, an objective weighting method based on rough set reduction is used, that
is, an attribute is first removed from the set, and its importance is evaluated to determine its
weight. The idea of rough set reduction is to continuously remove certain attributes from
the original complete attribute set, and then observe whether the state has undergone major
changes after classification. If there is a major change, the importance of the attribute is
higher, otherwise the importance is lower. The weight determination process is as follows:

Step 1: Construct a decision table: Construct a decision table with different attributes
and importance.The bottom factors in Figure 1 are used as conditional attributes of the de-
cision table: C =

{
c1 c2 ... cn

}
, and the upper factors are used as decision attributes:

D =
{

d1 d2 d3 d4
}

.
Step 2: Calculate the attribute conditional information entropy: assuming that X is a

subset of attributes in a system assessment factor, x is a certain attribute, and the conditional
information entropy of x to X is:

I(X) = 1−

n
∑

i=1
|Xi|2

|U| , (8)

where U is a finite, non-empty set.
Step 3: Calculate the importance of a single attribute: remove a certain attribute, c,

based on the conditional information entropy; the attribute importance of c in C can be
obtained as:

Sig(c) = I(D/C)−I(D/C− {c}), (9)

Step 4: Calculate the weight: by calculating the importance of a single attribute, the
weight of the attribute can be obtained as:

w(ci) =
sig(ci)

n
∑

i=1
sig(ci)

, (10)

2.5. Flight Control System Health Assessment Process

In summary, the health assessment process under certain conditions is shown in
Figure 2.

(1) After processing the original data, the rough set reduction algorithm is used to obtain
the weight of each characteristic parameter to its subsystem.

(2) The health assessment of each subsystem is carried out by the fuzzy comprehensive
assessment method, and the health index, SCHI, of each subsystem is obtained.

(3) The rough set reduction algorithm is used to obtain the weight of each subsystem to
the flight control system.

(4) The health assessment is carried out by the fuzzy comprehensive assessment method,
and the health index, CHI, of the flight control system is obtained.
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3. Flight Control System Health Assessment under Uncertainty

Section 2 screens the characteristic parameters that characterize the health status. Al-
though these parameters have nominal values when the aircraft leaves the factory, there are
uncertainties in their values during actual flight. Uncertainty can lead to misidentification
of assessment results and cause non-damage degradation, that is, false positives. Based
on the health assessment process in Section 2, the uncertain condition is considered to
establish the health assessment model in this section.

3.1. Uncertainty Representation and Interpretation

At present, the uncertainty representation is usually based on the following theories:
probability theory [23], fuzzy set theory [24], evidence theory [25], interval analysis the-
ory [26], etc. Among them, probability theory is widely used in health assessment [27]. In this
section, the parameters’ uncertainty will be described in the form of probability distributions.

3.2. Uncertainty Quantification Based on λ− PDF

The propagation problem based on probability theory needs to first know the prob-
ability distribution of model inputs. However, in actuality, the model input parameters
are not continuous, or their distribution is not a common probability distribution, such as
uniform distribution, normal distribution, etc. In view of this, an uncertainty measurement
method based on λ− PDF [28] is proposed to describe the unknown distribution type.

λ− PDF is a class of bounded, unimodal and symmetrical probability density func-
tions (PDF), which can be used to approximate a variety of common distributions in a
specified interval. Its specific form is:

f λ
ξ (ξ) =

{
κλ

(
1− ξ2)λ−0.5 , |ξ|≤ 1

0 , |ξ|≥ 1
, (11)

where λ ≥ 0.The value of the constant,κλ, is:

κλ =
Γ(λ + 1)

Γ(λ + 1/2)Γ(1/2)
, (12)

where Γ() is the gamma function.
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The continuous unimodal symmetrical distribution with a mean value of 0 in the
interval (−1,1) can be approximated by Equation (11) with different value of λ.

However, the λ− PDF method is only suitable for aparameter with a symmetrical
distribution in (−1,1), which is different withactual flight control system parameters.
Therefore, in order to quantifythese parameters’ distribution, the λ− PDF method needs
to be extended.

First, the following linear expansion is used to enlarge the random variable’s interval:

x = b0 + b1ξ, (13)

where x is a new constructed random variable and b0 and b1 are related parameters for the
first expansion. It can be rewritten as:

ξ =
x− b0

b1
, (14)

Substitute Equation (14) into Equation (11), and the expanded probability density
function is:

f λ
x (x) =

κλ

b1

(
1−

(
x− b0

b1

)2
)λ−1/2

x ∈ [b0 − b1, b0 + b1], (15)

That is, with the values of b0 and b1 variationin the extended model, the range in the
initial λ− PDF method can be extended from (−1,1) to any finite interval.

Further, for the quantification of unimodal, asymmetric and continuously distributed
random variables, a quadratic extended λ− PDF method is proposed to fit it.

Consider the following second expansion:

x = b0 + b1ξ + b2ξ2, (16)

It can be solved by Equation (16):

ξ =
−b1 ∓

√
b2

1 − 4b2(b0 − x)

2b2
, (17)

Substitute Equation (17) into Equation (11), when b2 ≥ 0 and b1 ≥ 2b2, and the PDF is:

f λ
x (x) =

κλ√
b1

2 − 4b2(b0 − x)
·

1−
(
−b1 +

√
b1

2 − 4b2(b0 − x)
2b2

)2
λ−0.5

, (18)

where the value range of x is [b0 + b2 − b1, b0 + b2 + b1].
When b2 < 0 and b1 ≤ 2b2, the PDF is:

f λ
x (x) =

κλ√
b1

2 − 4b2(b0 − x)
·

1−
(
−b1 −

√
b1

2 − 4b2(b0 − x)
2b2

)2
λ−0.5

, (19)

where the value range of x is [b0 + b2 + b1, b0 + b2 − b1].
The λ− PDF method after the first and second expansion can be used to describe the

distribution of continuous, unimodal, normal or skewed parameters on any finite interval.
Forthe first and second expansion λ− PDF methods, the unknown parameters are

bi and λ. Theoretically, the common methods for parameter estimation include moment
estimation, least square estimation and likelihood estimation. Among them, the moment
estimation is simple, even if the parameter’s distribution is unknown; equations can be
established through the statistical characteristics of the sample.
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Therefore, the moment estimation method is used to solve the parameters in λ− PDF.
First, the second, third and fourthcentral moments are derived from the analytic form of
the PDF, and then a set of equations are established and solved simultaneously through the
relationship between the central moment and the sample mean, variance, skewness and
kurtosis, and then the estimated value of bi and λ can be obtained. The specific solution
process can be found in the Appendix A.

3.3. Uncertainty Propagation Based on MCS

The MCS algorithm is a random sampling method [29] which can truly simulate the
system’s actual dynamic process, and its calculation result has very little error compared
with the actual result, so it has become a standard uncertainty calculation method. The
MCS method is used to assess flight control systems’ health status. The basic steps are
as follows:

(1) For uncertain input parameters, large enough random numbers, x1, x2, ..., xn, with the
same distribution are generated according to its probability density function.

(2) Substitute the generated parameters into the health assessment process to obtain
multiple health assessment values, y1, y2, ..., yn.

(3) Compute the probability characteristics of the health assessment values. The proba-
bility feature solving process is described in detail in Section 3.4 below.

3.4. Probability Distribution Based on the Maximum Entropy

The maximum entropy is a criterion for selecting the statistical characteristics of
random variables that are most in line with the objective situation. When the information
of unknown parameters is partly obtained, such as the mean and variance, the maximum
entropy selects the probability distribution that conforms to this information and has the
largest entropy value as the statistical characteristic of a parameter. The essence of entropy
is the uncertainty of random variables; the largest entropy value indicates the largest
uncertainty. In this sense, the probability distribution based on the maximum entropy is
the most uncertain inference in accordance with the known information. Therefore, for the
probability distribution of the assessment output in this paper, the maximum entropy can
be considered as a choice that meets the objective situationbest.

Assuming that x is a one-dimensional continuous random variable, and its probability
density function exists, the entropy of x can be expressed as:

H(x) = −
∫

Ω
f (xi)ln( f (xi))dx =

∫
Ω

f (xi)
1

ln( f (xi))
dx, (20)

where Ω is the integration space and f (x) is the probability density function of.
Take the first l-order center moment of x as a constraint. The maximum entropy can

be expressed as:
maxH(x)

s.t.

{ ∫
Ω fx(x)dx = 1

Di =
∫

Ω (x− µ)i fx(x)dx, i = 1, 2, . . . , l
(21)

where µ is the mean value of the random variable and Di is the central moment of the
random variable.

Introduce the Lagrangian multiplier and define the function:

L(x) = −
∫
Ω

fx(x)ln fx(x)dx + (λ0 + 1)

(∫
Ω

fx(x)dx− 1

)

+
l

∑
i=1

λi

(∫
Ω
(x− µ)i fx(x)dx− Di

) (22)

where λi is the pending multiplier, i = 1, 2, ..., l.
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Calculate the derivative of L(x) with respect to fx(x) when the partial derivative is 0.
The maximum entropy PDF can be obtained as:

fx(x) = exp

(
−

l

∑
i=0

λi(x− µ)i

)
, (23)

Substitute Equation (23) into Equation (21) and the undetermined multiplier can
be solved. In order to ensure the accuracy of fx(x), the first four central moments of
the variable are usually selected as the constraints, and as the integral of the probability
density function in its integral space is always 1, there are five constraints to solve for five
undetermined multipliers from λ0 to λ5; theoretically, there is an optimal solution.

3.5. Flight Control System Health Assessment Process under Uncertain Conditions

All in all, as the input characteristic parameters have an unknown distribution, the
uncertainty propagation analysis process of the health assessment is as follows in Figure 3:
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(1) Raw data preprocessing: obtain the first four central moments’ analytical form of
characteristic parameters; meanwhile, obtain the mean, µ, variance, σ2, skewness, Cs
and kurtosis, Ck, of the raw flight data;

(2) Uncertainty quantification of input parameters: according to the distribution of
each feature parameter, choose the first or second λ − PDF expansion method to
quantify their PDF;

(3) Uncertainty propagation based on MCS: According to the PDF of each characteristic
parameter, generate random numbers with the same distribution as the input of the
flight control system health assessment model under uncertain conditions, and intro-
duce them into the model mentioned in Section 2 to obtain multiple health indices;

(4) Solve the PDF of the system health index via the maximum entropy.

4. Results and Discussion

In this section, the actual flight data of a commercial twin-propeller regional airliner
will be used for the health assessment of a flight control system under uncertain conditions.

The data used in this article come from the QAR data (quick access recorder) of a
commercial aircraft. A QAR has a relatively smaller storage capacity and can store more
data, which greatly improves the integrity of data preservation. Nowadays, QAR data
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detection and tracking have become an important basis for safety management and are
widely favored by various aviation safety management departments.

Due to the small number of aircraft in use, we have obtained 60 pieces of flight data
for verification. Part of the data is shown in Table 2 below:

Table 2. Raw flight data (partly).

Time MHP/psi AP/psi AD/◦ RD/◦ ED/◦ PP/mm SCP/mm

3:30:37 1887.207 1881.104 −1.230 −0.469 −6.914 3.795 30.537
3:30:38 1899.414 1893.311 −1.230 −0.469 −6.914 4.241 30.537
3:30:39 1905.518 1905.518 −1.230 −0.469 −6.855 4.018 30.537
3:30:40 1923.828 1917.725 −1.230 −0.469 −6.914 4.241 30.537
3:30:41 1936.035 1929.932 −1.230 −0.469 −6.914 4.018 30.537
3:30:42 1948.242 1942.139 −1.230 −0.469 −6.855 4.018 30.537

. . . . . . . . . . . . . . . . . . . . . . . .
MHP—main hydraulic pressure, AP—accumulator pressure, AD—aileron deflection, RD—rudder deflection,
ED—elevator deflection, PP—pedal position and SCP—steering column position.

4.1. Flight Control System Assessment of a Single Flight

Take the PDF calculation of the flap channel’s main hydraulic pressure as an example.
First, calculate the µ, σ2, Cs and Ck of the main hydraulic pressure, as shown in Table 3.

Table 3. Statistics of the main hydraulic pressure.

Statistics Value

Mean, µ 2216.5
Variance, σ2 32.0413
Skewness, Cs −0.177
Kurtosis, Ck 2.8504

Since the main hydraulic pressure distribution is single-peak and the skewness is not
zero, the second extended λ− PDF is used to solve the unknown parameters. According
to the equations listed in Section 3, we can obtain:

λ = 40; b0 = 2.216× 103; b1 = −51.59; b2 = −0.1577, (24)

Then, the PDF of the main hydraulic pressure and its frequency histogram are obtained,
as shown in Figure 4.
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In the same way, the expanded λ− PDF is used to fit the other characteristic parame-
ters’ PDFs. The polynomial coefficients bi and λ are shown in Table 4:

Table 4. Polynomial coefficients bi and λ.

Characteristic Parameters bi and λ

k1 λ = 11.1137, b0 = 0.052, b1 = 0.1263, b2 = 0.0306

k2 λ = 19.3752, b0 = 0.1513, b1 = −0.2994, b2 = −0.0568

k3 λ = 13.0406, b0 = 0.2364, b1 = −0.1197, b2 = −0.0583

In Table 4, k1 is a transmission coefficient from steering column to elevator; k2 is a
transmission coefficient from steering wheel to aileron; and k3 is a transmission coefficient
from pedal to rudder. Then, the PDF of each characteristic parameter is obtained. The
results are shown in Figures 5–7.
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With these PDF, the MCS method is used to conduct 10,000 simulations to generate
10,000 assessment input parameters with the same distribution.

The next step is to calculate the health index of the flight control system. According to
the theory in Section 2, the system will be divided into four channels: pitch, roll, yaw and
flap, and their health status can be divided into four levels: healthy, slightly decline, severe
decline and fault. Firstly, the relative degradation degree of the generated 10,000 input
parameters is normalized. The health index of each channel is obtained by constructing
the membership function, and then the weight of each channel relative to the flight control
system is obtained through rough set reduction. Finally, the health index of all channels is
weighted to obtain the whole system’s health index.

According to the maximum entropy, the first four-order statistical moments of this
health index are counted firstly in Table 5:

Table 5. Statistics of health index.

Statistics Value

Mean 0.7934

Variance 0.0077

Third-order central moment −3.0370 × 10−4

Fourth-order central moment 1.8493 × 10−4

Then, the PDF of the health index is obtained according to the maximum entropy:

f (y) = exp{1.4951 + 2.9369× (y− 0.7934)− 58.9372× (y− 0.7934)2

−134.3976× (y− 0.7934)3 − 250.9652× (y− 0.7934)4}
(25)

The PDF and the original data histogram are drawn in Figure 8. It can be seen from
the figure that the health index is mostly distributed between 0.75 and 1. Then, we can get
the integration of PDF in (0.75, 1) as 0.7088, that is, the probability that the flight control
system is in a healthy state is 70.88%, In the same way, the integration in (0, 0.25), (0.25, 0.5)
and (0.5, 0.75) is 1.6338×10−10, 0.0016 and 0.2896, respectively, which indicates that the
probability of fault state, severe decline state and slightly decline state is 0%, 0.16% and
28.96%. These results show that the flight control system in this flight is likely to be healthy,
and does not require maintenance.
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4.2. Flight Control System Assessment of 60 Flights

According to the process above, the health assessment of 60 flights is carried out in
this subsection, and the average value of the health index obtained from each simulation
is taken as the health index of that flight. Then, the health index of the four channels and
flight control system are obtained, which are shown in Figures 9 and 10:
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It can be seen that the health index for 60 flights under uncertain conditions is mostly
distributed around 0.75. Among the 60 flights, the distribution of flights in different health
states is shown in Figure 11 below:
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From the above figure, it can be seen that the system in 29 flights is operating well, is
slightly degraded in 31 flights and no flight is in severe decline or fault. In addition, flights
34 and 51 have a larger decline. Table 6 lists the health indices of the four channels of these
two flights.

Table 6. Health index of each channel of flight 34 and flight 51.

Flight Channel Health Index

34

Flap channel 0.7500

Pitch channel 0.5114

Roll channel 0.6963

Yaw channel 0.5026

51

Flap channel 0.7516

Pitch channel 0.5597

Roll channel 0.7318

Yaw channel 0.5621

Furthermore, for these 60 flights, the assessment results under certain conditions and
uncertain conditions are compared in Figure 12 below.
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4.3. Discussion

(1) From the quantification results of the uncertainty of each characteristic parameter
in a single flight health assessment, it can be seen that the expansion method can
accurately describe the uncertainty of these characteristic parameters; at the same
time, the PDF curve and the histogram almost fit, which indicates that the probability
distribution solution based on the maximum entropy is effective.

(2) The health assessment results of 60 flights under uncertain conditions show that
the aircraft is currently in good health. While only some functions slightly degrade,
the health indices of flights 34 and 51 (red dots in Figure 12) are relatively low, and
specifically, the health indices of these two flights’ pitch and yaw channels are lower.

(3) Comparing the health assessment results with and without the uncertain factors in
Figure 12, the health index has basically the same trend, but the health index under
certain conditions fluctuates more. However, for a product with a long life cycle, such
a large fluctuation in health status in a short period is obviously not in line with the
law of life degradation. Therefore, the assessment results under uncertain conditions
are more in line with the actual situation.

(4) In addition, a larger health index fluctuation means higher false alarm rates. Taking
flights 34 and 51 as an example, the health indices are 0.4524 and 0.4883 without
considering the uncertainty, which has reached the severe decline threshold; however,
under uncertain conditions, the health indices are 0.6838 and 0.6562. Although
these results are relatively low compared with other flights, the aircraft is still in
a slightly degraded state and has not reached a state ofsevere decline. Therefore,
health assessments under uncertain conditions reduce the influence of outliers on the
assessment results.

(5) As mentioned at the beginning of Section 2, the research in this article is based on the
authors’ previous research [14]. In this previous piece of research, we established a
health assessment model of a flight control system under certain conditions, obtained
the results of the flight control system under certain conditions and compared them
with the results obtained by using AHP, as shown in Figure 13. The conclusion is that
the built model can reduce inaccurate evaluation caused by the bias of subjective judg-
ments of humans, which improves the reliability and robustness of evaluation results.
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Figure 13. Comparison of AHP and comprehensive assessment.

Based on the previously established certain comprehensive evaluation model, this
paper establishes an evaluation model for a flight control system under uncertain conditions
and compares the evaluation results obtained under certain and uncertain conditions.

The conclusion is that the health assessment model of the flight control system under
uncertain conditions can reduce the influence of outliers on the assessment results.
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Therefore, by establishing health assessment models under certain and uncertain
conditions successively, the influence of human factors and outliers on the assessment
results is reduced and the false alarms caused by these factors are therefore reduced.

(6) In this paper, a health assessment model for flight control systems under uncertain
conditions is established. The research ideas of this model are also applicable to other
large-scale systems. That is, an assessment model under certain conditions is first
established, whose process includes establishing health assessment indicators, divid-
ing health levels, selecting assessment models and choosing a weight distribution
method. Then, uncertainty is introduced into the evaluation process, and uncertainty
problem research, including uncertainty expression, uncertainty quantification, uncer-
tainty propagation, etc. is used. Finally, the system’s health assessment results under
uncertain conditions are obtained.

(7) Although this article has obtained a probabilistic description of the health status of
a flight control system for 60 flights, there are still the following aspects that need
improvement: Firstly, there are fewer data samples. In future research researchers
can consider using more data samples to obtain more accurate results. Secondly,
this study analyzed the uncertainty of the parameters that affect the health of a
flight control system from a macro perspective, and did not specifically analyze the
performance degradation of the key components of a flight control system. Future
research can analyze the influence of parameter uncertainty of these components on
the evaluation results.

5. Conclusions

PHM technology has now become an important tool to ensure the operation of modern
commercial aircraft, because it can provide a large amount of fault information for mainte-
nance decision making, and as an important part of PHM technology health assessments
can accurately assess the operational status of aircraft. Health assessment information
obtained from aircraft-condition-monitoring system data can be used to improve aircraft
maintenance practices to avoid delays and cancellations. The combination of aircraft sys-
tem degradation indicators and estimation algorithms can provide maintenance personnel
with the ability to arrange disassembly and maintenance plans in advance.

Based on flight control system health assessment under certain conditions, this paper
establishes a health assessment model under uncertain conditions. Firstly, the character-
istic parameters that characterize the health status of a flight control system are selected.
Secondly, the uncertain factors are included in the flight control system health assessment
modeling process, and the uncertainty of the characteristic parameters is quantified and
their propagation was simulated. Finally, the actual flight data are taken as an example
to verify the effectiveness of the proposed model. The experimental results show that the
health assessment under uncertain conditions is more in line with the actual situation of
the degradation of an aircraft’s system life. More importantly, health assessments con-
ducted under uncertain conditions can reduce the false alarm rate, which can support
maintenance decisions.

In future research, statistical principles can be combined with machine learning and
other methods to more accurately quantify the uncertainty of input parameters, and at the
same time a failure prediction model can be established based on health indicators.
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Appendix A

Solving Parameters in λ− PDF—Expanded Method

First, solve the parameters of the polynomial in the first expansion.
For the first extended probability density function obtained in Equation (15), solve its

l-th moment of origin:

E =
∫ b0+b1

b0−b1

xl f λ
x (x)dx =

∫ 1

−1
(b0 + b1ξ)lκλ

(
1− ξ2

)λ−0.5
dξ, (A1)

Then, its first and second origin moments are:

E1 =
∫ b0+b1

b0−b1

xl f λ
x (x)dx = b0, (A2)

E2 =
∫ b0+b1

D0−b1

xl f λ
x (x)dx = b2

0 + b2
1

∫ 1

−1
(b0 + b1ξ)2 f λ

ξ (ξ)dξ, (A3)

In the value interval of the random variable, the integral of the probability density
function is 1: ∫ 1

−1
kλ

(
1− ξ2

)λ−0.5
dξ = 1, (A4)

Therefore: ∫ 1

−1

(
1− ξ2

)λ−0.5
dξ =

1
κλ

=
Γ(0.5)Γ(λ + 0.5)

Γ(λ + 1)
|, (A5)

Then, the l-th origin moment of the random variable ξ can be obtained as:

Cl =


(

l−1
2

)
!×
(

1
λ+ l−1

2

)
!× κλ ×

Γ(0.5)Γ(λ+0.5+ l
2 )

Γ(λ+1+ l
2 )

, l is even number

0, l is old number
, (A6)

Then, the second-, fourth-, sixth- and eighth-order origin moments of random variable
ξ can be obtained:

C2 = 1
2 ×

1
λ+1/2 × κλ × Γ(1/2)Γ(λ+3/2)

Γ(λ+2)

C4 = 3
4 ×

1
λ+1/2 ×

1
λ+3/2 × κλ × Γ(1/2)Γ(λ+5/2)

Γ(λ+3)

C6 = 15
8 ×

1
λ+1/2 ×

1
λ+3/2 ×

1
λ+5/2 × κλ × Γ(1/2)Γ(λ+7/2)

Γ(λ+4)

C8 = 105
8 ×

1
λ+1/2 ×

1
λ+3/2 ×

1
λ+5/2 ×

1
λ+7/2 × κλ × Γ(1/2)Γ(λ+9/2)

Γ(λ+5)

, (A7)

Then, the second-, third- and fourth-order origin moments of the extended random
variable x are: 

E2 = b2
0 + b2

1C2

E3 = b3
0 + 3b0b2

1C2

E4 = b4
0 + 6b2

0b2
1C2 + b4

1C4

, (A8)
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For a random variable, x, the relationship between the central moment and the origin
moment is: 

D2 = E2 − E2
1

D3 = E3 − 3E2E1 + 2E3
1

D4 = E4 − 4E3E1 + 6E2E2
1 − 3E4

1

, (A9)

At this point, when the mean, µ, variance, σ2, skewness, Cs and kurtosis, Ck, of
the random variable x are obtained, the following equations can be used to solve them
simultaneously, so as to solve the parameters b0, b1 and λ:

µ = E1 = b0

σ2 = D2

Cs =
D3
σ3

Ck =
D4
σ4

, (A10)

In the same way, the first l origin moment of the second expanded random variable
x is:

El =
∫ 1

−1

(
b0 + b1ξ + b2ξ2

)l
κλ ×

(
1− ξ2

)λ−0.5
dξ, (A11)

Thus, the first four origin moments and the second-, third- and fourth-order central
momentsare obtained:

E1 = b0 + b2C2

E2 = b2
0 +

(
b2

1 + 2b0b1
)
C2 + b2

2C4

E3 = b3
0 + 3

(
b2

0b2 + b0b2
1
)
C2 + 3

(
b0b2

2 + b2b2
1
)
C4 + b3

2C6

E4 = b4
0 +

(
4b3

0b2 + 6b2
0b2

1
)
C2 +

(
b4

1 + 6b2
0b2

2 + 12b0b2
1b2
)
C4 +

(
4b0b3

2 + 6b2
1b2

2
)
C6 + b4

2C8

, (A12)


D2 = b2

1C2 + b2
2C4 − b2

2C2

D3 = 3b2
1b2C4 + b3

2C6 − 3b2
1b2C2

2 − 3b3
2C2C4 + 2b3

2C3
2

D4 = b4
1C4 + 6b2

1b2
2C6 + b4

2C8 − 12b2
1b2

2C2C4 − 4b4
2C2C4 + 6b2

1b2
2C3

2 + 6b4
2C2

2C4 − 3b4
2C4

2

, (A13)

So far, when the mean, µ, variance, σ2, skewness, Cs and kurtosis, Ck , of the random variable x are obtained,
Equation (10) can be used to solve them simultaneously, so as to solve the extended parameters b0, b1, b2 and λ.
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