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Abstract: Climate change, waste disposal challenges, and emissions generated by the manufacture of
non-renewable materials are driving forces behind the production of more sustainable composite
materials. All-cellulose composites (ACCs) originate from renewable biomass, such as trees and
other plants, and are considered fully biodegradable. Dissolving cellulose is a common part of
manufacturing ACCs, and currently there is a lot of research focused on effective, but also more
environmentally friendly cellulose solvents. There are several beneficial properties of ACC materials
that make them competitive: light weight, recyclability, low toxicity, good optical, mechanical, and
gas barrier properties, and abundance of renewable plant-based raw material. The most prominent
ACC applications are currently found in the food packing, medical, technical and vehicle industries.
All-cellulose nanocomposites (ACNCs) expand the current research field and can offer a variety of
more specific and functional applications. This review provides an overview of the manufacture
of sustainable ACCs from lignocellulose, purified cellulose, and cellulosic textiles. There is an
introduction of the cellulose dissolution practices of creating ACCs that are currently researched, the
structure of cellulose during complete or partial dissolution is discussed, and a brief overview of
factors which influence composite properties is presented.

Keywords: all-cellulose composite; biocomposite; cellulose; dissolution; natural fibres; single-
polymer composite

1. Introduction

Worldwide, an ever-increasing amount of consumable materials is produced and used.
At the same time, we are facing severe environmental crises: poor waste management,
microplastics in all waterways, depleting natural resources, and increasing greenhouse
gases in the atmosphere [1]. It is important that technological development respond to the
growing demand for sustainable materials that do not intensify the current waste problem.

Wood- or plant-based cellulose fibres have shown their potential as a reinforcement
in composites for a relatively long time [2] alongside the commonly used glass-fibre [3]
and carbon-fibre [4] reinforcements. The challenge is finding a bio-based option for the
composite matrix, which is responsible for binding the fibres, transferring load, and shaping
and protecting the final composite. Using wood-plastics is a step in a more sustainable
direction, but they have proven been challenging to recycle [5], and therefore, they also
contribute negatively to the waste problem when the material is disposed of. Furthermore,
two chemically different components often have poor interfacial compatibility, which can
lead to water uptake, reduction of the material’s mechanical properties [6] and shortening of
the lifespan of the product. One way to overcome this problem and increase recyclability is
to create single-polymer composites (SPCs), where reinforcement and matrix are composed
of the same materials [7]. This effectively removes the fibre-matrix adhesion challenges
between different types of polymers [8].
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All-cellulose composites (ACCs) can provide an environmentally friendly alternative
to conventional petrochemical-based materials since they are a type of SPCs from biomass-
derived cellulose, and as such, they are easily recyclable, and they originate from renewable
sources. A pioneering study of ACC materials was published by Nishino et al. [8], who
created a cellulose-based composite with good mechanical and thermal properties. Since
then, there has been a growing interest in the research and development of ACC and in
finding suitable solvent systems for the process [9–15]. Currently, ACCs are produced from
various cellulosic raw materials (plant fibres, chemically pulped wood, textile fibres and
different varieties of micro- and nano-celluloses) using different processing methods [16,17].
All-cellulose nanocomposites (ACNC) are a subclass of nanocomposites produced using
plant- and bacterial-based nanocellulose. They are manufactured via same methods as
macroscale ACCs and they can improve the desired properties of the composite material
such as enhance its mechanical strength [18–22]. Despite these recent developments, most
of the recently developed ACC and ACNC materials are still produced in a laboratory scale.

Cellulose-based biocomposites have already found commercial success in many indus-
tries and therefore there are also potential interests for ACC materials. Current legislation
and policies also lead the way to more sustainable product manufacturing. For instance,
the European Commission’s Green Deal action plan [23–25] pushes the transportation
industries to more sustainable practices and to generate less carbon dioxide emissions. One
solution for the road transport, marine and aviation industries is to replace indoor plastic
components with cellulose-based components [26]. Emission reduction occurs not only via
the use of sustainable materials but through weight reduction that leads to more efficient
fuel consumption [27]. In addition, low-density bio-based composites can improve key per-
formance factors, such as impact resistance, energy absorption capacity, and reduce noise
and vibration. They can also offer advantages in production cost [28]. Furthermore, low
density ACC materials with good optical and gas barrier properties, flexibility, and high
mechanical strength can be used applications in areas such as display panels, photoelectric
devices, filtration materials, biomedical engineering applications, high-performance food
packaging and structural materials [29,30]. Lightweight, rigid and porous all-cellulose
aerogels can be an environmentally friendly alternative to synthetic foams [10] and can be
used in technical applications, such as adsorbents, catalysts, detectors and acoustic and
thermal insulators, as well as in many life science applications, such as pharmacology,
cosmetics and bio-medical applications [31].

This review introduces some of the most essential green solvent-based fabrication
routes for making all-cellulose composite materials for versatile end use profiles. In the
brief outline on cellulose chemistry and composition we provide an overview on cellulose
dissolution and regeneration practices that utilize different solvent systems. Different
fabrication routes to combine natural fibres to dissolved matrix systems finally lead to
fabrication techniques to obtain single polymer composites from cellulose and how to
influence their properties.

2. Cellulose
2.1. Characteristics of Cellulose

In nature, cellulose is found in the cell walls of plants, including trees, and it has a vital
role in providing mechanical strength and structural support [32]. Plant-based cellulose is
accompanied by hemicellulose, lignin, pectin, and other substances [33]. Besides plants,
certain bacteria, algae and fungi produce cellulose [34].

Cellulose is a linear homopolysaccharide consisting of β-D-glucopyranose units linked
by glycosidic β(1–4) bonds. Each unit contains three hydroxyl groups. The long polymer
chain has repeating elements, which have two anhydroglucose units (AGU) that form
polymerized chain lengths of several thousand units [34]. Cellulose has an amphiphilic
nature: the equatorial direction of a glucopyranose ring is hydrophilic, and the axial
direction of the ring has a hydrophobic character (Figure 1). These characteristics play a
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significant role in hydrophilic and hydrophobic interactions between cellulose molecules
and other compounds in water [35–37].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 22 
 

amphiphilic nature: the equatorial direction of a glucopyranose ring is hydrophilic, and 
the axial direction of the ring has a hydrophobic character (Figure 1). These characteristics 
play a significant role in hydrophilic and hydrophobic interactions between cellulose 
molecules and other compounds in water [35–37]. 

 
Figure 1. Hydrophilic and hydrophobic planes of cellulose marked with the primary C6-OH (with 
tg-conformation corresponding cellulose I crystalline structure), and secondary C2-OH and C3-
OH groups in glucosyl unit. Reprinted with permission from [37]. 

Cellulose can be considered a semi-crystalline polymer with highly oriented 
crystalline domains coexisting with non-crystalline amorphous phases, which have a 
lower degree of order [38,39]. The cellulose crystalline domains have four major 
allomorphs (I, II, III and IV) based on molecular orientation. The most common allomorph 
found in nature is cellulose I and the most thermodynamically stable structure is 
established in cellulose II [34,40]. Cellulose I can have two sub-allomorphs, triclinic Iα and 
monoclinic Iβ, which can be found alongside each other, and the ratio depends on the 
origin of the cellulose [34]. Cellulose Iα dominates in primitive organisms, such as algae 
and bacteria, while cellulose Iβ is found mainly in higher plants [41] and aquatic animals, 
such as tunicates [42]. Cellulose II can be modified irreversibly from cellulose I through 
alkaline treatment (mercerization) or by the cellulose dissolution process (regeneration) 
[34]. Cellulose III is obtained through liquid ammonia (NH3), while cellulose IV is 
obtained through the heating of small crystallites in glycerol at 260 °C. Cellulose III can 
be reversibly formed from cellulose I, II or IV, and cellulose IV can be reversibly formed 
from cellulose I, II or III. The crystalline regions are strong, rigid, and quite inaccessible to 
water and most chemical reagents, whereas the amorphous regions are weaker and 
contribute to increased hydrophilicity and accessibility [42]. Physical, chemical, enzymatic 
or microbiological modifications of cellulose can lead to changes in its crystalline structure 
and result in new derivatives [43,44]. 

Cellulose has a strong capability to form intra- and intermolecular hydrogen bonds 
in its establishment network, and these internal hydrogen bonds hinder the free rotation 
of the glucopyranose rings, which increases the stiffness of the cellulose chains [45,46]. 
Although cellulose has the same structural motif in each material, its degree of 
polymerization (DP, the number of monomer units in the polymer) and crystallinity 
(degree of packing order) can vary greatly [47]. DP and crystallinity depend on the origin 
and treatment of the raw material [34]. Insights of the physical properties and 
morphological structure of single polymeric chain, such as chain length or degree of 
crystallization, can be investigated via X-ray, optical and electron-microscope imaging, or 
chemical and physical analysis methods [48]. 
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Cellulose can be considered a semi-crystalline polymer with highly oriented crys-
talline domains coexisting with non-crystalline amorphous phases, which have a lower
degree of order [38,39]. The cellulose crystalline domains have four major allomorphs
(I, II, III and IV) based on molecular orientation. The most common allomorph found in
nature is cellulose I and the most thermodynamically stable structure is established in
cellulose II [34,40]. Cellulose I can have two sub-allomorphs, triclinic Iα and monoclinic
Iβ, which can be found alongside each other, and the ratio depends on the origin of the
cellulose [34]. Cellulose Iα dominates in primitive organisms, such as algae and bacteria,
while cellulose Iβ is found mainly in higher plants [41] and aquatic animals, such as tu-
nicates [42]. Cellulose II can be modified irreversibly from cellulose I through alkaline
treatment (mercerization) or by the cellulose dissolution process (regeneration) [34]. Cellu-
lose III is obtained through liquid ammonia (NH3), while cellulose IV is obtained through
the heating of small crystallites in glycerol at 260 ◦C. Cellulose III can be reversibly formed
from cellulose I, II or IV, and cellulose IV can be reversibly formed from cellulose I, II
or III. The crystalline regions are strong, rigid, and quite inaccessible to water and most
chemical reagents, whereas the amorphous regions are weaker and contribute to increased
hydrophilicity and accessibility [42]. Physical, chemical, enzymatic or microbiological
modifications of cellulose can lead to changes in its crystalline structure and result in new
derivatives [43,44].

Cellulose has a strong capability to form intra- and intermolecular hydrogen bonds in
its establishment network, and these internal hydrogen bonds hinder the free rotation of the
glucopyranose rings, which increases the stiffness of the cellulose chains [45,46]. Although
cellulose has the same structural motif in each material, its degree of polymerization (DP,
the number of monomer units in the polymer) and crystallinity (degree of packing order)
can vary greatly [47]. DP and crystallinity depend on the origin and treatment of the raw
material [34]. Insights of the physical properties and morphological structure of single
polymeric chain, such as chain length or degree of crystallization, can be investigated
via X-ray, optical and electron-microscope imaging, or chemical and physical analysis
methods [48].
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2.2. Nanocellulose

The production of nanoscale cellulose has captured great attention due to its biodegrad-
ability, renewability, high mechanical properties and low density [49]. Nanocellulose, as
a general term, applies to a wide range of nano- and micro-sized fibrils and crystalline
particles (sometimes also referred to as whiskers). Different terminologies have been used
for the various types and forms. Because of inconsistency in terminology, the Technical
Association of the Pulp and Paper Industry (TAPPI) has proposed standard terms for
various types of nanocellulose based on their size and form (Table 1). Nanocellulose can
be processed from plant-derived cellulose, but it is also found natively in tunicates and
bacteria. The feedstock used in nanocellulose manufacture is highly important, as it affects
the properties and size of the extracted cellulose [42].

Table 1. Standardize terms for cellulose nanomaterials according (I) TAPPI/W123021 [42], and [II]
cellulose nanomaterials review: structure, properties, and nanocomposite [50]. Each abbreviation
have two alternatives. e.g., cellulose nanocrystal (CNC) and nanocrystalline cellulose (NCC).

NAME ABBREVIATION WIDTH LENGTH L/D RATIO

Cellulose
nanocrystal CNC (NCC) (I) 3–10 nm

(II) 3–20 nm (II) 50–500 nm (I) > 5

Cellulose
nanofibril CNF (NFC) (I) 5–30 nm

(II) 3–100 nm (II) 0.5–2 µm (I) > 50

Cellulose
microcrystal CMC (MCC) (I) 10–15 µm

(II) 10–50 µm (II) 10–50 µm (I) < 2

Cellulose
microfibril CMF (MFC) (I) 10–100 nm

(II) 10–100 nm
(I) 0.5–50 µm

(II) 0.5–10’s µm

The biosynthesis of cellulose forms continuous microfibrils, which self-organises fibre
bundles with crystalline and amorphous domains [22]. The term cellulose microfibrils
(MFC) was first introduced in 1983 by Turbak et al. [51] when he and his co-workers
developed a new method to prepare highly fibrillated cellulose from wood fibres by high-
pressure homogenization treatment in water. The extraction of cellulose microfibrils require
great precision in order to minimize damage to the fibrillary structure and to keep the long
axial length of the microfibrils to preserve the large aspect ratio. The other native features of
the cellulose, such as crystallinity and degree of polymerization, must also be secured [52].
An ideal production method should produce large amounts of high-quality material with
low energy consumption. To meet these requirements, a number of pre-treatments can be
used to improve the conversion efficiency. Different chemical, mechanical and enzymatic
treatments are used for removal of non-cellulosic constituents and loosen the cell wall
structure of the cellulose fibres to ease further processing [53].

Cellulose nanofibrils (CNFs), or their microfibril bundles, are typically produced
using a variety of mechanical processes, including grinding/refining, high-pressure ho-
mogenization, cryocrushing, high-intensity ultrasonic treatments, electrospinning, steam
explosion and microfluidization [50,54]. Chemical modification methods such as TEMPO
mediated oxidation [55], ammonium persulfate oxidation [56], carboxymethylation [57]
and cationization [58] have also emerged as promising methods for CNF production.

‘Rod-like’ cellulose microcrystals (MCC) and cellulose nanocrystals (CNC) can be
obtained from different cellulosic sources such as wood, cotton, bacteria or tunicates with
varied dimensions [59,60]. Their dimensions depend on the origin of the cellulose fibre
or fibril and the employed conditions. Isolated nanoscale fibres or crystals from natural
fibres show much higher strength and stiffness in comparison to the original source [49].
The elastic moduli of solid wood, single pulp fibre, microfibrils and crystallites have
been measured at 10, 40, 70 and 250 GPa, respectively [61]. Cellulose nano- and micro-
crystals can be produced from nano- and microfibrils by applying chemical treatments
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(mainly acid) or mechanical processes, which break hydrogen bonds in amorphous regions
while crystalline domains remain untouched [62,63].

When producing nanocellulose, the drying process is a critical step. As cellulose
is hydrophilic, hydrogen bonds can be formed during drying, leading to an irreversible
agglomeration known as hornification [64]. This changes the size of nanocellulose, as well
as its unique characteristics. The formation of additional hydrogen bonds correlates with
the amount of water removed and does not depend directly on temperature [65,66]. A
wide variety of drying methods, such as freeze drying, supercritical drying, atomization
drying and spray drying, have been developed to prevent aggregation [54].

3. Dissolution of Cellulose
3.1. Cellulose Mercerization

Cellulose is hard to dissolve in most common solvents due to the large quantities of
inter- and intra-molecular bonds and van der Waals forces [67]. In addition, hydrophobic
interactions that contribute to the stability of cellulose polymers also play a role in dissolu-
tion kinetics [43,68]. The melting temperature of cellulose is above the stage of degradation,
meaning that cellulose degrades before it liquifies [8,45]. Since cellulose cannot melt, as
it is not thermoplastic, reshaping the cellulose structure and breaking the strong intra-
and intermolecular hydrogen bond network requires the dissolution of cellulose [69]. The
amorphous regions of cellulose have higher free energy, and they are more easily accessed
by solvents [35]. Hence, prior to dissolution, the crystalline domains of cellulose are often
transformed into disordered regions by different activation processes [70].

Mercerization is widely used alkaline treatment for cellulose modification and was
devised already in 1844 by John Mercer [71]. In the mercerization process, native cellulose
fibres are immersed in an aqueous NaOH solution. When the fibres come in contact with
strong alkali solutions their properties changes. An initial swelling by the alkali ions occurs
in the amorphous regions between the fibrils. The alkali ions will then penetrate further
into the crystalline regions which generates a more open and reactive alkaline cellulose
structure (Figure 2) [72].
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The mercerization process can be used as a pre-treatment to efficiently lower the
degree of polymerization, disrupt the crystalline structure of cellulose, and ultimately
promote the accessibility of dissolution practices [73]. The mercerization process also
provides better mechanical properties, shine, smooth surface, dimensional stability and
improved dye intake for the cellulose fibres [39]. In addition, on the molecular level the
mercerization changes the crystalline structure of cellulose from cellulose I to cellulose
II (Figure 3) [41]. There are conflicting views regarding the mechanism on how cellulose
I, which have parallel configuration, transforms to antiparallel configuration without
undergoing a fully dissolved state [39]. Contrary to this, it is clearly noted that temperature
change can affect the mercerization efficiency [74].
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3.2. Solvents for Cellulose

Many efficient cellulose dissolution solvent systems are currently in use (Figure 4).
The most used industrial scale solvent systems are the viscose and lyocell processes. Other
processes such as DMAc/LiCl, cellulose carbamate, aqueous NaOH-with additives, ionic
liquids and deep eutectic solvents (DES) are in different stages of technological maturity
and constantly developed further.

Some of the solvent systems developed especially in past have a negative impact on
the environment [67]. Therefore, finding new ways to effectively dissolve cellulose and
produce regenerated cellulose materials in an environmentally friendly way has recently
been of major interest within research on cellulose refining technologies [76–78].

Cellulose solvents can be divided into two categories: derivatising and non-derivatising
solvents. Non-derivatising solvents physically dissolve cellulose by breaking hydrogen
bonds. Therefore, these solvents only change intermolecular interactions. Non-derivatising
solvents can, more specifically, be divided into aqueous and non-aqueous sub-groups.
Derivatising solvents convert cellulose polymers into soluble intermediates by derivatizing
cellulose’s hydroxyl groups. These solvents can form hydrolytically unstable, organo-
soluble cellulose intermediates, such as ethers, esters, or acetal derivatives [79].
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3.3. Derivatising Solvents

The most widely used and important industrial-scale method to dissolve and process
cellulose is the viscose process, which is used to create viscose fibres and cellophane
films [39,67]. During the viscose process, cellulose, often from wood pulp or cotton linters,
is treated with sodium hydroxide and then with carbon disulfide, resulting in a product
called cellulose xanthate. The alkaline cellulose xanthate forms a thick solution, which is
forced through small openings into acid, where it will eventually coagulate as regenerated
cellulose [40]. In the traditional viscose process, the usage of carbon disulfide in the solution
is a cause of environmental pollution, and the development of volatile sulphur-containing
compounds (e.g., H2S, COS) requires complex recovery technologies [80–82].

The cellulose carbamate process is an attractive, more sustainable alternative to the vis-
cose process, and it can utilize conventional viscose spinning equipment [83–85]. Cellulose
carbamate is a cellulose derivate with carbamate groups substituted on the hydroxyl groups
along chain molecules [86], and it can be prepared through various routes. In the con-
ventional processes, the formation of cellulose carbamate begins when cellulose is treated
with urea at a temperature above its melting point in an alkali medium with an organic
solvent, such as xylene (the CarbaCell process) or toluene [87,88]. Other ways to produce
cellulose carbamate include using supercritical CO2 [89,90], microwave heating [83,91],
electron beam irradiation [92], liquid ammonia [88,93] or deep eutectic solvents [94] as
part of the manufacturing processes. Recent developments in process operation, increased
understanding of physical chemistry, and lower cost of raw materials have increased the
competitiveness of cellulose carbamate processes. Further improvements need to be fo-
cused on handling the rigorous processing conditions (e.g., pre-treatments, reaction times,
temperatures and specific equipment requirements) and efficient chemical recycling [83,88].

3.4. Non-Derivatising Solvents
3.4.1. Non-Aqueous Solvents

The Lyocell process, in commercial use since 1991, allows for the dissolution of
cellulose without derivatisation, complexation or special activation [40]. In the Lyocell pro-
cess, cellulose pulp is dissolved in an aqueous solution of N-Methyl-morpholine N-oxide
(NMMO). Using spinnerets, the formed solution is extruded across an air gap into a coagu-
lation bath containing water, which works as a non-solvent. While NMMO is separated
by extraction, the cellulose fibres are regenerated in the water by precipitation [95]. The
Lyocell process is considered to be a more environmentally friendly option than the viscose
process because NMMO hydrates are non-toxic to the environment [96]. However, the
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NMMO also has limited thermal stability, due to which a variety of additional by-products
may appear [97,98].

The dissolution of cellulose using organic solvents in combination with salts, such as in
the case of the DMAc/LiCl solvent system, has also captured both industrial and academic
interest [99–102]. The DMAc/LiCl solvent system has been widely applied, and it can also
dissolve cellulose with high molecular weight without noticeable degradation [103]. The
drawbacks of this process are the high cost and difficulties with recycling the solvent due to
its low volatility, which limits its further development for commercial applications [68,104].

Ionic liquids have risen as alternative, environmentally friendly and powerful solvent
systems for shaping cellulose [68,105]. What makes ionic liquids interesting is that they are
organic salts that exist as liquids at relatively low temperatures (<100 ◦C) and can obtain
good thermal stability, low melting point and low vapor pressure [106,107]. Ionic liquids
such as 1-butyl-3-methylimidazolium chloride can dissolve refined or natural cellulose
without causing derivatisation [108,109]. One emerging process, which is currently in its
pilot scale and utilizes ionic liquids to dissolve cellulose, is the Ioncell process [110,111].
The Ioncell pulp (Ioncell-P) method can be used to produce high-purity cellulose from
bleached paper-grade birch kraft [112], and Ioncell fibres (Ioncell-F) can be formed using
the same dry-jet wet spinning technique as the Lyocell-NMMO system [113]. One of the
current challenges with the commercialisation of the Ioncell process is recovering the
solvent from the coagulation bath without impairing its solvation power. Therefore, more
research is still required to improve the recyclability and long-term chemical stability of
the solvent system without compromising energy efficiency [80,112,113].

Deep eutectic solvents (DESs) share many characteristics and physiochemical proper-
ties with ionic liquids, but they are generally considered easier to prepare with high purity
at low cost [81,114]. DESs are composed of two or three often cheap and safe chemicals
that consist of a hydrogen bond donor and a hydrogen bond acceptor [115,116]. These
components are capable of self-association and form a eutectic mixture with a melting
point lower than that of each individual component. In most cases, DESs are liquids
between room temperature and 70 ◦C [115]. One promising DES system can be formed
by combining choline chloride (ChCl) and urea [116]. The benefits of this DES system are
the good availability of chemicals and their low melting point. However, based on current
knowledge, the solubility of cellulose in DESs is far below that of ionic liquids or in the
Lyocell process, but it can be improved in the future [81,115].

3.4.2. Aqueous Solvents

It was discovered already in 1930s that by combining some additives to the aquatic
NaOH or LiOH solution, the solubility of cellulose can be improved, and cellulose can
be dissolved [117–121]. Such additives include urea [122–124], thiourea [13,125–127] zinc
oxide (ZnO) [128,129] and poly(ethylene glycol) (PEG) [130,131]. Although these additives
improve cellulose solubility, the role of the additives has not been fully understood. It is
suggested that e.g., in aqueous NaOH-urea dissolution process, the hydroxyl (OH-) anion
breaks the inter- and intra-molecular hydrogen bonds of the cellulose, while sodium (Na+)
ions stabilize the hydrophilic hydroxyl groups and urea stabilizes the hydrophobic part of
cellulose [132]. Rapid dissolution of cellulose occurs in conditions such as aqueous 7wt%
NaOH/ 12wt% urea solution, which has been pre-cooled to −12 ◦C [118]. Here, similar
to many other dissolution processes, degree of dissolution is related to molecular weight,
crystallinity and applied conditions [133]. Therefore, having comprehensive understanding
of structure and property relationship of dissolution mechanisms will be essential and
ease commercial development for the NaOH-urea solvent system in industrial scale. These
solvent systems are particularly interesting since they are cost-effective, non-volatile, they
possess of low environmental toxicity, and they show great potential when it comes to the
usage of cellulose from agricultural and forestry wastes [41,77,134]. The only apparent
disadvantage of these methods is the need to involve freezing-to-thawing [135], which
requires specific cooling equipment.



Appl. Sci. 2021, 11, 10069 9 of 21

4. All-Cellulose Composites
4.1. Raw Materials for the ACC

Natural fibres are divided into three categories: plant fibres, animal fibres and mineral
fibres (Figure 5). Plant fibres are the most used in conventional composite processing only
as a reinforcement. All plant fibres contain cellulose, while animal fibres are made from
proteins [136].
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Plant-based cellulose is considered one of the most promising substitutes for petroleum-
based raw materials [137]. The fibre structure and characteristics depend on and vary with
the plant species, age, growth location, climate and part of the plant. Therefore, one of the
main challenges with plant fibres is the large variation in their properties [42,138]. Fibres
are extracted from trees using either chemical or mechanical methods. The characteris-
tics of wood fibre depend somewhat on the processing method used, but mostly on the
anatomy of the wood material in the particular tree species. Wood fibres can be divided
into softwoods, such as spruce and pine, and hardwoods, such as birch and eucalyptus.
Both can be used to create pulp or dissolving pulp. Dissolving pulp has a higher cellulose
content and lower hemicellulose content compared to paper-grade pulp, and therefore it
is used more commonly in upgraded and high-quality products. Two widely used com-
mercial production methods for dissolving pulp are pre-hydrolysis kraft (PHK) and acid
sulphite (AS) [98]. Pulp can also be produced from cellulosic waste with new innovative
technologies [139,140].

Man-made cellulose fibres, such as viscose or lyocell, are developed from pulp or
dissolving pulp. They are mainly used in the textile industry [141] but are also important
materials used in composite manufacturing [142]. Textile-reinforced composites typically
have high strength-to-weight and stiffness-to-weight ratios, which can improve the me-
chanical properties of the composites [143]. Cellulose-based textiles are renewable, but at
the same time, textile industry as a whole (including the unsustainable cotton production)
are one of the largest contributors to harmful environmental effects on Earth, and it also
generates large amounts of textile waste [144,145]. Therefore, the industry is searching for
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more sustainable plant-based fibres to meet the demands of current standards, where the
focus is on waste reduction, production efficiency, durability, water saving, recycling and
closed-loop production [145].

The frontrunner in the field of sustainable fibre production, Lensing AG, produces
wood pulp-based fibres called EcoVeroTM, the production of which consumes less water
and releases less emissions than generic viscose production, and their TencelTM x RefibraTM

fibre contributes to the circular economy by using an efficient closed-loop process [146,147].
Kuura-fiber is another new pulp-based wood fibre, which shares similar sustainable values,
and it is currently on pilot scale production by Metsä Fibre in Äänekoski bioproduct
mill, Finland [148]. Recycled textiles and agriculture waste are used in a fibre technology
called InfinnaTM, created by the Infinited Fiber company [149], and recycled cotton fibres
have been transformed into sustainable yarn by Haksa Textiles [150]. More recently, new
types of wood fibre have been mechanically produced without using harmful chemicals
or solvent systems. In Spinnova’s innovative fibre process, the pulp is mechanically
refined and transformed into spinning-ready fibre suspension without dissolution or
regeneration [151].

These novel textile fibres offer versatile reinforcement choices for a more sustainable
composite industry. Recently, biocomposites [152] and all-cellulose composites [153] have
also been created using denim waste.

4.2. Biocomposites

Biocomposites have at least one of their constituents (either reinforcement or ma-
trix) derived from biomass [154]. Already in the early 1940s Henry Ford created natural
fibre reinforcement biocomposites using soy-based plastics to reduce the weight of the
cars [155]. However, it was not until recently that bio-based automotive parts caught popu-
larity among the car manufacturers due to increasing emission control and sustainability
concerns [156].

The most commercially important biocomposites are made by combining man-made
and biobased sources. Commonly, matrices are petrochemically derived thermoplastic
polymers, such as polypropylene or polyamide, or thermoset polymers, such as unsaturated
polyester or epoxy resins; meanwhile, the reinforcement is formed using a variety of
biobased sources, such as natural cellulosic plant-based fibres or wood pulp [157,158]. The
use of wood and plant fibres in composites is motivated not only by their sustainability
characteristics, but also their good performance, low cost, low density, safe handling,
high electrical resistance, good acoustic insulation and the fact that they do not require
moulding equipment [159,160]. A major drawback of natural plant-based fibres compared
to man-made fibres is the hydrophilic nature of cellulose. Water absorption by cellulose
fibres can result in aging, poor mechanical properties and reduced dimensional stability of
the composite. Plant fibres also naturally have poor fire resistance, and they degrade when
heated to over 200 ◦C. They are also easily susceptible to biological degradation [138,160].

Nanocellulose, which is used as a raw material especially for ACNC, can be obtained
by two approaches (i) top-down and (ii) bottom up. The top-down approach involves
the disintegration of lignocellulosic biomass into nanoscale cellulose. In the bottom-up
approach nanoscale cellulose can be produced via fermentation of low weight sugars by
cellulose-producing bacteria, such as from the Acetobacter species. This type of nanoscale
bacteria (BC) is pure cellulose and does not include hemicellulose, lignin, or pectin [161].
When cellulose-based composites are produced from less purified sources, such as wood
pulps or other plant fibres, hemicellulose and lignin are always present to some degree, and
these can act as impurities which often results impairing properties of the composite [30].

4.3. Matrix-Reinforcement Compatibility

Two main components forming a composite are the reinforcement and the matrix,
where reinforcement gives strength and stiffness to the composite [162], and the matrix
acts as a binder for the reinforcement and transfer external loads along the reinforcing
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fibres [138,163]. Compatibility between reinforcement and matrix depends on fibre dimen-
sions, microstructure, and morphology; as well as the mechanical, physical, chemical, and
thermal characteristics of the different constituents present in the interfacial zone. During
composite manufacturing the changes in the constituent’s properties or structure also
influence interfacial interactions. For instance, if the fabrication process involves cooling
from high temperatures to ambient temperature, the difference in the expansion coefficients
of two components might lead to thermal stress and can be the cause of plastic deformation
and impaired matrix-reinforcement compatibility [4].

The main performance challenge when using conventional biocomposites is the poor
interfacial adhesion between the hydrophilic plant-based reinforcement and the hydropho-
bic matrix phases, which can lead to weakened mechanical performance, as well as prob-
lems in recycling due to the heterogeneous mixture [159,164]. One way to overcome weak
compatibility and recyclability challenges in conventional composites and biocomposites
is to create single-polymer composite (SPC), where similar or identical polymers are used
for both the reinforcement and the matrix [165]. The polymers can be of renewable or non-
renewable origin [166]. Non-renewable SPCs are, e.g., all-polyethylene composites [167]
and all-propylene composites [164], whereas renewable fully cellulosic SPCs are bio-based.
Basically, all-cellulose composites are reviving old vulcanized fibre technology where a
cellulosic material is converted into a unique SPC laminate product [168,169].

5. Production of ACC
5.1. Processing Routes

There are two main ways to produce ACCs [102,170–173]. The first method is the
one-step method. It is based on the partial dissolution of cellulosic materials, where
the same raw material is used to create both reinforcement and matrix (Figure 6) [6,14].
This type of composite can also be called a self-reinforcing composite [172]. Here, the
chosen cellulose solvent system will partially dissolve the surface or weaker regions of
the reinforcement fibres, and the dissolved cellulose will form a matrix surrounding the
initial fibre structure during its precipitation. Meanwhile, the core of the reinforcing fibres
maintains its original structure and chemical crystallinity, which has a reinforcing effect
on the composite [131]. One of the great benefits of this approach is that interfaceless
composites can be prepared where the boundaries between reinforcement and matrix
are indefinite between the phases [14]. In addition, the undissolved fibre content of the
composite can easily be controlled by changing the dissolution time [102].
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Another way to manufacture ACCs is the two-step method, in which a high-strength
reinforcing fibre is impregnated with a solution containing dissolved cellulose, which forms
a matrix around the fibre structure after the regeneration process. This way, the composite
is formed from solid cellulose and dissolved cellulose, which are chemically bound to each
other at a specific temperature, pressure and curing time. The advantage of this method is
that the fibre content of the composite is easily controlled by changing the mixing ratio [102],
and the processing method is beneficial for composite bulk production [173].
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5.2. Factors Influencing Composite Properties

The mechanical properties of composites are influenced by several factors (Figure 7).
The source of the raw materials is a crucial element. Amongst the cellulose-based natu-
ral fibres, flax, hemp and ramie fibres are having the highest tensile strength (345–1830 MPa,
550–1110 MPa, 400–938 MPa respectively) and the highest specific Young’s moduli
(18–53 GPa/g cm−3, 39–47 GPa/g cm−3, 29–85 GPa/g cm−3 respectively) [174]. How-
ever, there are much variability within literature. The average modulus of tensile strength
of regenerated cellulose fibres has been measured to have lower values than flax fibres, but
fracture toughness of regenerated cellulose fibres was superior to flax [175]. In comparison
with natural fibres, the man-made cellulose fibres also show better homogeneity in terms
of their structure and mechanical properties [176].
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Nanocellulose as the raw material can improve tensile modulus of the composites
and can be used in the production of high-performance composites. Methods and values
regarding the properties of nanocellulose varies in the literature, but generally smaller
specimens tend to have higher density and higher strength [177]. Therefore, it is not
unexpected that a nanofiber-based ACC sheet has been proven to be 11 times stronger than
a similar sheet from microfiber, when same raw material (canola straw) and dissolution
method (DMAc/LiCl) was used [178]. Besides the fibre size, also the source of the raw
material has a huge influence on the ACC properties. Comparative research, where two
different forms of cellulose nano-whiskers were used to produce the ACC, concluded that
tunicate cellulose enhanced the mechanical properties of the composites to a greater degree
than cotton derived nanocellulose [179].

Volume fraction, aspect ratio and adhesion between reinforcement and matrix are
highly relevant for the creation of the composites [39,138]. High cellulose content in re-
inforcement and good fibre dispersion will promote better mechanical performance and
interfacial bonding in natural fibre composites [174,180]. In general, the strength of an
ACC increases up to a certain limit proportionately with increasing filler fraction [102].
After certain limit the increase of filler content will not enhance properties, but rather
decrease them. When the maximum content is achieved, the strain to failure of the com-
posite decreases, leading to an embrittlement of the material [179]. In addition, when the
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reinforcement content is very high, a large number of voids might appear, which is seen as
low density [173].

Better compatibility between matrix and reinforcement has been researched for the
two-step processed ACC when there was higher cellulose content in matrix constituent.
According to Duchemin [181], it would be beneficial to have a high cellulose content in
the solution of dissolved cellulose to minimize matrix shrinkage during regeneration,
which helps to maintain good bonding between the matrix and the reinforcement. On the
other hand, solutions with high cellulose content have high viscosity, which makes their
impregnation challenging. Very low cellulose concentrations, in turn, lead to inconsistent
cellulose network formation. The possible formation of pores or voids after regeneration
leaves the ACC structurally heterogeneous and mechanically weak. Similarly, the use of
cellulose reinforcement with a high degree of crystallinity makes the interfacial bonding
poor, as the particles are less accessible to the hydroxyl groups of the more open-structured
matrix cellulose. Therefore, the degree of shrinkage for dissolved and undissolved cellulose
will vary during the drying process, which can also create unwanted interfacial voids. The
negative impact of internal cracking can be avoided and controlled to some degree by
applying light pressure during drying [182]. One way to improve mechanical performance
is to apply additional chemical modification. For instance, alkali treatment can fill the
cracks and voids between reinforcement and matrix, which contributes to improving the
interface and the quality of the composite [183].

The engineered architecture and alignment of the reinforcing fibres have a major
impact on the mechanical properties of the composite. Fibres can be continuous or discon-
tinuous, aligned randomly or unidirectionally, and fabric architecture can be nonwoven,
woven or knitted [2]. ACC with uniaxial reinforcement offer generally higher stiffness and
strength along the fibre direction, compared to randomly reinforced composites [102,184].
Lyocell fabric, with modified structure, had massive improvement in microstructure of
ACC. Here, the fabric was modified by removing weft yarn to create unidirectional effect.
Compared to regular fabric, this modified structure helped to bind the undissolved cel-
lulose fraction properly, leaving almost no voids. This significant reduction of internal
void content generated ACC with better tensile and flexural properties than those most
conventional biocomposites [185].

ACC can be produced by using multiple different solvent systems and manufacturing
methods. Comparative studies on how different solvent systems affect the properties of
ACC can be challenging to carry out reliably, when each solvent system still need to be
optimized individually. Notwithstanding, Pullawan et al. (2014) found out that LiCl based
matrix performed better than NaOH/urea-based system for ACNC production regarding
tensile strength and modulus [179].

Many of the process variables in ACC production, such as temperature, humidity,
pressure and dissolution time depend on chosen solvent system. Generally, the strength
of the fibres increases with increasing moisture content and decreases as temperature
increases [186]. When producing ACC-based aerogels, a major influential factor is the
drying method—freeze-drying, CO2 drying or vacuum drying—since it determines the
resulting morphology of the ACC [187]. Adak and Mukhopadhyay [185] have researched
the effect of applied pressure on the structure and properties of ACCs. According to the
study application of pressure during composite manufacturing, controlled shrinkage and
void formation and improved adhesion. This significantly contributed to better tensile and
flexural properties of ACC laminates. In another study related to pressure, the elongation
at break of cotton fabricated ACC decreased and the tensile modulus increased with
increasing pressure of hot press. In the same study on hinoki lumber based ACC, a diverse
outcome was obtained: applying 10 MPa and 5 MPa pressure gave higher tensile modulus
than when applying a pressure of 15 MPa. The decrease in tensile modulus at 15 MPa can
be related to observed cracks in formed composite [188].

The optimal immersion and dissolution time depends on the characteristics and
volume of the cellulose and chosen solvent system; therefore, the dissolution time needs



Appl. Sci. 2021, 11, 10069 14 of 21

to be tailored for each composite. Ideally, in partial dissolution, when the immersion
time in the solvent increases, the non-crystalline regions form as long as the dissolution
process is active and re-solidified parts turn into amorphous regions [6]. When higher
amount of cellulose is dissolved, the formation of internal voids will be reduced, due to
improvement of intra and inter-laminar adhesion. The phenomenon has been reported in
multiple studies [6,185,189]. The speed of regeneration also affects the properties of the
composite, since slow precipitation develops a more ordered packing structure compared
to fast generation [10]. Dormanns et al. [17] showed that the optimal dissolution time
with NaOH-urea solvent system was five minutes for rayon-reinforced laminate. An
increased dissolution time led to a decrease in the tensile strength of the composite and
caused microstructural changes to the crystallinity. Dissolution takes place initially in the
amorphous regions between the crystallite parts, but with longer dissolution times, a more
extensive breakdown occurs, and the fibres are weakened, which leads to a composite
lacking strength. In another study, where dissolving pulp was used as raw material
with NaOH-urea solvent system, the optimal dissolution time was found to be only 30 s,
and longer dissolution times had minimal or no effect on the crystallinity or mechanical
properties of the composite [171].

6. Conclusions

Due to increased awareness of environmental issues, there is a strong motivation to
replace petrochemical-based materials with more sustainable alternatives. All-cellulose
composites seem to be a good candidate, since they are renewable and biodegradable, have
low toxicity and low density, and have good mechanical, optical and gas barrier properties.
Whereas regular biocomposites suffer from fibre-matrix adhesion-related challenges, ACCs
can overcome this problem by both matrix and reinforcement having the same or a similar
chemical structure, which results in good interfacial compatibility.

Due to the presence of strong hydrogen bonds and the semicrystalline structure of
cellulose, it cannot melt, and it is challenging to dissolve. Therefore, finding an effective
solvent system to dissolve cellulose is a necessary step when developing ACC materials.
Many conventional dissolving agents for cellulose generate by-products that are harmful
to the environment during production; therefore, there is currently considerable interest in
the research and development of sustainable cellulose solvents. Different raw materials,
solvent systems, composite manufacturing methods, additives and processing parameters
can lead to a variety of composite materials with unique properties.
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