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Abstract: The era of big textual corpora and machine learning technologies have paved the way
for researchers in numerous data mining fields. Among them, causality mining (CM) from textual
data has become a significant area of concern and has more attention from researchers. Causality
(cause-effect relations) serves as an essential category of relationships, which plays a significant role
in question answering, future events predication, discourse comprehension, decision making, future
scenario generation, medical text mining, behavior prediction, and textual prediction entailment.
While, decades of development techniques for CM are still prone to performance enhancement,
especially for ambiguous and implicitly expressed causalities. The ineffectiveness of the early
attempts is mainly due to small, ambiguous, heterogeneous, and domain-specific datasets constructed
by manually linguistic and syntactic rules. Many researchers have deployed shallow machine learning
(ML) and deep learning (DL) techniques to deal with such datasets, and they achieved satisfactory
performance. In this survey, an effort has been made to address a comprehensive review of some
state-of-the-art shallow ML and DL approaches in CM. We present a detailed taxonomy of CM
and discuss popular ML and DL approaches with their comparative weaknesses and strengths,
applications, popular datasets, and frameworks. Lastly, the future research challenges are discussed
with illustrations of how to transform them into productive future research directions.

Keywords: cause-effect relation; causality survey; causality mining; deep learning; causality
extraction; relation classification

1. Introduction

Natural Language Processing (NLP) areas are also termed computational linguis-
tics, which includes designing computational systems and procedures to handle natural
language problems in informative software platforms. NLP works can be categorized
into two comprehensive sub-fields, (a) Core fields, and (b) Applications. Whereas it is
often hard for the researchers to differentiate exactly to which fields the problem belongs.
The core fields report some issues including Language Modeling, Semantic Processing,
Morphological Processing, and Syntactic Processing/Parsing. Application fields focus on
mining valuable relational information including Cause-Effect relation, Part-Whole relation,
Product-Produce relation, Content-Container relation, If-Then relations, Translation of text
among and between languages, Sentiment analysis, Summarization, Automatic question
answering, document classification, and Clustering. That relational information usually
exists in images, graphics, video, text, audio and multimedia data domains. Among all
domains, textual data preserves much human intelligence and conveys more contextual
information. For a few decades, automated knowledge extraction from text has been a
challenging task because it deals with the relationship of syntax, semantics, vocabulary,
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metaphors, sarcasm, and ambiguous constructs like figurative expressions. In these cases,
copying the human brain’s knowledge is an important task for understanding written texts
that require developing a complicated model using ML and DL approaches. However,
computational linguistics and computer research societies have been made remarkable
developments in the field over a few decades, especially for textual data mining tasks. The
application area included different types of relationships. The basic concept, principles,
extraction, representation, properties of Cause-Effect relation are related but different from
other relationships, which plays a fundamental role based on their ability [1]. Causality
defines relations among regularly correlated phenomena (p1 and p2) or two events (e1 and
e2), such that the existence of p1 or e1 results in the occurrence of p2 or e2. A phenomena
or event is expressed as a phrase, nominal, and small span of text in a sentence or differ-
ent sentences [2]. However, more concisely, the idea of causality is tricky to describe [3].
Philosophers have copied the concept for periods. In modern the dictionary of sociology [4],
a traditional definition of Cause-Effect relation can be found as:

An Event or Events that come first and results in the existence of another Event.
Whenever the first event (the Cause) happens, the second event (the Effect) essentially
or certainly follows. As well as the same is possible whenever the first event (the Effect)
happens, the second event (the Cause) essentially or certainly follows.

By the idea of much causation, numerous possible causes may be seen for a specified
event, any one of which may be enough but not essential condition for the existence of the
effect, or an essential but not enough condition. Similarly, numerous possible effects may
be seen for a specified event. Any one of which may be enough but not essential condition
for the existence of the cause, or an essential but not enough condition.

Causality can be grouped into causality understanding tasks [5] and causal discov-
ery tasks [6] for event pair in the text. Understanding the causal relationship among
daily events is a fundamental task for common-sense understanding language, e.g., “Ali
lost the match; the crude got angry.” and causal discovery. Understanding the possible
causality among events pair can play a significant role in Question Answering [7,8], Event-
Prediction [9,10], Generating Future Scenarios, and Medical Text Mining [11,12], Decision
Processing [13], Adverse effects of drugs [14], Machine Reading and Comprehension [15,16],
and Decision-support jobs [17], Information retrieval [18], and introduces another fact of
information extraction through its inherent ability to discover new knowledge in a wide
range of disciplines. Major study field of causality are Medicine [19], Computer Science,
Biology [20], Environmental Sciences [21], Psychology [22], Linguistics [23,24], Philoso-
phy [25], and Process Extraction [26].

Causal discovery [6] often described as the detection of the Cause-Effect relation
between events, which is a highly trending topic in different fields, which is targeted
in different time period throughout the world. Causal discovery is performed by using
Google’s search keyword-based survey and Google trend (GT) based survey approaches.
In Google’s search keyword-based survey approach, researchers used key terms related to
a specific topic for analyzing the problem, while the Google trend-based survey approaches
can be used for frequently searched and top topic trends. GT search can be beneficial
for reflecting community and public interests throughout diverse periods [27]. Studying
such trends by data mining techniques might deliver valuable intuitions and remarks
regarding causality mining. GT does not deliver several queries on daily basis. Instead,
it gives a standardized figure between 0 and 100, where 0 denotes a low volume of data
for the query and while 100 denotes a maximum approval for the terms [28]. We have
cited some impotent paper using GT approach related to causality in the ML and DL
section. The motivation of this survey is to deliver an extensive intuition of Cause-Effect
relation by using shallow ML and DL approaches with comprehensive coverage of causality
problem including Basic Concept and Types of causality, Representation of causality in text,
Applications of causality, Data types, Extraction/Mining techniques, Comparison among
different techniques, Future challenges, and Collective properties of others relations.
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1.1. Concept and Representation of Causality

In many domains, including all disciplines, knowledge growth could be valuable
to discover previously unknown relationships between entities and events. Moreover,
the fundamental property of CM is how to represent causality in sentences. Hence, the
simplest ways of representing causality are using propositions of the form, ‘A causes B’,
‘B causes A’, ‘A is caused by B’, and ‘B is caused by A’. Many experts belonging to this
field is often disagreeing with those representations for causally linked events. Similarly,
it is necessary and understandable to express causality using different types. Causality
can occur in numerous forms. The best common differences are i) Marked and Unmarked
causality and ii) Implicit and Explicit causality [29–31]. In Marked causality, the linguistic
signal of causation exists, e.g., “I won the prize because I was lucky”, here, because is the
marked causality. In the unmarked causality, there is no linguistics signal of causality, e.g.,
“Run gradually. There are slops”, in this example there is no linguistics signal of causality.
Also, in implicit causality, both cause and effect events are not explicitly stated, e.g., “The
bullet is hit on his head”, in this example, the cause and effect are not explicitly stated. In
explicit causality, both cause and effect are explicitly stated, e.g., “The accident has been
caused by heavy rain”. In this example, both cause and effect events are explicitly stated.
Further, explicit causality is represented by propositions (e.g., active, passive, subject-object,
and nominal or verbal) and uses various syntactic representations. Linguistic literature
identifies the following ways to express Cause-Effect relations [8] explicitly. Including
Causative Adjectives and Adverbs [32], Resultative Constructions [33], Causal Links [34],
If-Then Constructions [29,35–37], and Causative Verbs [38]. In Figure 1 the more concise
representation of causality in the natural language text is presented.
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1.2. Research Contributions

Relation mining in NLP tasks is a vast research field in which causality plays an
important role. The objective of this paper is to address a substantial research experience in
the field of CM. However, around a number of prior surveys works in the field of CM were
published. In [6], a review of basic theory of cause-effect relationships through structural
causal models/networks are presented. In [39] a high-level views are presented about the
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current formal complications and frameworks for causality learning. Ref. [40] described an
Ensemble and Decision Trees (DT) ML networks for causality learning. Another notable
survey motivated on mining causality for bivariate data [41]. In [42], different approaches
for causality mining are summarized in time series data, on the other hand they targeted
numerous semi-parametric score grounded techniques. In [38], a limited number of rule-
based and statistical-based approaches are reviewed and overlooked the DL approaches.
Most recently, in [43], a review of problems and techniques are presented, which mostly
targeted the same traditional and statistical approaches. Different from prior review studies,
this review addressing the shallow ML and DL techniques used in the latest research-
oriented papers, various deep learning frameworks, various data types, researcher’s
experience, and models in research applications. The earlier surveys fail to deliver a
complete discussion and a comparative analysis of shallow machine and deep learning-
based approaches for CM, which specifically this survey aims to report. The current
challenges in CM are to train massive implicit, ambiguous, and domain-independent
datasets available at hand, which lead to causality as a critical task. In the light of ML
and DL approaches, this article presents current perspectives and challenges in the field of
causality that require more concentration such as optimization, scalability, power, and time
to guide and educate practitioners and researchers in the area for the future development.
To provide detailed and comprehensive attention to the issues above, different outlines are
presented in this article including,

Sketched taxonomy for CM (Figure 2), which includes approaches using shallow ML
and DL approaches.
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Brief historical literature of both shallow ML and DL approaches with their popular
categories and summarized them.
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Taxonomy of shallow ML and DL approaches are presented by evaluating present
solutions using proposed classification.

Describes some common comparisons among all approaches, which lead us to mention
some key research challenges and future direction in the field.

To get the objective done we follow the research methodology as follows, (1) we
identified the most promising areas focusing on the issues of causality mining such as
Shallow ML and DL approaches. (2) We designed our search criteria for extracting the
articles of interest from the selected libraries. (3) We critically analyzed each article ac-
cording to our designed review criteria. (4) Finally, we evaluate and summarize both
competing paradigms.

The rest of this survey is organized in Figure 3. Section 2 provides brief literature
and discussion about Machine Learning Techniques for CM. In Section 3, Deep Learning
models, Frameworks, and techniques are discussed. Section 4 comparing both Machine and
Deep Learning paradigms. Section 5 summarizes the key challenges and future guidelines.
Finally, we conclude from Section 6.
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2. Machine Learning Techniques

Machine learning approaches are commonly divided into supervised learning (SL)
and unsupervised learning (USL). The SL is based on labeled data, which contains some
valuable information for the model. Text classification/mining is a common task in SL and
is most frequently used in CM. Though, manually labeling the data is more cost-effective
and time-consuming. Therefore, the absence of enough labeled data forms the major
bottleneck to SL. On the contrary, USL mines the key feature knowledge from unlabeled
data, making it much easier to gain training data. Though, the discovery performance
of USL techniques is usually lower as compared to SL. Taxonomy of the most common
shallow ML and DL algorithms used in CM is presented in Figure 2.

ML algorithms help progress the learning performance, simplify the learning process,
and increase the possibilities of diverse applications. However, since the 80s, most studies
relied on finding explicitly marked causality and cause-effect event pairs in domain-specific
corpora, annotated manually by ruled-based/non-statistical techniques. Hence, at the
beginning of the 2000s, there was sudden wholesale transformation. The paradigm of
manual CM is shifted to ML approaches, which replaced the non-statistical approaches
or enhanced with automatic feature engineering. Over time, researchers progressively
began to account for implicit, heterogeneous, and ambiguous constructs through careful
feature extraction by using a massive amount of textual labeled and domain-independent
datasets to automatically extract implicit patterns in the text, demonstrating that ML
approaches could potentially perform superior to purely linguistics-based approaches.
In this section, a few distinctive ML techniques and frameworks are discussed. Table 1
summarizes the primary approaches, contributions, and limitations of linguistics-based
and simple cue-pattern based ML approaches for CM. Similarly, Figure 4 represent the
processing levels of shallow ML techniques, which consist of different parts, including
Target Data Sources, Pre-Processing, Manual Features Designing and Extraction ((Principal
Component Analysis (PCA), PPCA (Probabilistic Principle Component Analyzers), ICA
(Independent Component Analysis), and GAM (generalized additive models)), Shallow
Machine Learning Networks (Supervised Learning, Unsupervised Learning), Training and
Testing, Prediction, and Performance Evaluation.

Table 1. Summary of linguistics and Cue phrase-based ML approaches.

SNo Reference Description Pattern/Structure Applications Data Corpus Languages Limitations

1. [7]
Improved version
of C4.5 decision
tree is used [44].

A pattern of
causative verbs

NP1-verb-NP2 are
used.

Question
Answering.

Domain-
independent text.

LATIMES section of
the TREC 9 text

group.

English Not
mentioned.

2. [29]
A supervised
approach for

explicit causations.

Syntactic patterns
(Phrase-relator-

Cause).

SemCor 2.1 corpus
for training. 3

Only
considered

marked and
explicit

causations.

3. [30]

Decision trees are
used over

POS-tagged data,
and WordNet is
used for mining

semantic relations.

WordNet and
POS-tagging

features based
features

Knowledge
acquisition for

decision
making.

SemEval 2010 Task #
8 datasets

(7954 instances for
training and 2707 for

testing) [30].

3

Cost much
more time in

feature
extraction.

4. [45]

Syntactic parser for
NP1-Verb-NP2

relation and
WordNet

knowledge base
are used.

Used
NP1-Verb-NP2

relation.

Penn Treebank
dataset. 3

Lack of
ambiguity

resolution and
use of small

dataset.
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Table 1. Cont.

SNo Reference Description Pattern/Structure Applications Data Corpus Languages Limitations

5. [46]

Identifying
relations among
two-word noun

compounds

Nouns pair
patterns

Information
retrieval,

Information
extraction,

Text summa-
rization

Bio-medical Text 3

Only for
nominal

compound
relations

6. [47,48]

Use of Connexor
dependency parser

to extract NP1-
CuePhrase-NP2 for

inter-sentence
relation.

NP1-CuePhrase-
NP2 Pattern, cue

phrase, and lexical
pair probability.

3

Five million articles
from LA TIMES and
WSJ for training set,

two manually
annotated test sets,

including, WSJ article
and Medline medical

encyclopedia of
A.D.A.M.

3

System recall
or F-score are

ignored and no
explanation of
the use of NBC

is provided.

7. [49]

SemEvel2007
task-4 is applied

for finding 7
frequently

occurring semantic
relations.

Events pair
patterns of 7

relation types.
3

Benchmark dataset to
let the

evaluation of diverse
semantic relation

classification
algorithms

Only restricted
to nominal

based
classification

8. [50]

‘PRE POST’ model,
extracted

common-sense
knowledge for the

problem of CM.

Use Pre- and
Post-condition

pattern and SVM
classifier

Knowledge
acquisition for

AI tasks.
Web text.

Based on a
small set of

labeled data.

9. [51]

The similar
SemEval-2010

task-8 used
separate rule-based
features for every
type of relation.

Prepositions and
verbs present
among every

nominal pair in
combination with

WordNet.

For
information

retrieval
between
nominal.

Training data of 8000
sentences, and test

data of 2717
sentences

3
Not specific to

implicit
causalities.

10. [52] Conditional text
generation model.

Causal patterns
and

Cause-Effect graph.

Cause-effect
event pairs
generation.

Causal Bank corpus. 3
Targeted only
cause-effect
event pairs

2.1. Review Methodology for Machine Learning Techniques

The following journal libraries have been exposed for this survey:

• IEEE Xplore Digital Library
• Google Scholar
• ACM Digital Library
• Wiley Online Library
• Springer Link
• Science Direct

We have cited over 100 popular papers from the above libraries and have shortlisted
about 45 articles on CM, which focuses on shallow ML only. The search keywords used in
these libraries include Causality Mining, Causality Classification/Detection, Cause-Effect
relation classification with ML, Cause-Effect Event pair detection with ML. In this section,
our goals are to study ML techniques focused on CM.

2.2. Mining Explicit Causality Based on Linguistics and Simple Cue Patterns

This section elaborates on some important work using Linguistics & simple Cue
Pattern approaches for explicit CM. In such a direction, [45] was the first attempt using
a syntactic parser of the NP1-verb-NP2 patterns. They used nine nouns hierarchies of
semantic features for each value of NP1 and NP2 through WordNet knowledge base. The
nouns hierarchies included entity, psychological feature and several constraints ranked
based on frequency and accuracy. Ref. [46] Identified semantic relations at an intermediate
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level of corpus for noun compounds description through multi-class mining approach
that focused biomedical text because it preserves exciting challenges. In [48], a Naive
Bayes classification at the lexical pair probabilities level is used to distinguish between
various inter-sentence semantic relations. The purpose of this technique was a robust
model for discourse-relation mining. They train a family of Naïve Bayes Classifiers (NBC)
on an automatically generated set of samples in English sentences without annotations,
and BLIPP English sentences, which is available at Linguistic Data Consortium (http:
//www.ldc.upenn.edu/).
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base noun phrases in clusters, determined by an extensive set of semantic relations. In [47],
the followingnotable work is presented by using Connexor Dependency Parser (CDP) [55]
to mine ternary expressions of the form NP1-CuePhrase-NP2, where lexical pair is created
from NP1 and NP2 together using 60 causal verbs found in [7,53]. Such ternaries were
filtered with a set of pre-defined cue phrases to get highly ranked ternaries. The initial
classifier used cue phrase confidence scores treated as the initial causality annotated
training set for NBC. The downside of this work is using a large unlabeled corpus to mine
causality, but their evaluation results and error analysis left a little something to be desired.

They improved and focused only on the model precision, but they did not quote
the model recall or F-score, which was not a good idea. The “Phrase-relator-Cause”
patterns used the marked open-domain text and explicit causations [29]. The words
such as due to, cause, after, because, as, due, and since are measured as the relators in
the given patterns. They used semantically annotated corpus “SemCor 2.1” for training
a C4.5 decision tree binary classifier. They targeted seven features for learning such
as the type of relater, the tense of verbs, causal potentials of verbs, semantic classes of
verbs, and its modifiers. With the beginning of benchmarked corpora for numerous NLP
tasks, such as SemEval-2007 task-4 and SemEval-2010 task-8, the semantic relation mining,
including causality, has been enhancing, and additional new approaches have come into
existence. The winners of [56] for SemEval-2007 task-4 and [49] for SemEval-2010 task-8
used a combination of syntactic, semantic, and lexical features mined from numerous NLP
toolkits, such as Syntactic Parser and knowledge-bases, and used SVM as the classifier.
Though the mining outputs for causality are satisfactory, most of the samples in the corpus
are simple causality, which is explicitly expressed with essential linguistic clues such
as to cause, result in, due to, because, and lead to. The mining of implicitly express
causality is still a big challenge where task-4 [57] was used for seven frequently occurring
semantic relations mining including cause-effect, instrument-agency, theme-tool, part-
whole, product-producer, origin-entity, and content-container. Moreover, [49] classified
multi-way semantic relationships between nominal.

In [50], extracting common-sense knowledge for CM by post and pre-condition of
actions and events from web corpus using ‘PRE POST’ tool with its post and pre-conditions.
Ref. [51] Present WordNet-based semantic features in conjunction with separate role-based
features for each type of relationship through verbs and prepositions existing among each
nominal pair. For a broad analysis of this task, one can visit [30]. Training decision trees
(DT) on SemEval 2010 corpus [58] with POS-tagging and WordNet-based dependency
relations. They achieved an F-score of 0.858, and to train the CRF. The obtained F-score is
0.52 recorded. In [52], a conditional text generation network is suggested that make senten-
tial terms of possible causes and effects for any free-form textual event. This is based on
two resources; an extensive pool of English sentences that denote causal patterns (Causal-
Bank) and large lexical causal knowledge graphs (Cause-Effect graph). They focused on
explicit relations within a single sentence by linking one part of a sentence to another
and using generated patterns instead of sentence-level human annotation. This approach
performed superior on diverse causes and effects events in new inputs by automatic and
human assessment. Table 2 summarizes some linguistics and Cue phrase-based patterns
ML approaches covering Description, Pattern/Structure, Application, Dataset, Languages,
and their Limitations. In [49,57], semantic classifications are performed, ‘not more specific
to the causality problem. Further, in [50], extracting common-sense knowledge by mining
post- and pre-condition of actions and events in the web text by using their Pre-conditions
and Post-conditions (PRE POST) for CM. They mine causality with their Pre-conditions
and Post-conditions. Moreover, to save out extremely correlated words that are neither
pre- or post-conditions, the model determines the set of feature words that describe the
association among the candidate and action words by getting their three-way PMI with
every feature word. They used SVMs by considering five action words for training and
35 for testing. A small set of the labeled corpus is considered for learning and generalize
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well to unseen actions and events and also captures Preconditions relations, which are not
directly captured by any of the prior approaches.

Table 2. Reviews ML approaches for implicit and ambiguous causalities.

SNo Reference Description Pattern/Structure Application
Domain Data Corpus Language Limitation

1. [2]

Network (CausalNet)
of cause-effect terms

in a large web
corpus.

Linguistic pattern,
‘A (event1) causes B

(event2)’.

Predication in
short text.

10TB corpus from
Bing. English Over-fitting

issues.

2. [9]
Pundit algorithm for

future events
prediction.

Handcrafted rules. Predictions
News corpus last

from 150 years news
reports.

3

It only
applicable to

textually
denoted

environment.

3. [14] Proposed ADRs. Lexical patterns.

Healthcare
field to

decreases
drug-related

diseases.

Twitter and Facebook
data. 3

Worked only
for explanatory

messages
related to drug
and diseases.

4. [31]

Applied pattern
matching by phrasal
and causative verbs
that links ML and

traditional methods.

Syntactic patterns

Used for large
scale AI

problems of
events

prediction.

News articles over
150 years old. 3

Use of
unrelated data,

which result
irrelevant
causality

predication.

5. [59]

Extracting parallel
and temporal causal

relations, and
differentiate among

them

Feature based on
WordNet and the
Google N-gram

corpus.

Decision
making.

Their own corpus of
temporal and causal

relations
.

3

Hard to
perform well
on domain-

independent
data

6. [60]
Discovered parallel
temporal and causal

relations.

PDTB, Prop Bank,
and Time Bank
data patterns.

Decision
making.

Their own annotated
corpus 3

Overlooked
in-depth

analysis of
both corpus

and relations.

7. [61]
A graphical

framework for
implicit causalities.

Semantic, lexical,
and syntactic

features.

Information
retrieval in

NLP.

Same corpus used
[59]. English

Some vague
verbs cause
most of the

errors.

8. [62]

A distributional and
connectives

probability approach
for event causality

detection.

Follow features
described

Ruby-based
discourse

System [63].

Decision
making.

Using news articles
collected from CNN

(http:
//www.cnn.com).

3

More focused
on explicit
connective,

and overlook
implicit

connective.

9. [64]
Classifying causality
among the verb and

noun pairs.

Grammatically
linked verb-noun

pairs pattern based
on extra

knowledge with
Linguistic features.

Prediction

Acquired 2 158
causal and

65, 777 non-causal
from FrameNet.

3
Bound to

limited feature.

10. [65]

MLR (The source
code for relation

mining is available in
https://github.com/

YangXuefeng/
MLRE), mine all

probable causality
with any preposition

or verb based.

Constituent and
linguistic

knowledge of the
dependency

grammar.

Extract
causality in all

language
expression

levels.

Prop bank [66], 3

Small
manually
annotated

dataset,
typically lead
to over fitting

problem.

http://www.cnn.com
http://www.cnn.com
https://github.com/YangXuefeng/MLRE
https://github.com/YangXuefeng/MLRE
https://github.com/YangXuefeng/MLRE
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Table 2. Cont.

SNo Reference Description Pattern/Structure Application
Domain Data Corpus Language Limitation

11. [67]

Mine causal and
temporal relations,

and propose
guidelines to

annotate casualty.

Used <CLINK> tag
to indicate a causal
link, and presented
the idea of causal

signals through the
<C-SIGNAL> tag.

Prediction,
risk analysis,
and decision

making.

Annotated dataset
followed [68]
guidelines.

3
Complex

annotation
scheme.

12. [69]

RHNB algorithm
manages interactions

among diverse
features.

RHNB model
based patterns Prediction SemEval-2010-Task8

dataset. 3

Work on large
set of feature
vector, which
usually slow

the model
processing.

13. [70]

Explicit discourse
connectives for

mining alternative
lexicalizations

(AltLexes) of causal
discourse relations.

Two kind of
features: Parallel
corpus derived

feature and lexical
semantic features.

Question
Answering and

text summa-
rization.

Wikipedia from
11 Sept 2015. 3 //

14. [71] CRF based model for
CM.

Time-based
sequence labeling,

Lexical and
syntactic features.

Emergency
management.

Emergency cases
corpus about

typhoon disasters.
3

Based on raw
corpus which
leads to low

performance.

15. [72]
First effort toward

German causal
language.

Annotated training
suite and lexicon.

Identify new
causal triggers.

English-German part
of Europarl corpus

[73].

German
causal

language.

Only focused
English-
German

parallel corpus.

16. [74]

BECauSE 2.0 corpus
with broadly

annotated
expressions of causal

language.

Annotated
expression of

causality.

Annotating
causal relation.

BECauSE 2.0 corpus
(https://github.
com/duncanka/

BECauSE).

English
Missing

semantically
fuzzy relations.

17. [75] CausalTriad, to mine
causalities Traid structures.

Medical
related

predication.

Health Boards
dataset

(https://www.
healthboards.com/)

and Traditional
Chinese Medicine

dataset.

3

Only used for
medical

domain, and
not useful in

other domains.

18. [76]

TCR, a joint inference
model for

understanding
temporal and causal

reasoning.

Using CCMs and
ILP in the

extraction of
temporal and

Causal relations.

Decision
making in

defense
department.

Causal and temporal
relations from the

text (http:
//cogcomp.org/

page/publication_
view/835).

3

Omitted the
concept of

jointly learning
of temporal

and
Causal

relations.

19 [77] Extracting causality
Investigation

of Malaria
Epidemics

HAQUE-data and
HANF-data 3

Only targetd
malaria related

problems

2.3. Mining Implicit and Heterogeneous Causality

From a few decades, heterogeneous, implicit, and ambiguous causalities became a
concentrated area for researches. If we move back toward past research in the field, most
of the work has been targeted at explicit causalities through statistical techniques, and
implicit causalities are ignored. Implicit causality was first tried by [59] to deal with implicit
causalities in a well-organized way. Their model answered such questions by considering
a sentence and taking two events occurring in that sentence, in which one event could
be considered the cause of the other. They create parallel temporal and causality corpus
and distinction among temporal and causal relations. Semantic and syntactic features are
used for temporal relations, which encoded complementary indications that augmented

https://github.com/duncanka/BECauSE
https://github.com/duncanka/BECauSE
https://github.com/duncanka/BECauSE
https://www.healthboards.com/
https://www.healthboards.com/
http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/835
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the knowledge of temporal relations to progress CM. Such an attempt achieved 0.49 and
0.524 F-score for both temporal and causal relations. Another work [60] explored parallel
temporal and causal relations. They designed a corpus of causal and parallel temporal
relations to fill a gap in the relation configuration annotated by present resources including,
Penn Discourse Treebank (PDTB) [78], PropBank [66], and TimeBank [79]. This work
defines the annotation of a corpus for both relations types, with an initial effort on the
conjoined event creation. Such creation is often used to presents both causal and temporal
relations. This was an opening idea to explore connections between causal and temporal
relations. In the past, both causal and temporal relations keep the same conclusion. On the
other hand, it was difficult to find causal and temporal relations in the arbitrary corpus,
but finding these relations are more manageable in a wisely nominated subset of corpora.

Continuing toward implicit causalities, [61] suggested a graphical framework by
catching contextual information pair of entities and discovering dependencies among
different syntactic, semantic, and lexical features. Further, encode such features for molding
the CM tasks in a graphical representation. They find related graph patterns that capture
two events for a given pair in the same sentence for contextual information. This approach
focused on setting up an ML model to learn every pair of events for causal or non-causal
predication. Similarly, patterns for causal information are descriptive between two events.
In the same way, the distributional and connectives probability approach is presented [62]
for implicit CM. A pundit approach for future events prediction using handcrafted rules
at newspaper headlines that last from 150 years of news reports collection [80]. Contrary
to past approaches, the novelty of this work is considering a general-purpose mining
algorithm, combines diverse web sources, and concentrates on future event predictions
generation to improve and generalize historical events. For advanced research, one can visit
a link (http://www.technion.ac.il/~kirar/Datasets.html). In [31], lexico-syntactic features
and self-constructed rules are applied for CM. Such rules are kept precise by dependency
structure and lexico-syntactic patterns to mine possible cause-effect pairs, and further,
Laplace smoothing classifier is used to reject incorrect event pairs. In [81], implicit causal
and non-causal relationship mining among verb-verb pairs is performed and produced
a training corpus of causality between verbs and trained by a supervised system. The
former approach is extended by [64], which classifies causality between the pattern of the
verb-noun pair. Firstly, they recognize all nouns and verbs in the target sentence and then
use a classifier to classify implicit causalities among grammatically linked noun-verb pair
patterns. Similarly, a multi-level relation mining algorithm (MLRE) is presented to mine
possible causalities with any verb or preposition-based linguistic pattern [65]. They used
some lexical knowledge bases features, and feature selection approaches for learning.

In [67], a motivating work is presented to mine causal and temporal relationships
among events pairs and proposed guidelines to annotate casualty among different events.
This approach used an annotated corpus based on the suggested guidelines. In [69] causal
connectives are applied, which is obtained by computing the similarity of sentences syn-
tactic dependency structure through Restricted Hidden Naïve Bayes (RHNB) classifier to
manage the interactions among lexico-syntactic patterns and causal connectives. Contrary
to [31,82], this approach accounts for more significant features. In [2], a causality network
of terms is produced from a group of web corpus by a linguistic approach, such as ‘A
causes B’. In such a graph, each node designates a term and each edge possesses a causal
co-occurrence score. Finally, in the causal graph, the co-occurrence scores between terms
compute the causal strength and using a co-occurrence score for CM. The same year [70]
considered comparable monolingual corpora of simple and English Wikipedia of PDTB [78].
They used explicit discourse connectives for mining alternative lexicalizations (Altlexes) of
causal discourse relations.

Next, a conditional redundancy field (CRF) based model is suggested by [71], which
redefined the time-based sequence labeling process for CM. The proposed algorithm
used LTP (Load, Transform, and Processing) technique by mining raw corpus related to
emergency cases. Then, the mined corpus is used for causality candidates by using the

http://www.technion.ac.il/~kirar/Datasets.html
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feature templates. The experimental result shows the practical impact of mined causality in
the sentences. Among all earlier approaches, [83] is an innovative approach that employs
graph LSTMs to classify relationships across sentences by building a document graph
through dependency link and syntactic features among the root nodes of the parse tree.
The first effort toward describing German causal language [72], creates resources, which
contained annotated lexicon and training suite. Such an approach mine new causal triggers
for automatic CM in English-German parallel corpus with negligible human management.
The proposed approach is similar to identify transitive causal verbs, where the English
verb has been taken as a seed source of causality.

In [74], the “BECauSE 2.0 corpus (Link for source document, at https://github.com/
duncanka/BECauSE) is considered an extended version of the BECauSE 1.0 corpus with
broadly annotated expressions of causal language. It comprises Penn Treebank [84], the
New York Times corpus [85] that contains 59 randomly selected articles from Congress,
“Dodd-Frank 679 sentences” transcribed [86], and manually annotated Sub-Corpus [87].
Contrary to BECauSE 1.0, the overall performance of this work is significantly enhanced
by an F1-score 0.77 for causal connectives. The subsequent notable work using medical
corpus through the Causal-Triad approach for CM [75]. The earlier works employed
diverse mining techniques to discover pseudo causality in a single sentence, but causation
transitivity knowledge often lies between sentences that were not considered. Furthermore,
the rules of causation transitivity are followed by much pseudo causality, to yield new
causal hypotheses and mine some hidden causality. They used Health Boards (HB) and
Traditional Chinese Medicine (TCM) datasets. In the same year, [14] presented a causality
reaction for learning adverse drug reactions (ADRs), in Twitter and Facebook platforms to
automatically extract lexical patterns that denote the relationship between events and drugs.
This work aims to notice a contrary response caused by a drug instead of a correlated
sign based on causality measures. ADR mining has many applications for the usage of
a direct implication of drug. Using past ADRs detection evidence and provided it to
pharmaceutical companies, regulators, and health care departments. By the way, we can
decrease drug-related diseases. Similarly, [76] presented an imperative natural language
task for understanding temporal and causal relations between events using Constrained
Conditional Models (CCMs). From a literature perspective, the effect must occur after
the cause of the closely related temporal and causal relations, in which often one relation
dictates the value of the other. However, to study these two relations, limited attention
has been given in the past. However, the problem is formulated as an Integer Linear
Programming (ILP) problem. The joint inference framework got significant improvements
in extracting both causality and temporal relations in the text (The source code and the
dataset at http://cogcomp.org/page/publication_view/835). In the joint system, the score
of temporal and causal is added up for all event pairs. The temporal performance got
strictly better in a recall, precision, and F1. The causal performance also improved by a
large margin, representing that causal and temporal signals are helpful in each other.

In this section, we are including some GT-based approaches, which are beneficial for
this causality problem including, [88], which examined the behavioral effect of the Internet
search capacity for the financial crisis and oil prices on food price instability. They used
GT to derive the subject variables that can be used to assist and describe food prices. This
can help the market contributors tend to respond fast to information on the Internet to
adjust to the new market situation. They used keywords in the Google search to discover
the relationship between the overall agricultural price level and query volume. Where
the market prices are designed by behavioral trends, subject to geographic areas and the
interior dynamics of the country. In [77], five technique are used for causality extraction
for the purpose to investigate malaria epidemics in dynamic processes using information
encapsulated in time series by statistical techniques. This paper investigated transfer en-
tropy [89], recurrence plot kernel [90], Granger causality [91,92], and causal decomposition
and complex models [93,94]. They used (HAQUE-data) and (HANF-data) [95,96]. Lastly,

https://github.com/duncanka/BECauSE
https://github.com/duncanka/BECauSE
http://cogcomp.org/page/publication_view/835
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Table 2 summarizes major ML approaches for implicit and ambiguous causalities that cover
Description, Pattern/Structure, Application, Data coups, Languages, and Their Limitations.

GT can be used to infer the popularity of dengue, which summarizes Google searches
of associated subjects. Together the infection and its GTs have the same source of causation
in the dengue virus, leading people to hypothesize that dengue occurrence and GTs
outcomes results have a long-run equilibrium (LQ). This work considers the principle
of LQ by using GT information for the primary discovery of future dengue outbreaks.
They used the cointegration technique to evaluate LQ between dengue occurrence and
GTs outcomes. The LQ is categorized by its linear arrangement that produces a stationary
process. The final models are used to determine Granger causality among two processes.
The model presented the direction of causality of the two processes, representing that
GT outcomes will Granger-cause dengue occurrence (not in the reverse order). This
study concluded that GTs outcomes can be used as the first indicator of future dengue
outbreaks [97].

3. Deep Neural Models, Frameworks, and Techniques

Deep learning models for CM can enhance the performance of learning algorithms,
improve the processing time, and increase the range of mining applications. However,
the highly extended training time of the DL models leftovers a significant challenge for
researchers. DL models combine the optimization, distribution, modularized techniques,
and support to setups. These concepts are developed to streamline the implementation
process and improve system-level progress and research. This section described the history
of Deep Neural Networks, Deep Neural Frameworks (DNFs), and some effective Deep
Learning Techniques for CM.

3.1. Neural Networks and Deep Learning

In the era of information processing tasks, ML has been merged in many disciplines,
including information mining, relations classification, image processing, video classifi-
cations, recommendation, and analysis of different social networks. Including all ML
algorithms, Neural Network (NN) and DL are identified as representation learning [98] ex-
tensively used. NN computes a result/predication/output, which generally states forward
propagation (FF). During FF, the NN receives inputs vector X and result in a prediction
vector Y. More generally, NN is based on interconnected layers (input, hidden, and output
layer). Each layer is linked via a so-called weight matrix (W) to the next layer. Further,
each layer consists of different combinations of neurons/nodes, where each node gets a
particular number of inputs and computes a prediction/output. Every node in the output
layers makes weighted addition based on received values from the input neurons. Further,
the weighted addition is passed to some nonlinear activation functions (Sigmoid, Tan
Hyperbolic (Tanh), Rectified Linear Unit (ReLU), Leaky ReLU, and Softmax Activation
Function) to compute outputs. Figure 5 represents a simple NN with one input layer, three
hidden layers (H1, H2, and H3), one output layer, and four weight matrices (W1, W2, W3
and W4).
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We set an input vector X to calculate dot-product by the first weight matrix (W1) and
used the nonlinear activation function to the result of this dot-product, which output a
new vector h1 that denotes values of the nodes in the first layer. Further, h1 is used as
a new input vector to the next layer, where similar operations are executed again. This
process is repeated until the final output vector Y is produced, known as the NN prediction.
While Equations (1)–(4) represent the whole set of operations in NN, where “σ” denotes an
arbitrary activation function.

→
h 1 = σ

(→
x . W1

)
(1)

→
h 2 = σ

(→
h 1. W2

)
(2)

→
h 3 = σ

(→
h 1. W3

)
(3)

→
y = σ

(→
h 3. W4

)
(4)

More generally, we consider NN as a function instead of using a combination of
interconnected neurons. With this function we combine all operations in a chained format
in Equation (5) that we have seen in the above four equations.

→
y = NN

(→
x
)
= σ

(
σ
(
σ
(
σ
(→

x .W1

)
.W2

)
.W3

)
.W4

)
(5)

3.2. Loss Functions and Optimization Algorithms

The selection of loss function and optimization algorithms for DL networks can
significantly generate optimal and quicker results. Every input in the feature vector is
allocated its particular weight, which chooses the impact that the specific input desires in
the summation function (Y). In simple word, certain inputs are made more significant than
others by assigning them more weight, which have a superior effect in Y. Furthermore, a
bias (b) is added to summation shown in Equation (6).

Y = bw0 + w1x1 + w2x2 + w3x3 (6)

The outcome Y is a weighted sum is converted to performed output using a non-linear
activation function (fNL). In this case the preferred result is the probability of an event,
which is represented by Equation (7).

p̂ = fNL(Y) (7)
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In many learning models, error (e) is calculated as the gap between the actual and
predicted results in Equation (8).

J(w) = p− p̂ (8)

The function for error calculation is called Loss Function J (.), which significantly effects
on the model predication. Distinct J (.) will provide diverse errors for a similar prediction.
Different J (.) deals with various problems, including classification, detection, extraction,
and regression. Furthermore, error J (w) is a function of the network/model’s inner
parameters (weights and bias). Precise likelihoods, it requires minimizing the calculated
error. In NN, this is achieved by Back Propagation (BP) [99], in which the existing error is
commonly propagated backwards toward the preceding layer, where optimization function
(OF), including Stochastic Gradient Decent (SGD), Adagrad, and Adam is used to modify
the parameters in an efficient way to the minimize error.

The OF calculate the gradient (partial derivative) of J (.) concerning parameter
(weights), and weights are improved in the reverse direction of the calculated gradient.
This process is repetitive until it reaches the minimum J (.). Equation (9) represents the
optimization process.

w(k+1) = w(k) =
∂

∂w(k)
J(w) (9)

The basic differences between different models are based on the number of layers and
the architecture of the interconnected nodes. In those models neurons are structured into
sequential layers, where each neuron receiving inputs only from previous layers neurons,
called Feed forward Neural Networks (FFNNs). Though, there is no clear consensus on
precisely what explains a Deep Neural Network (DNN), networks with several hidden
layers are known as deep and those with several layers are known as very deep [100].
Contrary to traditional and ML techniques, DL techniques have enhanced performance
in computer vision (Image Processing, Video Processing, Audio Processing, and Speech
Processing) [101–103], and NLP tasks (Text Classification, Information Retrieval, Event
Prediction, Sentiment Analysis, and Language Translation) [104–108].

Usually, the effectiveness of shallow ML algorithms is based on the goodness of input
data representation. Compared to precise data representation, the performance of depraved
data representation is usually lower. Hence, for shallow ML tasks, feature engineering is
an effective research direction in raw datasets and will lead to various research studies.
Usually, most of the features are domain-dependent which need much human effort e.g.,
in computer vision tasks, diverse features are compared and proposed including Bag of
Words (BoW), Scale Invariant Feature Transform (SIFT) [109], and Histogram of Oriented
Gradients (HOG) [110]. Similarly, in NLP tasks, diverse features sets are used including
BoW, Linguistics Patterns (LP), and Clue Terms (CT), Syntactic, and Semantic context.
Contrary, DL techniques work on automatic feature engineering, which lets researchers get
more discriminative features with minimal human effort and domain knowledge [111]. As
discussed above that DL techniques are based on a low-level, middle-level, and high-level
layered structure for data representation, where the low-level layers are used for low-level
features, the middle-level/hidden layers are used to extract hidden/middle-level features.
Finally, the high-level features are extracted by high-level layers.

3.3. Brief History of Deep Neural Network

Since 300 B.C, the beginning of DL was a dream of experts by making machines that
mimic the human brain. At that time, Aristotle recommended ‘associationism’, which led to
the history of human motivation by realizing the human brain. His idea needs researchers
who focus on understanding the recognition system of the human brain. Though, the
current history of DL has been ongoing since 1993, when the McCulloch-Pitts (MCP) model
was proposed as a prototype of the Artificial Neural Model (ANM) [112]. They developed
a Neural Network (NN) system, which mimics the human brain neocortex [100] by using
a threshold logic system’, which combines mathematics and algorithms that mimic the
human’s thought process but not learn. From that, gradually the era of DL is grown. After
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the MCP system, Hebbian theory [113] is applied for biological systems in the natural
environment, leading to the first electronic device known as ‘perceptron’ in the cognition
system. Hence, at the end of the first journey of AI, the advents of ‘back propagandists’ led
to another baseline. Similarly, Verbose presented ‘back propagation’ for errors analysis in
DL networks, which lead to a novel direction in modern NN.

In 1980, ‘neocogitron’ was inspired by CNN [114], and introduced its first milestone
of an RNNs system for NLP tasks [115]. Furthermore, LeNet’ made it possible for deep
neural networks (DNN) effort practically well [116]. Due to the limitation of hardware
resources, the ‘LetNet’ did not perform efficiently on a larger dataset. In 2006, a layer-wise
pre-training framework was developed [117], named Deep Belief Networks (DBNs). The
basic idea of this framework was an unsupervised two-layer network including Restricted
Boltzmann Machines (RBMs), which freeze all parameters, and the other is to put a new
layer on the top to train the parameters only for the new layer.

Hereafter, gradually diverse DL networks came into existence, enhancing the per-
formance of models in every field. After developing artificial neural networks (ANNs),
we have seen many DL techniques come into existence. Recently, in every field DL is a
leading approach compared to traditional and shallow ML approaches. At the same time,
there is big revolution came into hardware technologies, called graphical processing units
(GPUs) [118,119] and Tensor Processing Unit (TPU) [120], which uses ANNs with billions
of trainable parameters [121] for increasing the computational power and parallelization of
DL techniques. Compared to the CPU, the GPU and TPU have significant computing power
on a single machine using many distributed DL networks [122–124]. Moreover, most of
the corpora come in raw format without or with raw labels. Since most of the practices are
based on semi-supervised and unsupervised tools for training DL networks for enhancing
the raw nature of data. Similarly, most of the prior DL techniques emphasized only a single
modality that leads to a partial illustration of public data. In such cases, many scholars
concentrated on cross-modality structure for keeping DL in an advanced option [125].

3.4. Deep Neural Network for Natural Language Processing

This section discusses some widespread DL networks including Convolutional Neural
Network (CNN) [101,103,106,126], Recursive Neural Network (RvNN) [127,128], Recurrent
Neural Network (RNN) [129,130], Gated Recurrent Units (GRU) [131], Long Short-term
Memory (LSTM) [132], Bidirectional Long Short-term Memory (bi-LSTM) [133], Trans-
former [134], Embedding from Language Models (ELMo) [135], OpenAI [136], and Bidi-
rectional Encoder Representations from Transformers (BERT-base) [137]. In the field of
NLP, all of them contributed much more novel development. Table 3 summarizes the most
fundamental and common DL models by their name, applications, and references.

Table 3. Common Deep learning models for NLP tasks.

SNo References Deep Neural Networks Applications and Structure

1. [101,103,106,126] CNN

CNN’s are made upon Fukashima’s neurocognition [138,139], where the name
originates from the convolution operation in signal processing and mathematics.
CNN’s use some specific type of function called filters, which lets simultaneous

analysis of diverse features in the source data [101,140]. Though, CNN is considered as
the foundation and inspiration of DL approaches, which beats its predecessors. It is
based on a mash structure of neurons/nodes for information exchange, leading to
various many-layered learning networks. In the beginning, it was applicable for

computer vision. Further, enhanced to NLP.

2. [127,128] RvNN

Like CNNs, RvNN uses a method of weight sharing to decrease training. Though
CNN’s share their weights within a layer (horizontally), RvNN share weights between

layers (vertically). This is interesting because it lets easy modeling of parse trees
structures. In RvNN, a single tensor of parameters can be applied at a low level in the
tree and further recursively used sequentially at higher levels [141]. It is applicable for

sequential NLP tasks by using a tree-like architecture.

3. [142,143] DBNs Applicable for unsupervised learning-based directed connections.

4. [144,145] Deep Boltzmann Machine (DBM) Applicable for unsupervised learning based on undirected connections.
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Table 3. Cont.

SNo References Deep Neural Networks Applications and Structure

5. [129,130,146–149] RNN

RNN is a type of RvNN, comprehensively used in many NLP tasks. Since NLP is
dependent on the sequence of words such as sentences /phonemes, it is beneficial to

have a memory of the preceding elements when processing new ones. Sometimes,
backward dependencies exist that correct processing of certain words/tokens may

depend on words that follow it. Hence, it is crucial for RNN to look at the sentences in
the forward and backward direction and integrate their outputs. This organization of
RNN’s is known as a bidirectional RNN. This design may allow the effect of input to

longer than a single RNN layer and letting for longer-term effects. This sequential
design of RNN cells is known RNN stack [150]. RNN is applicable for sequential NLP

tasks, and as well as for speech processing.

6. [151,152] Generative
Adversarial Network (GAN) Applicable for unsupervised learning and using game-theoretical context.

7. [153] Variational Autoencoder (VAE) Applicable for unsupervised learning and based on the Probabilistic Graphical model.

8. [131,154] GRU GRU is an extended version of RNN and a simpler variant of the LSTM, usually
perform better than standard LSTMs in several NLP sequential tasks.

9. [130,132,155] LSTM

LSTM is one of the prominently enhanced forms of RNN. In LSTMs, the recursive
neurons are consist of many different neurons linked in a sequential structure to

preserve, expose, or forget some precise information. While standard RNN’s of the
single node serving back to them and have some memory of long passed outcomes,
these outcomes are merged in each consecutive iteration. Usually, it is significant to

remember data from the distant past, however and at the same time, other very latest
data may not be vital. LSTM can remember important data much longer, while

inappropriate data can be forgotten. It plays a very important in sequential
computation.

10. [133] bi-LSTM
Bi-LSTM is an enhanced form of LSTM that works in both left and right directions to

deal with the problem. It is applicable for sequential NLP tasks and uses derived
features from lexical resources such as NLP and WordNet systems.

11. [134] Transformer

Encoder-Decoder pair is typically used for text summarization, machine translation, or
captioning, results is in textual form. An encoding ANN is used to yield a vector of a
specific length and a decoding ANN is used to return variable size text based on the

vector. Issue in this system: RNN is enforced to encode the whole sequence to a finite
length vector without affections to whether or not any of the inputs are more significant

than others. A strong solution to this issue: Using the attention mechanism. The first
prominent use of an attention mechanism is the condensed layer for an annotated

parameter of RNN hidden state, letting the network obtain what to pay attention in
accordance with the annotation and current hidden state [156].

It is applicable for supervised learning with multi-head attention.

12. [135] ELMo They used a feature-based approach and task-specific architectures that contain
pre-trained representations as additional features.

13. [136]
Generative Pre-trained Transformer

(OpenAI
GPT)

Applicable for unsupervised learning by Improving language understanding.

14. [137] BERT-base
BERT-base is the enhance form of Transformer, which deal the source sentence in both

direction. It uses a bi-directional encoder-decoder along with attention mechanism. It is
conceptually very simple and empirically influential.

3.5. Motivation for Causality Mining

DL applications are resulted based on feature representation and algorithms together
with the design. These are related to data illustration/representation and learning structure.
For data illustration, there is typically a disjunction among what information is said to
be essential for the task, against what illustration produces good outcomes. For instance,
Syntactic Structure, Sentiment Analysis, Lexicon Semantics, and Context are supposed
by some linguists to be of fundamental importance. However, prior works are based
on bag-of-words (BoW) system proven satisfactory performance [157]. The BoW [158],
frequently seen as vector space models, includes an illustration that accounts only for the
words/tokens and their frequency of existence. BoW overlooks the order and relations
of words and treats every token as a distinctive feature. BoW neglects syntactic format,
still delivers effective results for what some could consider syntax-oriented applications.
This judgment recommends that simple illustrations, when combined with a big data
set, may work superior to difficult representations. These outcomes verify the argument
courtesy of the significance of DL architectures and algorithms. Often the effective language
modeling guarantees the advancement of NLP. The aim of statistical language designing
is the probabilistic illustration of word sequences, which is a complex job because of
dimensionality curse. In [159], a breakthrough for language designing with NN aimed
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to overcome the dimensionality cures by learning a distributed illustration of tokens and
giving a likelihood function for structures.

A significant challenge in NLP study, related to other areas including computer
vision, looks complicated to reach an in-depth illustration of language using statistical/ML
networks. A core task in NLP is to illustrate of texts (documents), which comprises feature
learning, i.e., mining expressive information to allow additional analysis and processing
of raw data. Non-statistical approaches are based on handcrafted features engineering,
which is time-consuming. Through, the development of algorithms needs careful human
analysis to mine and exploit instances of such features. While, deep supervised approaches
are more data-driven and can be used in extra general efforts, which directed a robust data
illustration. In the presence of huge amounts of unlabeled dataset, unsupervised learning
techniques are known to be critical tasks. With the beginning of DL and sufficiency of
an unlabeled datasets, unsupervised techniques become a critical job for representation
learning. At present, many NLP tasks depend on annotated data, while most unannotated
data encourages study in employing deep data-driven unsupervised techniques. Given the
possible power of DL techniques in NLP tasks, it looks critical to analyses numerous DL
techniques extensively.

DL models have a hierarchical structure of layers that learn from data representation
by input layer, then pass them through multiple intermediate layers (hidden layers) for
further processing [121]. Finally, the last layer computes the output predation. ANN is a
representative network using FP and backward propagation (BP). FP is used for processing
weighted sum (WX) of input from the prior layer along with bias (b) term, and further
passes it to a sequence of Convolutional, Non-linear, Pooling, and Fully connected layers to
produce the required output (final prediction). Equation (10) represents the fundamental
matrices of the neural networks.

Z = A(WX + b) (10)

where ‘W’ represents the weight (number matrix), also known as parameters, X repre-
sents the input feature vector, ‘b’ represents the bias term, ‘A’ represents the activation
function, and Z represents the final prediction. Similarly, the BP computes the deriva-
tive/slope/gradient of an objective function by chain rule of the gradient to the weights of
a multilayer stack of modules via the chain rule of derivatives. DL play a role by deeply
analyzing input and capturing all related features from low to high levels. The semantic
configuration and representation learning are strengthened by neural processing and vector
representation, making machines capable of feeding raw data to automatically determine
hidden illustrations for final prediction [121] automatically. DL techniques have some
fundamental strengths for CM, including, (1) By DL techniques, CM takes advantage of
non-linear processing, which creates non-linear conversion from source to target output.
They have the power to learn all related features from input data by a layered structure with
different parameters and hyperparameters. (2) Compared to traditional and shallow ML
techniques, DL can automatically capture important features without much human effort.
(3) In DL network, the optimization function plays an important role for the end-to-end
paradigm to train a more complex task for CM. (4) With DL techniques, both data-driven
and program-driven techniques are easily structured for CM tasks.

3.6. Deep Learning Frameworks

Currently, some well-known DL frameworks are available at hand for diverse model
designing. Such frameworks are either the library or interface tools that help ML de-
velopers and research scientists to develop and design DL networks more efficiently.
Table 4 represent some well-known frameworks including Torch [160], TensorFlow [161],
DeepLearning4j (DL4j) [162], Caffe [163], MXNet [164], Theano [165], Microsoft Cognitive
Toolkit (CNTK) [166], Neon [167], Keras [168], and Gluon [169]. They all play a very
significant role in DL architectures. Due to space limitations, it is advised for readers to
visit [170] for detailed information about the mentioned Frameworks.
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Table 4. Summary of Deep Learning Framework.

Frameworks References Primary
Language

Interface
Provision

RNN and CNN
Provision Key Note to Know About

Torch [160] C and Lua Python, C/C++,
and Lua Yes

3 Allow standard IDE for debugging, such as,
PyCharm or PDA

3 It works with dynamically updated graph
3 It is mostly used for DL applications, such NLP and

Computer Vision.

TensorFlow (TF) [161] Python and C++

Python, Java,
JavaScript,

C/C++, Julia, C#,
and Go

Yes

3 TF is a best choice for DL networks deployments
3 Used for Data Integration (DI), such as, sql tables,

input graphs, and images
3 Along with deploying network on influential

computing clusters, TF can run networks on mobile
system (Android and iOS) as well.

DL4j [162] Java, JVM Python, Java,
and Scala Yes

3 It integrates the employment of the GloVe, Deep
Autoencoder, Recursive Neural Tensor Network,
Word2Vec, and Doc2Vec.

3 It uses both Hadoop and Spark, this helps to
accelerate network training.

3 It trains neural network in parallel through repeated
reduce through clusters.

Caffe [163] C++ MATLAB and
Python Yes

3 It is open source DL framework
3 Works fine in computer vision
3 It support industrial and researchers applications

MXNet [164] //

Python, C++,
Perl, R, Go,

Matlab, Scala,
and Julia.

Yes

3 It can support several GPUs with optimized
calculation and fast context switching.

3 It is scalable and lean DL framework with provision
of previous networks including, CNNs, GRU, and
LSTM.

3 It supports symbolic and imperative programming.

Theano [165] Python Python Yes

3 It lets to process mathematical operations such as,
multi-dimensional arrays

3 It is used to handle computation for large algorithms
used in DL

3 It works well with GPU as compared to CPU

CNTK [166] C++/C# C++, Python,
and BrainScript Yes

3 It is the open source app for commercial DL.
3 It easily combines feed-forward deep neural

network, CNN, RNN, and LSTM.
3 It describes the NN as a chain of computational

stages through directed graph

Neon [167] Python Python Yes
3 It is an open source DL framework
3 It use its own GPU and CPU backend
3 It perform well on large batches

Keras [168] Python Python Yes

3 User friendly, easy, and modular
3 It offers the advantages of comprehensive adoption,

provision for a wide range of incorporation with at
least five back-end engines including, Theano,
TensorFlow, PlaidML, CNTK, and MXNet

3 Support several GPUs and distributed training

Gluon [169] Python Python Yes

3 Gluon provides a friendly API, for defining easy,
clear, simple, and brief code

3 It is easier for developers to understand and learn
3 The model’s definition is dynamic, it is easier to

maintain because of its flexible structure.

3.7. Review Methodology for Deep Learning Techniques

The following journal libraries have been exposed for this survey:

• IEEE Xplore Digital Library
• Google Scholar
• ACM Digital Library
• Wiley Online Library
• Springer Link
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• Science Direct

We have cited over 150 popular papers from the above libraries and have shortlisted
about 107 articles on CM, which focuses on DL only. The search keywords used in these li-
braries include Causality Mining, Causality Classification/Detection, Cause-Effect relation
classification with DL, Cause-Effect Event pair detection with DL. In this section, our goals
are to study DL techniques focused on CM.

3.8. Deep Learning Techniques for Causality Mining

Recently several works have been published, and most of the attention has been given
to supervised systems such as shallow ML and DL approaches. The basic distinction
among these systems is that advanced features engineering is essential for ML techniques,
wherein DL techniques; features are learned automatically by training. However, previous
approaches were largely automated, only focused on extracting explicit and simple implicit
causality, and did not address complex implicit and ambiguous causalities. Furthermore,
most of the early works have focused on identifying whether a relation or sentence is causal
or not, and little attention is given to determine the direction of causality that which entity
is the effect, and which one is the cause. The challenges mentioned above are critical for
NLP researchers. Recently, DL techniques have been applied to various NLP tasks such as
sentiment analysis, sentence classification, topic categorization [81], POS tagging, named
entity recognition (NER), semantic role labeling (SRL), relation classification, and causality
mining. In this section, we are focusing on DL models that achieved extensive success in
CM. The aim of building deep models is to permit the model to learn and extract suitable
features automatically.

The two most widely used classifiers among various deep neural classifiers for rela-
tion classification are CNNs and RNN. In NLP, those classifiers are based on a discrete
representation of words in vector space, known as word embedding that captures syntactic
and semantic information of words [171,172]. The two most widely used classifiers among
various deep neural classifiers for relation classification are CNNs and RNN. To the best
of our knowledge, very few DL techniques are used for CM; some are discussed in this
section. Similarly, Figure 6 represent the processing levels of DL techniques, which consist
of different phases of processing till to the final prediction. In this figure, the model is
provided the raw input data, passed it to pre-processing steps for cleaning it for further
processing. Further, the pre-processed data is passed to the input layer of the model and
followed by multiple hidden layers for deep analysis of hidden features by using different
hyperparameter settings. Finally, the output prediction is achieved at the output layer.
If the prediction is correct, then the model is finalized. Otherwise, the model is trained
repeatedly by applying loss function to reduce the error until the final prediction is based
on the model’s performance evaluation metrics (precision, accuracy, and recall score).

In [173], two networks are presented, a Knowledge-based features mining network
and Deep CNN, to train a model for implicit and explicit causalities and their direction.
They used sentence context for designing the problem into a three-class classification of
entity pairs, including class-1 that specifies the annotated pair with causal direction e1 -> e2
(cause, effect), class-2 entity pairs with causal direction e2 -> e1 (effect, cause), and class-3
entity pairs are non-causal. A list of hypernyms in WordNet is prepared for each of the two
annotated entities in a source sentence They used two labeled datasets including, SemEval-
2007 Task-4 (http://docs.google.com/View?docID=w.df735kg3_8gt4b4c) and SemEval-
2010 Task-8” dataset (http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw), in
which total 479 samples are used for class-1, 927 for class-2, and 982 for class-3. The
SemEval-2007 dataset has seven labeled relations and the SemEval-2010 has nine relations,
including cause-effect relation. They extract causality from each dataset as positive labeled
data and extract a random mix of other relations as negative data.

http://docs.google.com/View?docID=w.df735kg3_8gt4b4c
http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw
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Ref. [174] propose a novel technique using multi-column convolutional neural net-
works (MCNNs) and source background knowledge (BK) for CM. It is a variant of
CNN [175] with several independent columns. The inspiration for this work was [12].
They used short binary patterns to connect pairs of nouns like “A causes B” and “A pre-
vents B” to increase the performance of event causality recognition. They focused on
such event causalities, “smoke cigarettes”→ “die of lung cancer” by taking an original
sentence from which the candidate of causalities is extracted with the addition of related
BK taken from the web texts. Three distinct methods are used to get related texts for a given
causality candidate from 4 billion web pages as a source of BK, including (1) Why-question
answering, (2) Using Binary Pattern (BP), and (3) Clues Terms. These techniques identify
useful BK scattered in the web archives and feed into MCNNs for CM. In Figure 7, the
architecture of MCNN is presented, which consists of 8 columns, where five columns
are used to process event causality candidates and their nearby contexts in the original
sentence. The other three columns deal with web archives. Then the output of all columns
based on their layers combination is combined into the last layer for final prediction. Using
all types of BK (Base + BP + WH + CL), the top achieved average precision is 55.13%,
which is 7.6% higher than the best of [12] methods (47.52%). Note that by extending single
CNN’s to multi-column CNN’s (CNN-SENT vs. Base), the proposed work obtained a 5.6%
improvement, and further gave 5.8% improvement by adding with external BK.
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Ref. [176] enhanced MCNN by adding causality attention (CA), which results in the
CA-MCNN model. This model is based on two notions that enhanced why-QA, which
includes expressing implicitly expressed causality in one text by explicit cues from other
text and describing the causes of similar events by using a set of similar words.

In [177], a novel set of event semantics and position features are used to train a Feed-
Forward Network (FFN) for implicit causality. This work aims to improve ANN with
features that take assistance from linguistic and associated works. It captures knowledge
about the position and content of events contained in the relation. They used Penn Dis-
course Treebank (PDTB) and CST News (CST-NC) corpus. The whole objective function of
the proposed algorithm is shown in Equation (11).

J = −
∞

∑
n=1

σ

(
W2||max(tanh(W1.(Xi.E⊕ Xe + b1)
⊕Xp)||+b2) log P(y) + `||θ||2

)
(11)

where the set of parameters is θ = {E, W1, b1, W2, b2}, cross-entropy function is used for
the loss function, which is regularized by the squared norm of parameters and scaled by
hyperparameter (`), positional features (Xp), input indices array (Xi), the true class label (y),
and event-related features (Xe). Table 4 lists the most popular DL approaches for CM based
on their targets, architecture, datasets, and references. A neural encoder-decoder approach
predicts causally related events in stories through standard evaluation framework choice of
plausible alternatives (COPA) [178]. This was the first approach to evaluate a neural-based
model for such kinds of tasks, which learns to predict relations between adjacent sequences
in stories as a means of modeling causality.

The bi-LSTM [179] is a linguistically informed architecture for automatic CM using
word linguistics features and word-level embedding. It contains three modules: linguis-
tic preprocessor and feature extractor, resource creation, and prediction background for
cause/effect. A causal graph is created after grouping and proper generalization of the
extracted events and their relations. They used the BBC News Article dataset, a portion
of SemEval2010 task-8 related to “Cause-Effect”, and adverse drug effect (ADE) dataset
for training. In [180], a Temporal Causal Discovery Framework (TCDF), a DL model that
learns temporal causal graph design by mining causality in continuous observational
time series data. It applied multiple attention-based CNN along with a causal support
step. It can also mine time interruption among cause and the existence of its effect. They
used two benchmarks with multiple datasets including, simulated financial market and
simulated functional magnetic resonance imaging (FMRI) data. Both contain a ground
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truth comprising the underlying causal graph. The experimental analysis shows that this
mechanism is precise in mining time-series data.

Ref. [181] propose a novel deep CNN using grammar tags for cause-effect pair identifi-
cation from nominal words in natural language corpus knowledge reasoning. Though, the
prior works mainly were based on predefined syntactic and linguistic rules. The modern
approaches use shallow ML primarily Deep NN on top of linguistic and semantic knowl-
edge to classify nominal word relations in a corpus. They used the SemEval-2010 Task 8
corpus for enhancing the performance of CM. In [182], a novel idea of Knowledge-Oriented
CNN (K-CNN) for causality identification is presented. This model combined two channels:
Data-Oriented Channel (DOC), which acquires important features of causality from the
target data, and Knowledge-Oriented Channel (KOC), which integrates former human
knowledge to capture the linguistic clues of causality. In KOC, the convolutional filters are
automatically created from available knowledge bases (FrameNet and WordNet) without
training the classifier by a huge amount of data. Such filters are the embedding of causation
words. Additionally, it uses clustering, filters selection, and additional semantic features
to increase the performance of K-CNN. They used three datasets including Causal-Time
Bank4 (CTB), SemEval-2010 task-86, and Event StoryLine datasets7. More specifically, the
KOC is used to integrate existing linguistic information from knowledge bases. Where
DOC is used to learn important features from data by using a pre-defined convolutional
filter. These two channels complement each other and extract valuable features of CM.

In the same year, a novel feed-forward neural network (FFNN) was used with a context
word extension mechanism for CM in tweets [183]. For event context word extension, they
used BK, extracted from news articles in the form of a causal network to identify event
causality. They have used 2018 commonwealth game-related tweets held in Australia. This
was a challenging job because tweets are mostly composed of unstructured nature, highly
informal, and lacking contextual information. This approach is closely related to [177] for
detecting causality between events using FFNN by enhancing the feature set by computing
distances among events trigger word and related words in the phrase. Though, such
positional knowledge for tweets might not show the causal direction more easily because
tweets are mostly composed of noisy words and characters e.g., # (hashtags), @ sign,
question marks (?), URLs, and emojis. Hence, such data is not appropriate for the detection
of causality in tweets. Inspired by [183], the automatic mining of causality in a short corpus
is a useful and challenging task [184], because it contains many informal characters, emojis,
and questions marks. This technique was applied a deep causal event detection and context
word extension approach for CM in tweets. They used more than 207k tweets using Twitter
API (https://developer.twitter.com/en/docs/tweets/search/overview). They prepare to
collect those tweets that were associated with the “Commonwealth Games-2018 held in
Australia”. This study [185] presents a BERT-based approach using multiple classifiers for
CM inside a web corpus, which used independent labels given by multiple annotators in
the corpus. By training multiple classifiers, hold all annotators procedure, where every
classifier predicts the labels provided by a particular annotator, and integrate the result of
all classifiers to predict the final labels found by the majority vote. BERT is a pre-trained
network with a huge amount of corpus that learned some sort of BK for event-causal
relations during pre-training. They used (Hashimoto et al., 2014) in the construction of
source datasets. The experimentations prove that the performance is improved when BERT
is pre-trained with a web corpus that covering a huge amount of event causalities instead
of using Wikipedia texts. Though this effect was inadequate, hence, they further enhanced
the performance by simply adding corpus associated with an input causality candidate as a
BK to the input of the BERTs, which significantly beaten the state-of-the-art approach [174]
by around 0.5 in average precision.

Ref. [186] explored the causality effect of search queries associated with bars and
restaurants on every day new cases in the United State (US) areas with low and high
everyday cases. GT searches for bars and restaurants presented a major effect on everyday
new cases for areas with higher numbers of every day new cases in the US. They used

https://developer.twitter.com/en/docs/tweets/search/overview
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deep LSTM model for training, which is a typical problem in ML tasks. In [187], the
Event Causality identification (ECI) model are proposed by targeting the limitations of
past approaches by leveraging outside knowledge for reasoning, which can significantly
improve the illustration of events and also mine event-agnostic, context-specific patterns,
by a mechanism named “event mention masking generalization”, which can significantly
improve the capability of the model to handle new and previous unnoticed cases. Signifi-
cantly, the important element of this model is “Knowledge-aware causal reasoned”, which
can exploit BK in external CONCEPTNET knowledge bases [188] to improve the cognitive
process. They used 3 benchmark datasets including, Causal-TimeBank, Event Story Line,
and Event Causality for experimentations, which show the model achieves state-of-the-art
performance. In [189], the problem of causal impact is considered for numerous ‘COVID-19’
associated policies on the outbreak dynamics in diverse US states at different time inter-
vals in 2020. The core issue in this work is the presence of time-varying and overlooked
confounders. To address this issue, they integrated data from several COVID-19 related
databases comprising diverse types of information, which help as substitutions for con-
founders. They used a neural network-based approach, which learns the illustrations of
the confounders using time-varying observational and relational data and then guesses
the causal effect of such policies on the outbreak dynamics with the learned confounder
representations. The outcomes of this study confirming the proficiency of the model in
controlling confounders for causal valuation of COVID-19 associated policies.

In [190], a self-attentive Bi-LSTM-CRF based approach is presented, named Self-
attentive BiLSTM-CRF wIth Transferred Embedding (SCITE). This technique formulates
CM as a sequence tagging problem. This is useful for directly mining cause and effect
events without considering cause-effect pairs and their relationship separately. Moreover,
to progress the performance of CM, a multi-head self-attention procedure is presented into
the model to acquire the dependencies among causal words. To solve two issues, first,
they included Flair embedding due to prior information deficiency in the [191]. Second,
in terms of positions in the text, cause and effect are rarely far from each other’s. For
this, a multi-head self-attention [134] is applied. The SemEval 2010 task 8 is used with
extended annotation, in which Flair-BiLSTM-CRF achieved progress of about 6.32% over
the Bi-LSTM-CRF compared with BERT and ELMo (rises of 4.55% and 6.28%). Moreover,
the causality tagging approach produced enhanced results compared to the general tagging
approach under the SCITE model. This study [192] developed three network-architectures
(Masked Event C-BERT, Event aware C-BERT, C-BERT) on the top of language models
(pre-trained BERT) that influence the complete sentence context, events context, and events
masked context for CM among expressed events in natural language text (NLT). They
simply focus to recognize possible causality among marked events in a given sequence of
text, but it doesn’t find the validity of such relations.

This approach achieved state-ofthe-art performance in the proposed data distributions
and can be used for mining causal diagrams and/or constructing a chain of events from an
unstructured corpus. For experimentation, they generated their dataset from three bench-
marks including, Semeval 2010 task 8 [30], Semeval 2007 task 4 [57], and ADE [193] corpus.
This approach achieved state-ofthe-art performance in the proposed data distributions and
can be used for mining causal diagrams and/or constructing a chain of events from an
unstructured corpus. Table 5, represents the most common and well-used DL models by
their Targets, Architecture, Datasets, References, and Drawbacks.
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Table 5. Summary of deep learning networks for CM.

SNo Architecture References Targets Datasets Language Drawbacks

1.
Deep CNN with

Knowledge-based
features

[173]

This model mine both
implicit and explicit

causality, and direction
of causality.

SemEval-2007 Task-4 and
SemEval-2010 Task 8
datasets in English

language.

English
Work on simple

knowledge-based
features

2. MCNNs + BK [174]
This work targeted

implicit and ambiguous
causality.

Four billion web pages in
Japanese corpus. Japanese Only concentrated

on Japanese corpus

3. CA-MCNN [176]
Target implicitly

expressed cause-effect
relations.

600 million Japanese web
pages. 3 3

4. FFNN [177]
This architecture

targeted implicit and
ambiguous causalities.

The Penn Discourse
Treebank and CST News

Corpus in English
language.

English Over-fitting
problem

5. COPA Encoder-decoder
models [178] They targeted causally

related entities.

The Visual Storytelling
(VIST), CNN/Daily Mail

corpus, and CMU
Book/Movie Plot

Summaries in English
language.

3
Complex network

design

6. bi-LSTM [179]
They focused causal

events and their effects
inside a sentence.

The BBC News Article,
SemEval2010 task-8, and

ADE (Adverse drug effect)
datasets in English

language.

3 Time complexity

7.
Temporal Causal

Discovery Framework
(TCDF)

[180]

They learned temporal
causal graph design by
mining causality in a

continuous
observational time series

data.

The simulated financial
market (SFM) and

simulated functional
magnetic resonance

imaging (SFMRI) dataset
in English language.

3
They executes

rather worse on
short time series.

8. Deep CNN with
grammar tags [181]

Identifying cause-effect
pair from nominal

words.

SemEval-2010
Task 8 corpus. 3

Over-fitting
problem.

9. Knowledge-Oriented
CNN (K-CNN) [182] They targeted implicit

causalities.

The Causal-Time Bank
(CTB), SemEval-2010

task-8, and Event Story
Line datasets in English

language.

3
Model over-fitting

issue

10. FFNN + BK [183]
They targeted implicit

causalities social media
tweets.

Tweets associated to
commonwealth Games,

held in 2018 in Australia,
in English language.

3

This results in info
loss.

Due to opinionated
posts.

11.

This technique applying
a deep causal event

detection and context
word extension

approach

[184] They targeted implicit
causalities in tweets.

More than 207k tweets
related to Commonwealth

Games-2018 held in
Australia, in English

language.

3
Have knowledge or

Information loss

12. BERT-based approach
using multiple classifiers [185]

Mining Implicit
Causality inside web

corpus.

180 million news article
snippets and titles corpus. Japanese Awareness and risk

Management.

13. BiLSTM-CRF-based
model [190] They focused on implicit

CM.

SemEval 2010 task 8
dataset with extended
annotation in English

language.

3 Over-fitting issues

14.
Masked Event C-BERT,
Event aware C-BERT,

and C-BERT.
[192]

Influence the complete
sentence context, events

context, and events
masked context for CM.

Semeval 2010 task 8 [30],
Semeval 2007 task 4 [57],

and ADE corpus.
3

They simply focus
to recognize

possible causality
among marked

events in a given
sequence of text,

but it doesn’t find
the validity of such

relations.

4. Comparing the Two Paradigms

Table 6 lists a comparison among two paradigms including Statistical/ML and DL
approaches. Such comparison is made based on datasets preparation, domain types,
applications, processing time, and their limitations.
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Table 6. Comparison among mentioned techniques.

SNo Statistical /ML Techniques Deep Learning Techniques

1.
ML approaches used automatic tools for annotations, coding, and
labeling e.g., crowdsourcing platforms like Amazon mechanical

trunk (AMT).

DL approaches utilize deep neural
architecture for analyzing data more deeply

for automatic feature engineering.

2. ML techniques focus on finding patterns automatically through small
seed patterns.

They focus on finding patterns automatically
by deep analysis without using seed patterns.

3. They are trained and tested on huge textual corpora as compared to
manual approaches.

They are trained and tested on unlimited text
corpora.

4. They work well using domain-independent corpus. They combine both domain-dependency and
independency into one framework.

5. Such approaches are capable of catching those generalizations by
appropriate feature sets.

Such approaches work well for both specific
and other generalizes corpora.

6. By using class-specific probabilities, the ambiguities can be captured
automatically with ML algorithms.

Those approaches use their deep architecture
by targeting implicit and ambiguous

relations more efficiently.

7. Such approaches focusing on both explicit and simple implicit
causality.

They combine both implicit and explicit
causalities into one model.

8.
Those approaches use lexical Knowledge bases and some other
broad-based corpora like Wikipedia and DBpedia by creating

knowledge bases and ontologies for training.

Those approaches combine all semantic
lexicons and use web archives as a source of

world knowledge.

9.
They are not working well for highly specialized domains. Besides,
such annotated data may not be available in plenty, which results in

good training and generalization.

Such approaches do not work well for highly
specialized domains.

10.

Such approaches lacking standardized corpora, yet, no work
provided empirical comparisons with existing approaches. This

makes it a surprising and relatively fruitless exercise to compare the
recall, precision, and accuracy of one approach with others.

Similarly, those approaches lack of
standardized corpora, and yet, no work
provided empirical comparisons with

existing models. This makes it a surprising
and comparatively fruitless exercise to

compare the precision, recall, and accuracy of
different approaches with each other.

5. Challenges and Future Guidelines

This section addresses significant research challenges based on distinct and deep
literature on shallow ML and DL approaches. Based on several state-of-the-art works,
we recognized some key research challenges faced during CM along with their future
strategies and directions.

5.1. Ambiguous/Implicit Data

With the development of any tool, the fundamental and first step is how to arrange
the data. Generally, the source datasets consist of images, graphics, sound, text, videos, and
multimedia data. Moreover, each data instance contains diverse features, domain types,
dimensions, data sizes, and characteristics. This varied nature of data keeps causality a
challenging problem. Such problems can be handle through DL methods, which work
based on their deep analysis and structure to deal with all critical features of the data.

5.2. Features Engineering

Features engineering is the second most fundamental step for any approach after data
preparation. Most of the early works focused on hand-crafted approaches for features engi-
neering, which was ineffective incapturing all necessary features in the source data. Hence,
these issues are handled and explored through DL techniques because DL approaches
work on automatic feature engineering, requiring little human effort and attention.
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5.3. Model Selection

Model selection is the third basic step for any task modeling. Most of the non-statistical
and ML approaches have been focused on supervised and unsupervised algorithms that
produced unsatisfactory results because of the poor design of the model. These models
need much attention from a human operator because of their diverse nature of parameters
and design. Contrary, the DL models are more effective and work well based on their deep
architecture and automatic feature engineering.

5.4. Nature of Causality

Causalities are usually present in explicit, ambiguous, and implicit nature where
explicit causalities are the most occurring type of causalities in source datasets, which
is simple to handle by traditional and ML techniques. While implicit and ambiguous
causalities are very hard tasks to handle by such techniques. Hence, DL techniques are the
best choice by their strong inference ability to deal with implicit and ambiguous causalities.

5.5. Data Standardization

For any model or algorithm, data standardization is the key source of accurate imple-
mentation. Due to the general lack of standardized datasets, no work delivers an observed
comparison with existing approaches, which makes it a surprising and comparatively
fruitless exercise to compare the precision, recall, and accuracy of one algorithm with
the others. Hence, it is a challenging task in the field, which needs more attention from
researchers to develop standardized datasets and data-driven models in the field.

5.6. Computational Cost

Most traditional practices incorporating diverse techniques into a single tool for
performance enhancement, which leads to increase computation costs. Whereas, using
DL techniques with shallow ML algorithms will mark the computational cost by combing
parallel and distributed processing to make a matrix of multiple vectors, which minimizes
the computational cost.

5.7. Accuracy

Prior algorithms are usually mine causalities more efficiently, though the reliance
on the outcome was unsatisfactory because of their low accuracies. Although, in some
situations, the accuracy is satisfactory by using explicit and domain-specific corpora, while
insufficient for implicit, ambiguous, and domain-independent corpora. Merging shallow
ML with DL approaches will tickle such issues, which emerge as an alternative tool at a
certain level of accuracy. Besides, Table 7 lists some imperative research challenges with
future guidelines that recognize the upcoming research directions to develop open and
adaptable tools for CM, which helps to accumulate ambiguous, implicit, and domain-
independent corpora. Similarly, future tools should cover hybrid, fast, and incremental
learning algorithms for innovative challenges.

Table 7. Summary of diverse challenges and their future direction.

S_No Challenges Future Research Guidelines

1. Ambiguous Data

The deep model can memorize a huge amount of information and data, but due to the
heterogeneous nature of data makes it a black-box solution for many applications. The existence of

such datasets is a key challenge, which needs the interpretability of data- driven DL techniques
that produce more satisfactory results.

2. Features
Engineering

Using Deep CNN, RNN, GRU, LSTM, bi-LSTM, DCNN, BERT, and MCNN with their powerful
feature abstraction capabilities to capture implicit and ambiguous features contribute most of the

errors in the existing systems. Hence, new paradigms are required that can boost the learning
ability of DL by integrating informative features-maps learned by supporting learners at the

intermediate phases of DL models [70].
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Table 7. Cont.

S_No Challenges Future Research Guidelines

3. Model Sel

DL approaches still facing trouble by modeling complex data modalities. To achieve the best
performance at various datasets, the combination of diverse and multiple DL architectures

(DeepCNN, DeepRNN, Transformer, BERT, TinyBERT, ELECTRA, and attention-based bi-LSTM)
can benefit the model robustness and generalization on various relations by mining diverse levels
of semantic representations. Ideas of dropout, batch normalization, and novel activation functions

are also important.

4. Nature of
Causality

For mining techniques implicit and ambiguous causality across the sentences is still a big challenge,
which needs the ideas of single sentence rule and procedures that help us to develop a model for

cross sentence CM.

5. Data
Standardization

By the general lack of standardized datasets, this is a surprising and relatively fruitless exercise to
compare the precision, recall, and accuracy of different techniques. This needs attention in the

preparation of a standardized dataset. And an experimental comparison of the existing systems is
required on standardized data sets, and for now, CM is still full of challenges, included

counterfactual causality and credibility of causality in text.

6. Computational
Cost

Review the applications of deep CNN on other associated tasks such as computer vision and NLP
tasks will lead us to observe those models for CM.

7. Accuracy Combining a general semantic relations classifier e.g., SemEval-Tasks with any existing causality
extraction system would be a valuable attempt toward accuracy improvement.

8. Hypothesis
generation

There is a need to use some techniques for event causality hypothesis generation and Scenario
generation.

9. Area of Interest There should need to use some techniques for event causality hypothesis and Scenario generation.

10. Attention

Attention is a fundamental visual organism in the human body, which automatically catches
information from text and images in the surrounding. The attention system not simply mines the
essential information from text and image but also stores its contextual relation with additional

elements. In the future, research may be conceded in the track that reserves the whole semantics,
syntactic features along with their discriminating features at the learning stages.

6. Conclusions

To the best of our knowledge, this is the first survey paper, which focuses on widespread
state-of-the-art ML and DL research techniques, algorithms, and frameworks spanning a few
decades for CM. Compared with other reviews, our paper is devoted to considering both
ML and DL techniques, covering the most updated highly cited papers. We explored the
causality problem and provided the researcher with the essential background knowledge
of shallow ML and DL for the causality mining task. It begins with the history of shallow
ML and DL algorithms, highly cited paper, related challenges, limitations, and develop-
ments in diverse applications. We notice that causality mining is a challenging NLP task
mainly due to implicit, heterogeneous, and ambiguous linguistic concepts, which could or
could not be causal. Data is another challenge for focused domains where much human
expert annotation is needed, making it inflexible to use minimally supervised methods.
Furthermore, model selection and data standardization is also the key challenges. At the
present time, shallow ML and DL techniques with their automatic feature engineering
approach have succeeded in reasonable results. Analysis of these use cases helped us to
identify the upcoming challenges and suggest many existing solutions. Additionally, we
discuss a flow of figurative representation of all those approaches that help to understand
the CM process efficiently, which will lead to the suggestion of novel tools for implicit and
ambiguous causalities in the future. Furthermore, there is a long way to go and get the
required goals and objectives. We listed many findings and some possible future guidelines
in Table 7.
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