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Abstract: The application scenarios and market shares of industrial robots have been increasing in re-
cent years, and with them comes a huge market and technical demand for industrial robot-monitoring
system (IRMS). With the development of IoT and cloud computing technologies, industrial robot
monitoring has entered the cloud computing era. However, the data of industrial robot-monitoring
tasks have characteristics of large data volume and high information redundancy, and need to oc-
cupy a large amount of communication bandwidth in cloud computing architecture, so cloud-based
IRMS has gradually become unable to meet its performance and cost requirements. Therefore, this
work constructs edge–cloud architecture for the IRMS. The industrial robot-monitoring task will be
executed in the form of workflow and the local monitor will allocate computing resources for the
subtasks of the workflow by analyzing the current situation of the edge–cloud network. In this work,
the allocation problem of industrial robot-monitoring workflow is modeled as a latency and cost
bi-objective optimization problem, and its solution is based on the evolutionary algorithm of the
heuristic improvement NSGA-II. The experimental results demonstrate that the proposed algorithm
can find non-dominated solutions faster and be closer to the Pareto frontier of the problem. The
monitor can select an effective solution in the Pareto frontier to meet the needs of the monitoring task.

Keywords: industrial robot-monitoring system; industrial robot-monitoring workflow; workflow
resource allocation; edge–cloud collaboration; bi-objective genetic algorithm

1. Introduction

The use of industrial robots in manufacturing industry is increasing rapidly [1], and
industrial robot-monitoring systems (IRMS) have played an important role in maintaining
the normal operation of industrial robots and even the whole factory, most of the IRMSs
are based on B/S or C/S architecture remote monitoring by the Internet [2]. With the
development of IoT and cloud computing technology, IRMSs based on cloud computing
architecture have emerged. For example, Hanbo Yang et al. [3] implemented a cloud
manufacturing monitoring platform based on 5G and SIM (Standard Information Model),
Rachmad Andri Atmoko et al. [4] implemented a cloud monitoring industrial arm robot
based on MQTT protocol. In addition, cloud robotics has become an emerging area of
robotics research [5], where the technological key is computational offloading, when the
robot controller generates compute-intensive tasks to the cloud in order to reduce the
requirements for controller performance and the computational energy consumption of
the robot. However, since the robot cannot rely excessively on cloud resources due to its
physical bandwidth limitation, computational offloading strategies for cloud robots have
become a hot research topic. For example, G. Hu [6], B. Kehoe [7], and J. Wan [8] offload
computationally intensive tasks such as robot grasping, simultaneous localization and
mapping (SLAM), and navigation of cloud robots to the cloud.

In fact, most tasks in IRMSs, such as fault diagnosis, environmental monitoring,
object recognition, and posture awareness, require IRMSs to continuously collect and
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process large amounts of environmental data in real time to maintain the accuracy of
monitoring results; however, the collected data, especially internal and external sensor
data, are semi-structured and unstructured [9], with high information redundancy and
low value density, if all of them are offloaded to the cloud computing will occupy a large
amount of communication bandwidth, and the congestion of data channels may also lead
to an increase in latency, then the benefits brought by cloud computing will be greatly
reduced. In this context, edge computing [10] as an emerging computing architecture, can
place some computing tasks on edge servers close to the devices rather than in distant
cloud centers, which can effectively reduce the pressure on the communication bandwidth
and reduce the communication latency.

In this paper, IRMS is targeted at monitoring fixed-position multi-degree-of-freedom
industrial robots which can perform tasks such as handling, palletizing, painting, assem-
bly and welding, and common faulty units include bearings, gearboxes, and motors [11].
cloud-based architecture IRMSs are combined with cloud robotics and edge computing
architecture. Edge computing resources can be considered to be an effective complement
to cloud resources, reducing both the computational burden of the local monitor and
the communication network burden of using cloud computing. The monitor can obtain
real-time operation data of a set of industrial robots through internal and external sensors,
process the monitoring data and obtain the corresponding monitoring results by executing
workflow-based monitoring computation tasks. The monitor can obtain real-time moni-
toring data of a set of industrial robots through internal and external sensors, process the
monitoring data and obtain the corresponding monitoring results by executing workflow-
based monitoring computation tasks. To solve the computing resource allocation problem
of monitoring workflows, a bi-objective optimization problem of time and monetary cost
is modeled, and it can be solved by the proposed genetic algorithm. In experiments on
this work, optimal solution of the two optimization objectives obtained by mixed integer
quadratic programming (MIQP) technique are used a reference for comparison. The perfor-
mance of the proposed algorithm and benchmark NSGA-II [12] are compared in various
aspects such as different types and amounts of computing resources, different types and
amounts of tasks, and evolutionary generations. The main contributions of this paper are
listed as follows:

1. The edge–cloud architecture IRMS is architected to allow industrial robot-monitoring
tasks to perform as workflows and can be allocated to computing resources in the
edge–cloud environment.

2. The Industrial Robot-Monitoring Workflow Assignment Problem (IRMWAP) is de-
fined in terms of the characteristics of industrial robot-monitoring workflow task
execution as an NP-hard bi-objective (latency and cost) optimization problem.

3. The Improved NSGA2 based on Transcription Gene and Heuristic Recombination
(INSGA2-TGHR) algorithm is proposed by means of improved genetic factors and
recombination operators to provide a set of Pareto frontiers for the monitor with
computing resource allocation schemes.

The rest of this paper is organized as follows. Section 2, relevant research works are
reviewed. Section 3, describes an IRMS Architecture in Edge–Cloud Environment. In
Section 4, the industrial robot-monitoring workflow computation allocation problem is
modeled, and an improved algorithm of this work is proposed. In Section 5, experiments
are conducted on the problem described and the algorithm proposed in Section 4. Section 6
concludes the whole paper and presents future plans.

2. Related Work

At present, most of the IRMSs are implemented in the mode of remote monitoring [2],
and the monitoring of the equipment is realized through the upper computer client or web,
for example, XuHong Mei [13] proposed a C/S (client and server) for remote monitoring
of industrial robots, and Hongli Yin [14] proposed an Internet-based and sensor-driven
architecture that combines remote monitoring and control. With the development of
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IoT and cloud computing technology there are also industrial robots based on cloud
computing architecture, for example, Hanbo Yang [3] and others have implemented a
cloud manufacturing monitoring platform based on 5G and SIM (Standard Information
Model), Rachmad Andri Atmoko [4] and others have implemented a cloud monitoring
industrial arm robot based on MQTT protocol.

Table 1 summarizes the research related to cloud robotics and computing resource
allocation in recent years. The computing resource allocation algorithm research mainly
focuses on genetic algorithm and integer linear programming, and the optimization ob-
jectives mainly focus on latency, price, etc. Recently, many scholars have brought the
edge computing in cloud robotics system to reduce latency and robot energy consumption.
Chen Wuhui [15] defined robotic streaming workflow (RSW) and networked cloud robotics
(NCR) as the basic data structures for studying the allocation of workflows and computing
resource topology, and by defining data flow graph (DFG) for the problem of allocating
computing resources to workflows, the three optimization objectives of latency, price, and
energy consumption are weighted linearized, and the above problems are solved by heuris-
tic graph partitioning and MILP techniques, but their study only considers multi-robot and
cloud-centric resource allocation, and metrics and units of three optimization objectives are
not uniform, so simply weighted linearization cannot be used to represent the complete
problem. Mahbuba Afrin [16] redesigned NSGA-II by pre-sorted initial population and
minimum distant selection of chromosome that gives balanced solution for all objectives
and obtained effectively performance improvement, but this study did not consider the
constraints of communication resources in task assignment, so it still has some distance
from practical applications.

Table 1. Summary of relevant works in cloud robotics and computing resource allocation.

Work
Solution

Approach
Target

Application

Workflow
Scale

Reduction

Communication
Restrictions

Multi-Objective
Optimization

Resource Type

Robot
(Local)

Edge
(Fog) Cloud

[15] Heuristic MILP Cloud
robotic YES YES NO YES NO YES

[16] Augmented
NSGA-II

Smart
factory No NO YES YES NO YES

[17] Benchmark
NSGA-II

Mobile
Computing

Resource
Allocation

No No YES YES NO YES

[18] Benchmark
NSGA-II

Application
placement NO NO YES YES YES YES

[19] GA Smart city NO NO NO YES NO YES

[20] genetic-based
ICA

Cloud
robotic NO NO NO YES YES YES

[21] Heuristic ILP Cloud
robotic YES YES NO YES NO YES

[22] Heuristic
devices sorting

Task scheduling
in Dew NO YES NO YES YES YES

[23]
Heuristic

scheduling
algorithm

Task scheduling
in Dew NO YES NO YES YES YES

This INSGA2-
TGHR

Industrial Robot
Monitoring YES YES YES YES YES YES
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In this paper, the cloud-based architecture IRMS has been further upgraded to edge–
cloud collaboration architecture with the advantages of both cloud robotics and edge
computing. Industrial Robot-Monitoring Workflow Allocation Problem (IRMWAP), with
latency and price as the optimization objectives, is modeled and its solution is proposed
as an improved NSGA-II based on the Transcription Gene and the Heuristic Recombina-
tion (INSGA2-TGHR) algorithm, which provides a set of computing resource allocation
solutions for the monitor so that it can make decisions according to the actual environment.

3. Edge–Cloud Collaborative Architecture
3.1. System Model and Assumptions

In this paper, the architecture for IRMSs is designed as a local edge–cloud three-layer
as shown in Figure 1 in which industrial robot-monitoring workflows can run, and the
tasks in the workflow can be allocated computing resources in all three layers. The monitor
in this system can connect and monitor multiple industrial robots, the monitor itself also
has few computing resources, multiple monitors form a local monitoring network, the
monitor cloud share its computing resources in the local monitoring network, the network
shares the occupation of local computing resources, the monitor have smaller computing
capacity, but its computing price can be disregarded. The monitor connects to the edge
server through a fabric network. The edge server, which is typically a metropolitan-area-
level computing service provider, has medium computing capacity and is more expensive,
but has low latency for data transmission. The monitor connects to the cloud center. The
cloud center, which is a wide-area-level computing service provider, has higher computing
capacity and lower cost than the edge server, but higher latency for data transmission. The
edge servers are also connected to the cloud center. The latency of data transfer within the
local, edge, and cloud centers is low.
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In the operation of the monitoring system, when the monitor generates a monitoring
workflow that exceeds its own computing capacity, it will allocate the resources for the
generated monitoring workflow according to the current computing resources of the local
edge–cloud network environment. Subtasks in the workflow will then run in the allocated
computing resources, and each subtask will transfer the completed processed data to the
next subtask, and when the last subtask is completed, it will return the computation results
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to the monitor. Real-time tasks in industrial environments are executing actions or sensing
data [24]. Here all monitoring workflow tasks are assumed to be non-real-time or soft-
real-time monitoring tasks which performed based on standard communication protocols
(TCP or UDP/IP) such as switching data, preprocessing data, compression, extracting
features. The engineers program and compile the subtask logic code in advance according
to the monitoring task characteristics, and program the work order and data dependencies
between the subtasks, and they run in the memory of the computing resources as docker
processes. The monitoring system does not involve and interfere with the industrial robot’s
own real-time control system.

3.2. Application Motivating Example: Comprehensive Assessment Workflow for Industrial
Robot Monitoring

The Figure 2 shows a comprehensive assessment workflow of industrial robot mon-
itoring. The first step is to acquire data, where the industrial robot transmits internal
and external sensor data to the monitor through cables or optical fibers; the next step
is to extract characteristics such as time domain, frequency domain, and time-frequency
domain from the sensor data respectively; the next step is to normalize the characteristic
data; the next step is to perform condition monitoring and life estimation of the industrial
robot respectively; and the last step is to make a comprehensive assessment for industrial
robots. The subtasks in the workflow have different data and computational characteris-
tics, for example, the extraction of features in the time domain, frequency domain, and
time-frequency domain requires a large amount of data input and simple computation to
complete, so such tasks are more suitable for deployment in local or edge servers; while
tasks such as industrial robot condition monitoring and life estimation require complex
computational models, such as dynamic prediction Neural Networks [11] or Deep Learning
Algorithm, to transform the processed characteristics into corresponding metrics, which
are more suitable for running in cloud centers or high-performance edge servers. Therefore,
industrial robot-monitoring workflows need intelligent algorithms to allocate appropriate
computing resources to different types of tasks.
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4. Bi-Objective Optimization Allocation Problem Model and Algorithm

The notations and definitions used in the model for the proposed problem are listed
in Table 2.

Table 2. Notations.

Symbol Definition and Description

ti Task i

eij The before-and-after relationship between tasks i to j

vx Compute node x

fxy Compute the network link between node x to y

dxi ti running on vx

instructioni The execution instructions of ti
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Table 2. Cont.

Symbol Definition and Description

memoryi The execution memory space of ti

patternij
The workflow pattern of eij, including Sequence, Parallel Split, Synchronization, Exclusive Choice,

Simple Merge

dataij The transfer data of eij

comSpeedx The computing speed of vx, cloud center > edge server > monitor

latencyx The latency between monitor and vx

comCostx The computing cost of vx, edge server > cloud center > monitor = 0

comCapx The computing capacity of vx, cloud center > edge server > monitor

bandwidthup
x The upload bandwidth of vx, cloud center > edge server > monitor

bandwidthdown
x The download bandwidth of vx, cloud center > edge server > monitor

lxy The communication latency of fxy, monitor to cloud center > monitor to edge server

commCostxy The communication cost of fxy, monitor to cloud center > monitor to edge server

commCapxy
The communication capacity of fxy, cloud center to edge server > monitor to cloud center > monitor

to edge server

4.1. Industrial Robot-Monitoring Workflow Assignment Problem (IRMWAP) Formulation

Robot-monitoring workflow (RMW), define GR = (T, E) to denote the graph structure
of the RMW, the vertex set T denotes the set of tasks in the workflow, and the edge set
E denotes the set of before-and-after relationships between tasks. For vertex ti ∈ T can
be represented by the triple (id i, instructioni, memoryi), and for edge eij ∈ E can be
represented by the triple (id ij, patternij, dataij ). RMW is the abstract data structure of
workflow of Figure 2.

Cloud edge network (CEN), define GN = (V, F) to represent the graph structure of
the CEN, the vertex set V denotes the set of nodes with computing power in the network,
and the edge set F denotes the set of network links between nodes. For the vertex vx ∈ V
can be represented by the seven-tuple (idx, latencyx, comSpeedx, comCostx, comCapx,

bandwidthup
x , bandwidthdown

x ), and for the edge fxy ∈ F can be represented by the four-
tuple (id xy, commCapxy, commCostxy, lxy). CEN is the abstract data structure of archi-
tecture of Figure 1.

The total optimization objective of latency includes communication latency ft
xiyj and

computation latency ct
xi. Communication latency includes network distance delay and

bandwidth transmission delay. Computation latency is the time required to execute com-
putation instructions, and computation resources need to communicate with the monitor
when the task is started or finished.

T =∑ ft
xiyj∗dxi∗dyj + ∑ ct

xi∗dxi

ft
xiyj= lxy+dataij ∗

(
1

bandwidthup
x

+ 1
bandwidthupdown

y

)

ct
xi =

{
latencyx task i is the start or end,
instructioni
comSpeedx

others.

(1)
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The total optimization objective of cost includes communication cost fc
xiyj and compu-

tation cost cc
xi, which depends on the pricing strategy of the service provider and the usage

of users.
C =∑ fc

xiyj∗dxi∗dyj + ∑ cc
xi∗dxi

fc
xiyj= dataij∗commCostxy

cc
xi =

instructioni
comSpeedx

∗comCostx

(2)

Each task can be allocated only one computing resource and each computing resource
can perform multiple tasks in FIFO mode without exceeding its computing capacity. The
data dependency between each pair of tasks cannot exceed the limit of communication
capacity.

dxi =

{
1 ti running in vx,
0 others.

(3)

n

∑
x=1

dxi= 1 (4)

∑ dxi∗instructioni ≤ comCapx (5)

∑ dxi∗dyj∗dataij ≤ commCapxy (6)

The above can be summarized as a Bi-objectives Generalized Quadratic Assignment
Problem IRMWAP:

min : T, C

subject to : (3), (4), (5), (6) (7)

Theorem 1. The IRMWAP is an NP-hard problem.

Proof of Theorem 1. From the above equation, it is easy to find that IRMWAP optimizes
each objective in accordance with the definition of generalized quadratic assignment prob-
lem (GQAP), and GQAP has been proved to be an NP-hard problem [25], then IRMWAP is
proved as an NP-hard problem.

4.2. Improved NSGA2 Based on Transcription Gene and Heuristic Recombination
(INSGA2-TGHR)

For how to solve multi-objective optimization problems, there are usually two ideas,
one is to use mathematical planning methods to find the exact solution, and the other
is to use intelligent computational methods to find the approximate solution. Since this
problem is an extension of GQAP and has been proven to be an NP-hard problem, it will
become unsolvable when the task and resource size increases, and also commonly used
mathematical planning solvers such as gurobi [26] only support mixed integer linear pro-
gramming and cannot solve quadratic planning problems. On the other hand, intelligent
computing is commonly used in non-dominated sorting genetic algorithms (NSGA-II) [12],
strength Pareto evolutionary algorithm II (SPEA2) [27], Pareto archival evolutionary strat-
egy (PAES) [28] and multi-objective particle swarm optimization (MOPSO) [29], among
which NSGA-II and its improvements performs better in finding a diverse set of solutions
and in converging to near the true Pareto-optimal set compared with others [16]. For
example, Ghasemi-Falavarjani et al. [17] used the benchmark NSGA-II algorithm to solve
the time and energy bi-objective optimization problem in mobile cloud computing, M.A.B.
Al-Tarawneh [18] took the application criticality and security as optimization objectives
and modeled them as a bi-backpack problem using benchmark NSGA-II to solve, and Mah-
buba Afrin [16] proposed Augmented NSGA-II to achieve good results in a multi-objective
optimization problem for smart factory workflow resource allocation.

Therefore, for the IRMWAP problem, this work proposes the INSGA2-TGHR algo-
rithm. This algorithm is a heuristic genetic algorithm that is redesigned based on NSGA-II,
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combining the previous ideas for solving GQAP and the workflow assignment problem.
Figure 3 shows that when the monitor generates a RMW that needs to be offloaded, it will
obtain the CEN resources information to run the INSGA2-TGHR and allocate computing
resources to the tasks. As shown in Figure 4, Transcription Gene is used to create the initial
population and Heuristic Recombination is used as a crossover operator to generate new
offspring. The idea and detail of proposed algorithm will be discussed as follows:
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4.2.1. Genetic Factors: Transcription Gene

In traditional genetic algorithms solving workflow assignment problems, all genetic
operators are designed as integer arrays of task number length, where each gene made
index symbolizes a specific task and gene refers to a specific resource, and matching
tasks and resources by random assignment. This has the advantage of simplifying the
relationship between tasks, resources, genes and fitness, but the problem is that the number
of heterogeneous resources (monitors, edges, clouds) in CEN may not be equal, and then
the probability of assigning tasks to different kinds of resources is also not equal. Therefore,
the genetic factors are redesigned, and the concept of DNA transcription to generate RNA
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in biology is used here. “DNA”, a set of random real numbers of task length from 0 to N
where N is the type of heterogeneous resources, will be generated first. Then, the “DNA”
produces “RNA” by “transcription”. For example, a certain edge–cloud network (CEN) is
composed of (6, 4, 2) heterogeneous resources, which has 6 local monitors, 4 edge servers,
and 2 cloud servers and numbered sequentially from #1 to #12. A random real number
“0.375402761769494”, its integer part “0”, corresponds to the 1st group (monitor), its
fractional part “0.375402761769494” multiplied by the number of resources of the 1st group
“6” and then rounded to “2”, corresponds to the third one, then its determined computing
resources correspond to the third local monitors, #3. Similarly, a random real number
“2.501432671965211” determined computing resource corresponds to the second cloud
servers, #12, a random real number “1.5705781532276744” determined computing resource
corresponds to the third edge servers, #9. the “RNA” is similar to traditional chromosome
structure and can participate in evolution to produce offspring, as well as translate the
allocation of resources and calculate fitness based on the encoding of genetic information.
The “transcription” process divides the real numbers from 0 to N into an integer part and a
decimal part, where the integer part determines the type of heterogeneous resources, and
the decimal part determines the number of heterogeneous resources. The specific process is
represented by Algorithm 1 and Figure 5, where “DNA” is a pre-obtained array, “Resource”
is a dictionary nested array, the “Key” of the dictionary is the resource type and “Value” of
the dictionary is an array of resource numbers of that type. In addition, the design of the
genetic factors implicitly satisfies (3) (4), each subtask is assigned to only one computing
resource.

Algorithm 1: Transcription
input :DNA, Resource
output :RNA

1 init RNA;
2 i← 0;
3 while i ≤ len(DNA) do
4 ResourceType← int(DNA[i]);
5 ResourceIndex ←

int((DNA[i]− ResourceType)× len(Resource[ResourceType]));
6 RNA← Resource[ResourceType][ResourceIndex];
7 i← i + 1;
8 end

4.2.2. Mutation Operator

The mutation operator selects the swap mutation operator, and during mutation the
mutation operator selects genes from inside the chromosome for mutation. The resource
number with more occurrences inside the chromosome may correspond to the most suitable
resource in the current environment, so the swap mutation has a higher probability of
mutating a gene into these resources, thus increasing the concentration of resource usage
and reducing the migration between subtasks. In addition, if the mutated new chromosome
exceeds a certain resource limit, it will be eliminated later.
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4.2.3. Crossover Operator: Heuristic Recombination

Two-point crossover refers to the random setting of two crossover points in the
chromosomes of an individual followed by partial gene exchange. The specific procedure
of the two-point crossover is: setting two random crossover points in the coding strings
of two individuals paired with each other; exchanging the part of chromosomes of two
individuals between the set two crossover points.

The recombination operator is a two-point crossover recombination operator based on
the graph partitioning strategy, using the graph partitioning algorithm METIS [30] to group
the workflows based on the amount of computation of subtasks in the workflow and the
amount of data passed between subtasks. Each group consists of several subtasks, and the
gene fragments corresponding to subtasks within the grouping are involved in the crossover
as a whole when the recombination variation is performed. When subtasks are assigned
to the same resource within a group, the data transfer between several subtasks takes
place only in memory and does not involve network communication between computing
resources, which effectively reduces the latency and cost of data transfer and thus exhibits
a high degree of fitness, and this situation can be called “advantageous gene fragment”.
For example, task A of data preprocessing is input-heavy and output-heavy, while task
B of data feature extracting is input-heavy and output-light type, if these two tasks are
executed sequentially on the same computing unit. The process of A’s output-heavy and
B’s input-heavy only needs to be executed in the memory of that computing unit, without
network transfer. This significantly reduces the transfer latency and bandwidth costs. The
process of Heuristic Recombination is to use the graph partitioning algorithm to partition
A and B tasks into the same group, forming an “advantageous gene fragment” as a whole
for crossover recombination.

Then the “advantaged gene fragment” may be recombined to the new chromosome
during the crossover process. If the entire new chromosome has a higher fitness, it will
be reserved during the selection process. The “ordinary gene fragments” that are not
assigned to the same resource may be replaced by “dominant gene fragments” in the
process of crossover recombination, or may mutate in the process of mutation, and finally
the algorithm will decide whether to reserve them for the next round of evolution according
to the fitness.

The process is represented in Algorithm 2 and Figure 6, where the METIS [30] algo-
rithm is used for graph partitioning, first, two crossover sites “x1” and “x2” are obtained,
and the indexes of other genes consistent with the grouping within the sites are obtained
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according to the graph partitioning results. The above results were represented by the
0–1 array “col”. The recombined newRNA1 uses the gene of RNA1 on the index with “col”
of 1 and the gene of RNA2 on the index with “col” of 0. newRNA2 is exactly the opposite.

Algorithm 2: HeuristicDoublePointRecombination
input :RNA1, RNA2, GR
output :newRNA1, newRNA2

1 init newRNA1, newRNA2, col;
2 partitionResult← METISgraphpartition(GR);
3 x1← random(0, len(RNA1)),x2← random(0, len(RNA1));
4 if x1 ≥ x2 then
5 swap(x1, x2);
6 end
7 s← set(partitionResult[x1:x2]);
8 i← 0;
9 while i ≤ len(partitionResult) do

10 if partitionResult[i] in s then
11 col[i]← 1;
12 end
13 else
14 col[i]← 0;
15 end
16 end
17 j← 0;
18 while j ≤ len(col) do
19 if col[j] ≡ 1 then
20 newRNA1[j]← RNA1[j];
21 newRNA2[j]← RNA2[j];
22 end
23 else
24 newRNA1[j]← RNA2[j];
25 newRNA2[j]← RNA1[j];
26 end
27 end
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4.2.4. Fitness Calculation

For the bi-objective optimization problem, the fitness functions for both optimization
objectives latency and cost are defined and obey the conditions of (1) and (2), respectively.
In addition, the genetic factors (5) and (6) that do not satisfy the constraints will be directly
eliminated.
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5. Experiments

In this section, experiments will analyze and compare the performance of the proposed
bi-objective resource allocation algorithm by evolving generations, different types and
numbers of tasks, different types and numbers of computing resources and the numbers
of task instructions. The workflow in Table 3 is similar in structure to the motivational
example in Figure 2, the quantification of its parameter instruction, memory, and data
dependency are driven by real-world parameters (e.g., the runtime memory of the docker
instance) and related references [15,18,31].

Table 3. Experimental Parameters.

Params Type Params Value

workflow

Number of subtasks 30–80

instruction 10–800 MI

memory 100–500 MB

data dependency 10–100 kB

Local Monitor
CPU 0.8 Ghz*1

memory 1 GB

bandwidth 400 Mbps

Edge Server 1

CPU 3.0 Ghz*4

memory 8 GB

bandwidth 2 Gbps

cost 2 RMB/h

Cloud Server 1

CPU 3.0 Ghz*8

memory 16 GB

bandwidth 4 Gbps

cost 2 RMB/h

Local to Edge cost 0.25 RMB/GB

Latency 10 ms

Edge to Cloud cost 0.75 RMB/GB

Latency 30 ms

Local to Cloud
cost 1 RMB/GB

Latency 40 ms
1 Price reference is Huawei Cloud ECS and Huawei Cloud IEC [32].

5.1. Simulation Environment

The experimental environment is based on python and geatpy [33], and the reference
objectives are selected benchmark NSGA-II, INSGA2-TG(Transcription Gene) algorithm,
INSGA2-HR(Heuristic Recombination) algorithm and extremums. Table 4 shows the
Ablation of INSGA2-TGHR, where benchmark NSGA-II algorithm has a random initial
population, using simulated binary crossover operator and polynomial mutation operator.
INSGA2-TG has TG initial population, using simulated binary crossover operator and
polynomial mutation operator, INSGA2-HR has random initial population, using swap
mutation operator and HR crossover operator, INSGA2-TGHR has TG initial population,
using swap mutation operator and HR crossover operator, and extremum of IRMWAP
problem in both latency and cost directions are solved respectively by the gurobi [26].
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Table 4. Ablation of INSGA2-TGHR.

Algorithm Initial Population Mutation and Crossover Operator

Benchmark NSGA-II random simulated binary and polynomial mutation

INSGA2-TG TG simulated binary and polynomial mutation

INSGA2-HR random Swap and HR

INSGA2-TGHR TG Swap and HR

Figure 7 compares the Pareto frontier of the four algorithms in the (6, 2, 1) resource
setting, which has 6 local monitors, 2 edge servers and 1 cloud server. TGHR algorithm can
obtain the solution closest to the extreme value and closer to the true Pareto frontier, and the
convergence of its solution set is better than the other three algorithms. The TG algorithm
is less exploratory than TGHR and HR, although it has a dominant initial population.
The HR algorithm contains more monitor genes due to its initial gene population, so
that its evolutionary direction will be more likely to favor the low-cost side. Benchmark
NSGA-II algorithm does not reach convergence at 200 generations. It shows that the TG
and HR algorithms have the advantage of dominant initial populations and evolutionary
exploration, respectively, to find non-dominated solutions quickly and close to the Pareto
frontier. In addition, the TGHR algorithm has the advantages of both TG and HR, and its
solution set is balanced and closer to the real Pareto frontier.
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Impact of Evolution Generation

Figure 8 shows the impact of comparing the number of evolutionary generations of
the four algorithms in the (6, 2, 1) resource setting.
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The Figure 8a shows the number of non-dominated solutions, as shown in the figure,
the TGHR algorithm works best and is the first to obtain close to 100 non-dominated
solutions. The TG algorithm is second only to the TGHR algorithm, which is because both
transcription gene can obtain more balanced random initial populations. The HR algorithm
starts with a lower number of non-dominated solutions, but because the recombination
operator of the HR algorithm is based on the variation of the dominant gene fragment, the
non-dominated solutions are quickly viewed and retained. Benchmark NSGA-II algorithm
is a purely random search, and the number of non-dominated solutions only approaches
100 when the number of iterations reaches 300, and there is some fluctuation after that.

The Figure 8b shows the average of the top 100 low-time solutions, and it can be seen
that the TGHR algorithm works best, the HR algorithm is slower than TGHR, but it can
still obtain high-quality low-time solutions by 200 generations by relying on the advantage
of the HR. TG and Benchmark NSGA-II algorithms do not obtain solutions close to the
extremes.

The Figure 8c is comparing the average of the top 100 low-cost solutions. TGHR and
HR have relative performance, and HR is slightly better than TGHR because HR has a
higher proportion of local genes, so it can find populations containing more local genes
and achieve the effect of lower cost. TG algorithm finishes the population through iteration
with the advantage of TG in the initial population is not superior. Benchmark NSGA-II
algorithm starts to approach the extreme value at around 500 generations.

The TGHR algorithm combines the advantages of both TG and HR: the TG algorithm
can obtain a dominant initial population, while the HR algorithm can quickly find and re-
tain a dominant population. It can quickly obtain non-dominance by population advantage
in the early evolutionary stage and can approach the extremum in about 100 generations
by the recombination operator.

5.2. Impact of the Number of Resources
5.2.1. Impact of Local Resources

Figure 9a–d are comparing different resources in (4, 2, 1), (6, 2, 1), (8, 2, 1), (10, 2, 1)
settings, respectively. As shown in the figure, the TGHR algorithm can obtain a more con-
vergent Pareto front with a more balanced distribution under different resource conditions,
while the HR algorithm has a solution set that is closer to the extreme value of low cost
because its initial population contains more local monitor genes. TG algorithm has weaker
convergence than TGHR algorithm and HR algorithm.
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The box plot Figure 10 shows that as the number of local monitors increases, the
solution set provided by the algorithm allocates more resources to the local monitors,
thus leading to a slow decrease in cost and a slow increase in time as the number of local
monitors increases. At the same time, it can be seen that the TGHR algorithm always finds
the solution with the lowest time, and the HR algorithm tends to allocate more resources to
the local monitor as the number of local monitors increases due to the characteristics of its
initial population, which gives it an advantage in the direction of low cost.
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5.2.2. Impact of Edge Resources

Figure 11a–d are comparing different resources in (6, 1, 1), (6, 2, 1), (6, 3, 1), (6, 4, 1)
settings, respectively. From the figure, it can be seen that when there are fewer edge servers,
the TGHR algorithm shows its unique advantage of better convergence of the solution
set of the Pareto front to find the closest solution to the extreme value. The TG algorithm
and HR algorithm in Figure 11a may fail to complete convergence in 200 generations of
evolution due to the inability to find enough non-dominated solutions in the early stage of
evolution.
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The box plot Figure 12 shows that as the TGHR algorithm has stable performance.
As the edge server resources increase, the tasks are assigned more on the edge server
with higher computational efficiency, so (6, 2, 1) has lower minimum time than (6, 1, 1).
However, when the edge resources become abundant and all computational tasks will
be offloaded to the edge servers, the minimum time is no longer reduced. As the edge
resources increase, the proportion of edge genes in the initial population of the TGHR
algorithm increases, and therefore, it no longer has the advantage of low-cost. This can
show that the TGHR algorithm is less affected by the change of resource allocation and can
perform more stable performance.
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5.3. Impact of the Number of Subtasks

Figure 13 compares the allocation ratio of tasks executed monitor, edge, and cloud for
a workflow containing 20 to 80 tasks, and each task occupies 300 M of memory, in (6, 2, 1)
resources setting.
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Figure 13a shows the allocation ratio in all Pareto fronts, and the number of local
runs in the figure is relatively smooth. As the number of tasks continues to increase,
the algorithm gradually assigns tasks to the cloud as the system approaches the edge
server operating load. As the number of subtasks increases, when the number of subtasks
exceeds 60, the 200 generations evolution starts to unable to meet the demand, and the
performance of the TG algorithm starts to degrade and cannot find the non-dominated
solution corresponding to the number of populations, and when the number of tasks
exceeds 70, all algorithms cannot find the non-dominated solution corresponding to the
number of populations. However, it can be seen that the performance of the TGHR
algorithm is still the best, and the number of non-dominated solutions found is much
more than that of the TG algorithm and the HR algorithm. The figure also shows that the
performance of the HR algorithm is slightly better than that of the TG algorithm, which
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is due to the fact that the HR algorithm speeds up the speed of finding non-dominated
solutions.

Figure 13b,c shows the allocation ratio in 100 solutions near low-time and near low-
cost in the solution set, respectively. There will always be fewer local machines using
low performance in low-time, and as the number of tasks increases, more and more tasks
will be allocated in the cloud, gradually reaching a one-to-one ratio of resources on the
edge–cloud. As many tasks as possible in low-cost will be assigned first in local monitor,
and the maximum capacity of running tasks that local can provide is 18, and the figure has
basically approached the maximum load of the local monitor.

From Figure 14, it can be seen that the TGHR algorithm always finds the solution with
the lowest time, and the HR algorithm can find the solution with the lowest cost in some
cases, which is due to the fact that the initial population of the HR algorithm has more
genes representing the assignment to the local, and it can find the non-dominated solution
with low cost faster, but its comprehensive performance is not as good as that of the TGHR
algorithm.
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5.4. Impact of the Number of Task Instructions

Figure 15 compares the impact of the number of instructions for different tasks. Where
each workflow contains 30 tasks (subtasks), each task occupies 300 M of memory, and
the number of instructions to be executed for each task is 50 to 900, in (6, 2, 1) resources
setting. It shows that the TGHR algorithm is more sensitive to the number of instructions
of subtasks. As the number of instructions of tasks increases, the advantage of cloud
side of high-performance computing is emphasized, and the TGHR algorithm reduces the
assignment of tasks available at the edge side and assigns more tasks to the cloud side.
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Figure 15a shows the allocation ratio in all Pareto fronts. It indicates that the share
of cloud server increases as the number of instructions increases, due to the fast speed of
cloud computing, whose less computation time offsets the impact of bandwidth latency.
Figure 15b,c shows the allocation ratio in 100 solutions near low-time and near low-cost in
the solution set, respectively. It can be seen that the low-time strategy is more sensitive to
time, and low-performance local monitors are not used, while the share of cloud servers
with high computational speed increases rapidly. On the contrary, the low-cost strategy
is more sensitive to price and basically keeps the local monitors running at full load. The
share of cloud servers also increases slowly with the number of task instructions.

As shown in Figure 16, because of the lower number of subtasks, almost all algorithms
find low-time and low-cost extremes. HR algorithm has a slightly larger low-time minimum
solution than others, which is because its initial population has more local monitor genes
and thus fewer edge and cloud genes obtained by evolution. The performance of TGHR
algorithm is also more robust as seen in the figure. Starting from instruction number 350,
the advantages of cloud computing start to reveal, so the average time of the Pareto frontier
for the three algorithms decreases and the average cost increases.
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5.5. Results and Discussions

The ablation experiments show that TG can produce a more balanced initial popu-
lation, HR can accelerate the iteration efficiency. The INSGA2-TGHR algorithm has the
advantages of both, and it can find the non-dominated solution set quickly and keep ap-
proaching the true Pareto front through evolution. Its performance is stable, and it can find
suitable allocation schemes among different types and numbers of computing resources.

6. Conclusions and Future Directions

In this paper, we design a local edge–cloud industrial robot-monitoring system (IRMS)
architecture, define the Industrial Robot-Monitoring Workflow Resource Allocation Prob-
lem (IRMWAP), and propose an improved NSGA-II algorithm (INSGA2-TGHR) based on
the characteristics of IRMSs, using workflows to accomplish industrial robot-monitoring
tasks. The experimental results show that the INSGA2-TGHR algorithm has a more bal-
anced initial population and can retain the “dominant gene fragment” in the evolutionary
iterations to quickly obtain a non-dominated solution set and a more convergent Pareto
frontier through evolutionary iterations, and its Pareto frontier obtains time minima and
cost minima that are 4.66% and 15.52% more accurate than benchmark NSGA-II’s re-
spectively in 200 generations. The performance of INSGA2-TGHR algorithm is stable
on different types and number of computing resources sets, sensitive to the number of
instructions of the tasks, and able to offload computationally intensive tasks to more clouds.

In future work, we plan to further validate and extend the applicability of this algo-
rithm in IRMSs. In this paper, we only consider the monitoring of fixed-position industrial
robots; but in real industrial factory scenarios, there are also mobile robots involved in
activities, and their network environments may include various environments such as
Bluetooth, Wi-Fi, and 5G. Therefore, such working conditions as mobility and complex
network environment are still the direction of future research. In addition, how the monitor
itself can make autonomous decisions and choose the appropriate solution in the Pareto
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frontier through artificial intelligence algorithms is also a problem to be considered in the
future.
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