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Abstract: Six degree-of-freedom (6-DOF) robotic manipulators have been increasingly adopted in
various applications in industries due to various advantages, such as large operation space, more
degrees of freedom, low cost, easy placement, and convenient programming. However, the robotic
manipulator has the problem of insufficient stiffness due to the series structures, which will cause
motion errors of the manipulator end. In this paper, taking a 6-DOF robotic manipulator as an
example, forward and inverse kinematics models are established, and a new modeling method for
the joint angle and space stiffness of the end of the manipulator is proposed, which can establish the
composite stiffness model of joint link stiffness and joint stiffness. An error compensation model is
subsequently established. The experimental results indicate that the proposed error compensation
method can effectively reduce the end motion error of the robotic manipulator, and hence, the working
performance and accuracy of the manipulator can be improved. The proposed research is helpful for
extending the application of robotic manipulators in precision machining and measurement.

Keywords: robotic manipulator; stiffness; kinematics model; end trajectory; error compensation

1. Introduction

Since the advent of robots in the 1940s, robot technology has constantly improved.
After nearly a century of development, this technology has become an indispensable part
of industries and production, especially in the field of precision machining and testing [1,2].
However, due to their series structure configuration, robotic manipulators have some
problems, such as jitter and a relatively large end error caused by insufficient stiffness. To
improve the stiffness and working performance of robots, many researchers have carried
out relevant research during the past few decades. Tan [3] obtained an estimate of each joint
stiffness of an industrial robot by analyzing the joint rigidity of the mechanical transmission
system structure and parameters of conversion. Based on the analysis of joint stiffness
and arm stiffness, Liu [4] employed the error model to establish the stiffness model of
industrial robots. In 2011, Dumas et al. [5] from France established the static stiffness model
of industrial robots and proposed the relevant joint stiffness identification method with
the condition that the complementary stiffness matrix term and infinite stiffness of the
robot connecting rod were disregarded. In 2013, Lahmann et al. [6] from Russia used the
data measured by sensors inside the robot to identify the joint stiffness of the robot. Ailon
et al. [7] pointed out that the stiffness at the end of a robot would change with its posture.
In 2015, Kilimchik et al. [8] in France converted the flexibility of the arm to the flexibility of
joints, established the robot stiffness model, and then identified the stiffness parameters by
considering the flexibility of the manipulator and joints. In 2018, Wang et al. [9] proposed
the concept of an offset stiffness matrix, explored the impact of the offset stiffness matrix
on milling, and verified its correctness. Lin et al. [10] proposed a vibration control method
using a tunable mass damper with variable stiffness, which could avoid the maladjustment
effect and suppress the vibration.
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For the space stiffness of a tandem manipulator composed of traditional joints, much
research has been conducted. Ye et al. [11] utilized the bionic method of the human
spine to calculate the stiffness matrix of a 6-DOF manipulator to improve its accuracy.
Geng et al. [12] proposed a continuous manipulator driven by a variable stiffness wire
that could be passively adapted to collision and ensure operation accuracy. Liao et al. [13]
proposed a region-based tool path generation method to improve the stiffness in the robot
milling of freeform surfaces. Based on the matrix structure analysis method, Ali et al. [14]
expounded the calculation method of the Cartesian stiffness matrix of the manipulator
and introduced a new performance index of the manipulator. Jhan et al. [15] proposed
an adaptive impedance force control method for manipulators based on a fuzzy neural
network and estimated the stiffness coefficient of the contact environment. Han et al. [16]
combined the Lagrange method with the dynamic stiffness matrix method to build a
CDPR vibration model that could capture the dynamic characteristics of cables. In 2020,
researchers from Tsinghua University used the deformation coupling method to describe
the nonlinear deformation of the manipulator and then established a dynamic model
of the arm variable stiffness by combining the assumed modal method and Lagrange
equation [17]. Chen et al. [18] proposed a calibration method of robot geometric parameters
based on laser tracker measurement, which improved the absolute positioning accuracy
of cooperative robots, the D-H parameter error of which is identified and compensated
for. Ren et al. [19] corrected the absolute positioning accuracy error caused by the internal
mechanism deviation of the robot by modifying the parameters in the underlying controller,
so as to improve the operating position accuracy of the robot. Tian proposed a modular
robot calibration method considering joint stiffness to improve its positioning accuracy [20].

The literature review shows that most of the current research work is either focused
on traditional industrial robots or aimed at hardware improvements. As a new type of
lightweight robot, it is difficult to improve the positioning accuracy of cooperative robots
from the aspect of hardware. So far, there are few studies available on the positioning error
modelling of lifting cooperative robots, and most of them are based on DH parameters or
joint stiffness to correct the positioning error. In addition, a laser locator is used to assist the
experiment, which has a high cost and low universality. Each robot needs to be recalibrated,
which is inconvenient and inefficient to improve the accuracy of cooperative robots used in
different scenarios. Thus, a universal and economical method to improve the positioning
accuracy of cooperative robots is needed.

As a result, this paper presents a method for stiffness modeling and error compen-
sation for a 6-DOF cooperative robotic manipulator. This method can solve the problem
of the complex stiffness model, in which it is difficult to establish joint stiffness and joint
link stiffness based on the ANSYS finite element analysis method. Moreover, it can avoid
costly and complex calibration methods, such as the use of a laser tracker or excessive
calibration times. Firstly, the forward and inverse kinematics models for the manipulator
were built to obtain the relationship between joint angles and the end position. A stiffness
model that consists of the joint stiffness and joint link stiffness was built to determine the
mapping model of joint angles and the spatial stiffness of the end of the manipulator. The
end motion error caused by the insufficient stiffness was estimated and compensated via
simulation and experimental studies. Figure 1 shows a schematic of the proposed method
in this paper.
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Figure 1. Schematic of the proposed method.

2. Kinematics Model for a 6-DOF Robotic Manipulator

The improved DH method [21] was used to establish the connecting rod coordinate
system of the manipulator, and the kinematics model was used to obtain the analytic
solution of the forward and inverse kinematics of the manipulator, by which the motion
posture of the manipulator could be obtained. This method was also the foundation for
solving the stiffness matrix.

For the forward kinematics model, the connecting rod coordinate system of a 6-DOF
manipulator (Figure 2a) was established as follows: first, the position of the base coordinate
system and the initial position and attitude angles of the end were determined. Second,
the improved DH method was adopted to establish the coordinate system of the base
and each joint, and the forward kinematics solution model was utilized to calculate the
point-to-point (PTP) trajectory. The established coordinate system is shown in Figure 2b.
Figure 3 shows one of the connecting rod coordinate systems.

From Figure 3, the homogeneous transformation matrix of the linkage can be obtained
as follows:

Ai = Rot(z, θi)Trans(0, 0, di)Trans(ai, 0, 0)Rot(x, αi)

=


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

 (1)

where Rot and Trans represent the rotation matrix and translation matrix, respectively, and i
represents the number of joints. θi, αi, ai, and di represent the angle, connecting rod torsion
angles, connecting link length, and connecting rod offset, respectively, of joint i.
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Figure 2. (a) 6-DOF manipulator model and (b) connecting rod coordinate system.

Figure 3. Connecting rod coordinate system.

The end posture (including position and attitude) of the 6-DOF manipulator (4 × 4
matrix0

6T) was calculated as follows:

0
6T =

6

∏
1

Ai =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (2)

To solve the angles of the six joints from the space posture inversion of the manipulator
and pave the way for the subsequent compensation model, the inverse kinematics of the
manipulator need to be solved. The angles of the six joints can be obtained by solving eight
inverse kinematics solutions with the improved algebraic method, which will be explained
in detail in Section 4.
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3. Trajectory Compensation Based on Stiffness Modeling

To solve the relationship between the stiffness and the space position error caused by it,
first, the Jacobian matrix of the manipulator was solved by using the vector product method.
Second, the stiffness matrix of the manipulator was solved with the given generalized force
and manipulator parameters. Last, the mapping model of the six angles of the manipulator
and the errors caused by the joint stiffness of the manipulator were established.

3.1. Construction of the Jacobian Matrix

The Jacobian matrix was mainly employed in the velocity/static mapping between the
manipulator end and the joint. In essence, it is a partial differential matrix. The number of
rows represents the free degree of space (X, Y, Z, α, β, and γ), and the number of columns
represents the number of physical rotational axes of the robot. The Jacobian matrix J(q)
can be regarded as the linear relationship between the joint velocity and the manipulator
space velocity or the linear relationship between the joint variable and the end deformation,
which can be obtained as follows:

[
v
ω

]
=

[
Jl1 Jl2 . . . Jln
Ja1 Ja2 . . . Jan

]
q1
q2
...

qn

 (3)

where v represents the linear velocity of the end of the manipulator and ω represents the
angular velocity of the end. Therefore, the linear velocity v and angular velocity ω of the
robotic end can be expressed in terms of the joint velocity qi:{

v = Jl1q1 + Jl2q2 + . . . + Jlnqn
ω = Ja1q1 + Ja2q2 + . . . + Janqn

(4)

where Jli and Jai represent the linear velocity and angular velocity, respectively, of the end
caused by the unit joint velocity of joint i.

The Jacobian matrix connects the joint velocity with the end Cartesian velocity:

J(q)
.
q =

[
v
ω

]
(5)

where v and w are the linear velocity and angular velocity, respectively, and q is the joint
velocity vector. Since velocity can be taken as the differential motion per unit time, the
Jacobian matrix can also be considered as the transformation matrix between the differential
motion in joint space and the differential motion in operating space, namely,

J(q)dq =

[
d
δ

]
(6)

where d and δ are the differential movement and rotation at the end, respectively, and dq is
the joint differential motion vector.

For joint i, the angular velocity ω at the end is

ω =
n

∑
i=1

(εizi)
.
qi (7)

where qi represents the angle of the joint, zi is the representation of the z-axis unit vector
of frame {i} in the base frame {0}, n is the number of joints of the manipulator, and ε is a
coefficient, which will be explained in Equation (8).



Appl. Sci. 2021, 11, 10100 6 of 21

The linear velocity v generated by joint i at the end is

v =
n

∑
i=1

[
εizi + εi

(
zi × p0

in

)]
qi (8)

where εi = 1 − εi; if joint i is revolute, ε = 0, and if joint i is prismatic, ε = 1 (the joints of the
manipulator in this paper are all revolute). p0

in represents the position vector of the end
origin relative to the coordinate system {i} in the base system {0}, namely,

p0
in = 0

i R ∗ pin (9)

Therefore, for joint i of the rotation, the i-th column of the Jacobian matrix is

Ji =

[
zi × p0

in
zi

]
=

[
zi ×

(0
i R ∗ pin

)
zi

]
(10)

where 0
i R represents the rotation matrix of joint 0 transformed to joint i.

The Jacobian matrix of the manipulator can be calculated according to the formulas in
this section.

3.2. Flexibility Matrix

External loading will cause deformation of the manipulator due to the lack of stiffness.
Joint deformation basically accounts for a large proportion of deformations, while other
deformations account for a very small proportion.

The spring coefficient Kqi was assumed to represent the stiffness of the entire drive system:

τi = Kqidqi i = 1, 2, . . . , n (11)

where τi is the joint torque, dqi is the additional deformation caused by the action of joint
variables qi from τi, and the total relation is

τ = Kqdq (12)

Kq = diag
(
kq1, kq2, . . . , kqn

)
(13)

where diag
(
kq1, kq2, . . . , kqn

)
represents the matrix whose diagonal elements are

kq1, kq2, . . . , kqn.
Based on the error D = J(q)dq derived from the differential motion relation and

Jacobian matrix τ = JT(q)F of the forces, the following relation can be obtained:

D = J(q)dq = J(q)K−1
q τ = J(q)K−1

q JT(q)F (14)

The inverse of Kq is K−1
q , which is often referred to as joint flexibility.

Let the end flexibility matrix be C(q), then

C(q) = J(q)K−1
q JT(q) (15)

Equation (15) is used to represent the relationship between the error D (or δθ) of the
working space and the generalized force F, which can be expressed as

D = C(q)F (16)

where D is proportional to C(q), so the deformation at the end of the manipulator will
change as the Jacobian matrix changes.
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3.3. Error Compensation Model for a 6-DOF Manipulator
3.3.1. Joint Stiffness

Assuming that the force on the end of the arm is F0, then

F0 =
[

fx, fy, fz, mx, my, mz
]T (17)

where
[

f0x, f0y, f0z
]

and
[
m0x, m0y, m0z

]
represent three-dimensional force vectors and

three-dimensional moment vectors, respectively.
The deformation at the end due to the external force is X:

X =
[
dx, dy, dz, δx, δy, δz

]T (18)

where
[
dx, dy, dz

]
and

[
δx, δy, δz

]
represent translational deformation and rotational defor-

mation, respectively.
When the force is within a certain range, the relationship between the force and the

deformation satisfies a linear relationship, i.e., following Hooke’s law:

fx
fy
fz

mx
my
mz

 =


k11 k12 . . . k16
k21 k22 . . . k26

...
...

. . .
...

k61 k62 · · · k66




dx
dy
dz
δx
δy
δz

 (19)

The stiffness matrix or flexibility matrix of the robot reflects the linear relationship
between the end force F and the deformation X and varies with the change in shape and
position. From the elements in the stiffness matrix, it can be seen that the force in a certain
direction not only causes deformation in a certain direction but also causes deformation in
other directions.

The stiffness matrix can be obtained by combining the Jacobian matrix calculated in
the previous section with the stiffness calculation formula:

C−1 = J−T(q)Kq J−1(q) (20)

The inverse matrix of C−1 is C, which is referred to as the flexibility matrix.

3.3.2. Manipulator Arm Link Stiffness

For the joint link i, its stiffness can be expressed as

ki =
[

kix kiy kiz kiβ kiγ kiϕ
]

(21)

where
[
kix, kiy, kiz

]
and

[
kiβ, kiγ, kiϕ

]
represent translational stiffness and rotational stiffness,

respectively. In addition, the force f on the joint link i can be expressed as

fi =
[

fix fiy fiz mix miy miz
]

(22)

where fix, fiy, and fiz are the forces in the X direction, Y direction, and Z direction, re-
spectively, and mix, miy, and miz represent the torque on the link. The force and torque
transmitted from the end of the manipulator to arm link i can be calculated by the
following formulas: 

fix = n·F0
fiy = o·F0
fiz = a·F0

(23)
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mix = n·[F0 × p + m]
miy = o·[F0 × p + m]
miz = a·[F0 × p + m]

(24)

n =
(
nx, ny, nz

)
, o =

(
ox, oy, oz

)
, a =

(
ax, ay, az

)
, and p =

(
px, py, pz

)
, can be obtained

from Equation (2) when the generalized forces and generalized stiffness at the end of the
manipulator are known; the generalized displacement deformation of the manipulator arm
link is

δi = [∆xi1 ∆yi1 ∆li ∆xi2 ∆yi2 ϕi] (25)

where ∆xi1 = fix
kix

, ∆yi1 =
fiy
kiy

, ∆li =
fiz
kiz

, ∆yi2 =
miy
kiγ

, and ϕi =
miz
kiϕ

.
The displacement deformation δi can be obtained by the following material mechanics

formula, which is hard to apply to the quantitative measurement of the positioning error
of the manipulator end, and will be replaced by the result of the finite element analysis.

Thus, the error δl caused by the stiffness of the total joint arm link can be calculated:

δl =
n

∑
i=1

δi(n = 6) (26)

According to the deformation δ1 caused by the stiffness of the manipulator link and the
deformation δθ caused by the stiffness of the joint, the total deformation δ of the industrial
robot can be obtained:

δ = δl + δθ (27)

The generalized force F on the operating end of the manipulator is

F =
[

fx, fy, fz, mx, my, mz
]

(28)

where fx, fy, and fz are the forces in the X direction, Y direction, and Z direction, re-
spectively, and mx, my, and mz, respectively, represent the torque on the link. F is the
generalized force exerted on the end, δ is the generalized deformation of the end, and then
the total space stiffness of the manipulator can be obtained:

k =
F
δ

(29)

3.3.3. Motion Error Compensation by Correcting Joint Angle

According to the stiffness formula derived previously, when the stiffness and the
generalized force F at the end are known, the end error ∆δ can be calculated:

∆δ = ∆(δl + δθ) =
F
C
+ ∆δl (30)

∆δ = J(q)K−1
θ JT(q)F + ∆δl (31)

When there is no external load on the robot, the joint angle is regarded as the theoretical
joint angle θi, and its end position is the theoretical position si. When the robot is under
an external load, its joint angle and end position will deviate due to its stiffness, the joint
angle is the actual value θr, and the end position is the actual position sr. The deformation
∆s at the end of the robot subjected to external load causes the error of the end position. In

this paper, the error is compensated by correcting the joint angle θc by ∆θc.

∆θc = J−1(q)∆s (32)

4. Simulation Studies for a 6-DOF Manipulator

As described in this section, a 6-DOF manipulator was taken as an example to carry
out the simulation studies. First, the forward and inverse kinematics model was established,
and then the stiffness and stress of the joint were analyzed to determine the influence of
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the joint stiffness on the end position error. Second, the stiffness variation of the manipu-
lator in its motion space was determined. Last, the angular stiffness space position error
model was established to simulate and calculate the stiffness and error changes in the
motion trajectory.

4.1. Solving Kinematics Model

Inverse kinematics were utilized for the establishment of the joint angle compensation
model, so this section solves the inverse kinematics for the 6-DOF manipulator. The DH
parameters for the manipulator are listed in Table 1.

Table 1. DH parameters for the 6-DOF robotic manipulator.

Joint Number Joint Angles
θi (◦)

Connecting Link Length
ai−1 (mm)

Connecting Rod Torsion Angles
αi−1 (◦)

Connecting Rod Offset
di (mm)

1 θ1 0 α1 = 90 d1 = 100.101
2 θ2 a2= −425.718 0 d2 = 135.8
3 θ3 a3= −395.804 0 0
4 θ4 0 0 d4 = −25.925
5 θ5 0 α5 = 90 d5 = 97.612
6 θ6 0 α6 = −90 d6 = 82.613

According to the forward model in Section 2 and combined with the DH parameters of
the 6-DOF manipulator, the following expressions can be obtained based on Equation (2):

0
6T = A1 A2 A3 A4 A5 A6 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1


where 

nx = sin(θ1 + θ2)sinθ6 + cos(θ1 + θ2)cos(θ3 + θ4 + θ5)cosθ6

ny = sin(θ1 + θ2)cos(θ3 + θ4 + θ5)cos(θ6)− sinθ6cos(θ1 + θ2)

nz = sin(θ3 + θ4 + θ5)cosθ6

(33)


ox = −cos(θ1 + θ2)in(θ3 + θ4 + θ5)

oy = −sin(θ1 + θ2)sin(θ3 + θ4 + θ5)

oz = cos(θ3 + θ4 + θ5)

(34)


ax = sin(θ1 + θ2)cosθ6 − cos(θ1 + θ2)cos(θ3 + θ4 + θ5)sinθ6

ay = −cosθ6cos(θ1 + θ2)− sinθ6sin(θ1 + θ2)cos(θ3 + θ4 + θ5)

az = −sin(θ3 + θ4 + θ5)sinθ6

(35)

The inverse model for the manipulator can be solved by the following steps.
To obtain θ1, θ5, and θ6, transform the matrix of both sides of Equation (34):

0
1T−1 · 0

6T · 5
6T−1 = 1

5T = 1
2 A2

3 A3
4 A4

5 A (36)

The values in row 3 and column 4 are equal, and θ1 is obtained:

θ1 = atan2(m1, n1)− atan2
(

d4,±
√

m1
2 + n1

2 − d2
4

)
(37)

where m1 =
(

py − d6ay
)

and n1 = (px − d6ax).
Using row 3, column 3 on both sides of the equation corresponds to the same thing,

and then θ5 is obtained:
θ5 = ±arccos

(
ayc1 − axs1

)
(38)
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The third row and the first column on both sides of the equation are equal, and θ6
is obtained:

θ6 = atan2(m6, n6)− atan2
(

s5,±
√

m62 + n62 − s2
5

)
(39)

where m6 =
(
nxs1 − nyc1

)
n6 =

(
oxs1 − oyc1

)
.

To obtain θ3, θ2, and θ4, transform the matrix of both sides of Equation (3):

0
1T−1 · 0

6T · 5
6T−1 = 0

1 A−1 · 0
6T · 5

6 A−1 = 1
5T = 1

2 A2
3 A3

4 A (40)

According to the left and right sides of row 1 of this equation, column 4 corresponds
to the same thing; row 2, column 4 corresponds to the same thing; and θ3, θ2, and θ4
are obtained:

θ3 = ±arccos

(
m3

2 + n3
2 − a2

2 − a2
3

2a2a3

)
(41)

θ2 = atan2(s2, c2) (42)

θ4 = atan2
(
−c6

(
oxc1 + oys1

)
− s6

(
nxc1 + nys1

)
,−ozc6 − nzs6

)
− θ2 − θ3 (43)

where m3 = a2c2 + a3c23 n3 = a2s2 + a3s23.
Based on these equations, the corresponding inverse kinematics solutions of eight

groups ( θ1 ∼ θ6) can be obtained.

4.2. Errors Caused by Connecting Rod Deformation

A mechanical analysis model of the manipulator was established, and a stress analysis
was carried out to compensate for the errors caused by connecting rod deformation. To
facilitate the stress analysis of the manipulator, the model of the manipulator was sim-
plified and constructed in ANSYS software, and the basic configuration and rigid body
characteristics of the manipulator with six degrees of freedom were retained. The ‘material’
was set as ‘structural steel’ and the ‘mesh’ was set as ‘medium’. Under the experimental
conditions, it was difficult to keep the generalized force constant on the manipulator arm,
so the direction of the generalized force was set as straight down, which is also helpful to
design experiments. Figure 4 shows the deformation of the manipulator when the manip-
ulator arm was in a posture with different loads of 0 N, 10 N, and 20 N. The maximum
displacement of the manipulator itself was basically maintained at approximately 0.03 mm.
However, it can also be seen that errors caused by the stiffness of the connecting rod of the
manipulator do exist and will affect the positioning accuracy of its end. Considering that
the stiffness model of the joint link was very difficult to calculate, a finite element analysis
was carried out for the different postures of the manipulator to better compensate for the
error. The displacement results of the finite element analysis were added to the final error
compensation model as the additional generalized errors of the manipulator.

4.3. Flexibility Elements in Six Directions

The joint stiffness data were obtained based on the joint module specification and rele-
vant parameters that are commonly employed in harmonic reducers [22]:
K = diag(1.27e6, 1.27e6, 1.27e6, 3.3e7, 3.3e7, 3.3e7) (unit: N·mm/rad), where
diag

(
kq1, kq2, . . . , kqn

)
represents the matrix whose diagonal elements are kq1, kq2, . . . , kqn.

The parameter K is defined by

K =
T
ϕ

(44)

where T and ϕ are the load torque and elastic deformation angle, respectively, of the
harmonic reducer.

From Equation (15), the stiffness matrix C can be obtained. However, stiffness reflects
the force caused by the change in the unit displacement, while flexibility reflects the dis-
placement caused by the unit force. The research focus of this paper is the displacement
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error caused by insufficient stiffness. The derivation of the flexibility matrix C with the diag-
onal elements C11, C22, · · · , C66 shows that the elements C11, C22, C33 represent the moving
deformation caused by unit force in the X, Y, and Z directions, while C44, C55, and C66
represent the rotational deformation caused by the unit torque in the X, Y, and Z directions.
When X = 0.3, Y and Z are at (−0.3, 0.3) (unit: m), the end attitude angles are (−1.57, 0, 1.57)
(unit: rad), the stiffness matrix can be solved, and the flexibility plane of C11, C22, · · · , C66.
is as shown in Figure 5

Figure 4. Deformation of the manipulator under different loads in the Z direction: (a) 0 N, (b) 10 N,
and (c) 20 N.
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Figure 5. Flexibility matrix elements plane: (a) C11 (b) C22, (c) C33, (d) C44, (e) C55, and (f) C66.

Figure 5 shows the displacement changes at the end of the manipulator in the X, Y,
and Z directions and the attitude angles (α, β, and γ), which indicate that the stiffness is
different when the manipulator moves in space. Flexibility reflects the displacement under
a force. Figure 5a shows that when the manipulator moved from −0.3 m to 0.3 m along
the Y axis, the error of the end in the X direction caused by insufficient stiffness decreased.
However, when moving along the Z axis, it did not change greatly, which may be because
the manipulator was in the reasonable working range of the Z axis. Figure 5b shows that
when the manipulator moved from y = −0.3 m to y = 0.3 m, when the Z coordinate was
large, the flexibility in the Y direction decreased and then increased. When the Z coordinate
was smaller, the flexibility in the Y direction increased. When the Z coordinate was near 0,
the flexibility was basically unchanged at approximately 0.1 m/N. Figure 5c shows that the
flexibility of the end of the manipulator in the Z direction presented a Newtonian annular
variation in the motion plane. Figure 5f show the variation in the angular displacement
compliance at the end of the manipulator.

The simulation results in this section indicate that the stiffness of the manipulator
at each point in space is different, the change regularity is difficult to predict, and the
errors caused by it are constantly changing, for which it is necessary to compensate the
errors for better accuracy of the end positioning. In the following sections, the joint angle is
compensated to verify the compensation effect by the simulation and experiments.

4.4. Simulations of Error and Stiffness in PTP Trajectory

Given the generalized force F =
[

5 10 20 0 0 0
]

(N), the total end stiffness
K and total generalized deviation δ =

[
∆x ∆y ∆z ∆φx ∆φy ∆φz

]
were obtained

in the point-to-point trajectory. ∆x, ∆y, and ∆z are commonly employed to measure
the positional deviation, which is the deviation in the end position in the X direction,
Y direction, and Z direction, respectively.

The motion trajectory of the manipulator was set from point (207, 444, 631) to point
(−137, 69, 241) (including 40 points). The stiffness and position error in the translation
direction of X, Y, and Z in the process of motion were obtained by using the derived stiffness
formulas, as shown in Figures 6 and 7.
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Figure 6. Stiffness changes in the translation direction of X, Y, and Z.

Figure 7. Position errors in the X, Y, and Z translation directions.

With the movement of the manipulator, the stiffness in the X, Y, and Z translational
directions will also change. The stiffness in the Y direction was basically unchanged at
approximately 350 rad·N/m, and its error basically fluctuated at approximately 0.2 mm.
During the movement of the manipulator arm, the stiffness in the Z direction decreased
from 640 to 270 rad·N/m, and the corresponding position error increased from 0.15 mm
to 0.37 mm. When the stiffness in the X direction increased from 100 to 280 rad·N/m, the
corresponding error decreased.

4.5. Trajectory Error Compensation

The PTP trajectory of the previous part was compensated, and the compensation angle
of joint angle θ1 ∼ θ6 was calculated by using Equations (38)–(42), as shown in Figure 8.
The space coordinate errors before the error correction are shown in Figure 9.
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Figure 8. Compensated angles for joint angle θ1 ∼ θ6.

Figure 9. Spatial coordinate errors before the error correction.

In Figure 9, ∆x, ∆y, and ∆z represent the position error in the X direction, Y direction,
and Z direction, respectively, before the compensation of the joint angles, while ∆x_SM,
∆y_SM, and ∆z_SM represent the corresponding position errors after angle compensation.
The simulation results show that the position errors of the manipulator end were reduced
in the X, Y, and Z directions.

5. Experimental Studies

In the experimental studies, a 6-DOF robotic manipulator (named AR5 from Asage-
Robots Ltd., China) was taken as the objective. The end position of the manipulator was
measured by an artifact installed at the end, which was measured by three displacement
laser sensors (Keyence LK-G500) [23]. The measurement system is shown in Figure 10.
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Figure 10. End position measurement system for a 6-DOF robotic manipulator.

Based on the previously established joint angle-stiffness-spatial position error model,
a series of experiments were carried out to verify the effectiveness of the model. The
experiments included two parts. In the first part, the space position of the manipulator
was measured under the same trajectory but with different loads. Six random points were
selected from the measurement range of the manipulator and the measurement system.
The spatial position of each point was measured under different loads at the end of the
manipulator to verify the regularity of the joint angle-stiffness-spatial position model. In
the second part, an additional error compensation experiment was carried out, and the
spatial error of the manipulator end was compared between the simulation results and the
measured results.

5.1. Position Error under Different Loads

Generally, the repeat positioning accuracy or position precision was high for the
robotic manipulator. Therefore, for the same trajectory, the initial point and end point
can be considered the same without the end load, and the difference between the spatial
position of the initial point and that of the final point under load was measured to verify
whether it conformed to the validity of the proposed stiffness model.

The posture of the manipulator at the initial point was set to (253.419 mm, 6.866 mm,
432.48 mm, 90.26◦, 84.23◦, 93.55◦), in which the first three parameters are the Cartesian
coordinates of the end of the manipulator, and the last three parameters are the attitude
angles of the end of the manipulator. Loads of 0 N, 6.04 N, 10.63 N, 14.91 N, 18.64 N, and
21.50 N were added to the end of the manipulator (the force was applied in a downward
direction). In each load state, the initial position was repeatedly positioned at the initial
point several times to ensure the stability of the initial coordinates, the complete track
was followed coherently, and the spatial position of each static track point was recorded.
According to the previous stress analysis, this experiment put the applied load on the end
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of the manipulator. The force at the end of the arm was distributed differently in the X, Y,
and Z directions, resulting in corresponding error changes in different directions, as shown
in Figure 11.

Figure 11. Position error in (a) X, (b) Y, (c) Z direction under different loads.
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The changes in the position errors when the load is 18.64 N and 21.50 N in Figure 11a–c
show that when the load force at the end increased to a certain extent, the errors caused by
the load changes gradually decreased; that is, the load force is not a linear factor for the
increase in errors at this time. The results in the figures show that when the manipulator was
at different points in space (at different postures), the position and pose of the manipulator
had a more important role in the errors caused by stiffness. The position error caused
by a small force was sometimes greater than that caused by a larger force, for example,
a mutation of the position error appeared when the position error at 10.63 N exceeded
the error caused by 14.91 N. According to the variation characteristics of most position
errors in Figure 11, this sudden change may have been caused by additional errors in the
measurement process (possibly the drift of the laser sensor).

The experimental results in this section show that when the load force at the end
of the manipulator increased to a certain extent, its influence on the position error was
gradually weakened, while the influence of the manipulator attitude always existed. Under
the same conditions, the influence of the joint angle had a greater influence on the error
than other factors.

5.2. Compensation of Position Error under Different Loads

In this section, the end position of the manipulator arm under two conditions with a
load of 10.6 N and 18.04 N was measured. Since the positioning precision of the manipulator
at a load of 0 N load was much higher than the absolute positioning accuracy, the end
position of the manipulator at a load of 0 N was considered the reference. A total of
11 points were randomly selected in the Cartesian coordinate space of the manipulator in
the experiment, as shown in Figure 12.

Figure 12. Selected 11-point trajectory.

According to the error-joint angle model (Equation (14)),

∆s = J(q)dq = J(q)K−1
q τ = J(q)K−1

q JT(q)F

where J(q) =
[

J1(q) J2(q) J3(q) J4(q) J5(q) J6(q)
]
.
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According to the Jacobian construction method in Section 3.1, Ji(q) can be obtained:

Ji(q) =



−nix piy + niy pix
−oix piy + oiy pix
−aix piy + aiy pix

niz
oiz
aiz

 (i = 1, 2, . . . 6) (45)

where the homogeneous transformation parameters of joint i: nix, niz, oix, oiz, aix, aiz, pix,
and piy can be obtained according to Equation (46):

0
i T =

n

∏
i=1

Ai =


nix oix aix pix
niy oiy aiy piy
niz oiz aiz piz
0 0 0 1

 (n = 1, 2, . . . 6) (46)

where Ai is the homogeneous transformation matrix for joint i.
Kq can be obtained from Section 4.3, and F is the six-dimensional generalized force

applied at the end of the manipulator, as shown in Equation (28).
The compensated angle ∆q can be obtained as

∆q = J−1(q)∆s (47)

The first point and the last point coincide, which is not only for the verification of the
repetition accuracy of the same point but also for the observation of the position error of
joint stiffness superposition. Tables 2 and 3 show the compensation angles of the six joint
angles under a load of 10.6 N and 18.0 N, respectively. Figure 13 shows the position errors
before and after compensation, where X_error, Y_error, and Z_error represent the position
errors in the X direction, Y direction, and Z direction, respectively, and X_SM, Y_SM, and
Z_SM represent the position errors after compensation based on the stiffness model in the
X direction, Y direction, and Z direction, respectively.

Table 2. Compensated joint angles ∆q (under 10.6 N).

Point θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ5 (◦) θ6 (◦)

1 0.05564 −0.02996 −0.02568 0 −0.06509 0.06509
2 −0.04750 0.02261 0.02489 0 0.15884 −0.15885
3 0.04343 −0.03824 −0.00518 0 −0.11362 0.11363
4 0.02360 −0.02690 0.00331 0 −0.04957 0.04957
5 0.05196 −0.03822 −0.01373 0 −0.08925 0.08926
6 0.04691 −0.03566 −0.01125 0 −0.08654 0.08655
7 0.05094 −0.03143 −0.01951 0 −0.08495 0.08495
8 0.04230 −0.02865 −0.01365 0 −0.07655 0.07655
9 0.03688 −0.02649 −0.01038 0 −0.08305 0.08306

10 −0.18010 0.05644 0.12365 0 0.42957 −0.42954
11 0.03615 −0.02521 −0.01094 0 −0.05531 0.05531

As shown in Figure 13, the position error in the X and Y directions was generally
less than 0.01 mm because the external force was mainly applied in the Z direction. After
the joint angles were compensated, the displacement errors in these two directions were
reduced to less than 0.005 mm. In the Z direction, the maximum error reached −0.3 mm,
which was basically reduced to less than 0.01 mm, and the minimum value was only
0.0015 mm after compensation. The compensation effect of the displacement errors in the
X, Y, and Z directions reached 95.2%, 98.7%, and 96.2%, respectively. The experimental
results of this paper indicate that the error compensation method by the stiffness model
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based on joint stiffness and joint link stiffness is effective, which is significant for improving
the spatial positioning accuracy of 6-DOF manipulator ends.

Table 3. Compensated joint angles ∆q (under 18.0 N).

Point θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ5 (◦) θ6 (◦)

1 0.00253 −0.00316 0.00064 0 −0.00534 0.00534
2 0.00318 −0.00293 −0.00025 0 −0.01629 0.01631
3 0.00644 −0.00624 −0.00020 0 −0.01777 0.01778
4 0.00458 −0.00365 −0.00094 0 −0.00023 0.00022
5 0.00717 −0.00608 −0.00108 0 −0.01346 0.01345
6 0.00642 −0.00534 −0.00107 0 −0.01201 0.01201
7 0.00757 −0.00555 −0.00201 0 −0.01596 0.01696
8 0.00556 −0.00439 −0.00117 0 −0.01285 0.01284
9 0.00548 −0.00449 −0.00099 0 −0.01406 0.01307

10 0.00416 −0.00414 −0.00003 0 −0.00907 0.00907
11 0.00566 −0.00426 −0.00140 0 −0.01224 0.01224

Figure 13. Position error before and after compensation under different loads.

Researchers should discuss the results and how they can be interpreted from the
perspective of previous studies and of the working hypotheses. The findings and their im-
plications should be discussed in the broadest context possible. Future research directions
may also be highlighted.

This section is not mandatory but can be added to the manuscript if the discussion is
unusually long or complex.
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6. Concluding Remarks

A new method of motion error modeling and compensation for robotic manipulators
was proposed in this paper. Forward and inverse kinematics models for a 6-DOF robotic
manipulator were established. The Jacobian matrix and stiffness matrix were calculated
based on the parameters of the joint modules. The mapping model of the 6 joint angles,
generalized force at the end, and spatial stiffness was built. In the case that generalized
force is known, the joint stiffness can be simulated for the motion errors of the manipulator
end. Based on the simulation results, the error compensation method based on joint angles
was established. In the simulation and experimental studies, a reasonable compensation
effect was obtained. The compensation effect of the displacement errors in the X direction,
Y direction, and Z direction reached 95.2%, 98.7%, and 96.2%, respectively. The findings
are useful in posture selection and joint angle compensation for maintaining the optimal
stiffness of the manipulator. The research work is also helpful for enhancing the overall
stiffness and reducing the motion errors of the robotic manipulator, and hence, improving
the working performance and accuracy of the manipulator. This improvement will extend
the application of the robotic manipulator in precision machining and measurement.

However, in this study, the speed of the manipulator was relatively slow during
movement; therefore, the influence of static stiffness was mainly considered without
considering the factor of speed. In future research, motion velocity will be considered
in the compensation model to establish a more comprehensive relationship among the
magnitude of velocity, acceleration, and compensation angle to further improve the error
compensation effect and position accuracy during the movement of the manipulator.
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