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Abstract: Monitoring open water bodies accurately is important for assessing the role of ecosystem
services in the context of human survival and climate change. There are many methods available
for water body extraction based on remote sensing images, such as the normalized difference water
index (NDWI), modified NDWI (MNDWI), and machine learning algorithms. Based on Landsat-8
remote sensing images, this study focuses on the effects of six machine learning algorithms and
three threshold methods used to extract water bodies, evaluates the transfer performance of models
applied to remote sensing images in different periods, and compares the differences among these
models. The results are as follows. (1) Various algorithms require different numbers of samples
to reach their optimal consequence. The logistic regression algorithm requires a minimum of 110
samples. As the number of samples increases, the order of the optimal model is support vector
machine, neural network, random forest, decision tree, and XGBoost. (2) The accuracy evaluation
performance of each machine learning on the test set cannot represent the local area performance.
(3) When these models are directly applied to remote sensing images in different periods, the AUC
indicators of each machine learning algorithm for three regions all show a significant decline, with a
decrease range of 0.33–66.52%, and the differences among the different algorithm performances in
the three areas are obvious. Generally, the decision tree algorithm has good transfer performance
among the machine learning algorithms with area under curve (AUC) indexes of 0.790, 0.518, and
0.697 in the three areas, respectively, and the average value is 0.668. The Otsu threshold algorithm
is the optimal among threshold methods, with AUC indexes of 0.970, 0.617, and 0.908 in the three
regions respectively and an average AUC of 0.832.

Keywords: water extraction; modified normalized difference water index (MNDWI); remote sensing;
machine learning algorithm

1. Introduction

Water is the source of life: the earth’s surface open water body accounts for about
74% of the total earth area, it is an important resource for all life survival, and it is also the
most important component of living organisms [1,2]. In China, the distribution of water
resources is quite uneven, and the pollution situation is serious. So, how to identify water
bodies efficiently and accurately has become a severe issue [3,4].

With the rapid development of aviation and aerospace technology, remote sensing
technology has provided advanced support for many fields, including resource survey,
environmental monitoring, mapping, and geography [5,6].

The development of remote sensing technology makes it possible to extract water
information quickly and accurately, which is substantially different from conventional field
survey methods employed in the past [7–10].

Monitoring open water bodies accurately is an important and basic application in
remote sensing. Various water body mapping approaches have been developed to extract
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water bodies from multispectral images [11–13]. Using remote sensing images to monitor
a water body is mainly based on spectral bands and each image’s spatial feature, so the
identification methods can be categorized into three types from different perspectives.

(1) Water body index method: This method is based on the spectral curves of wa-
ter bodies, and thresholds are utilized to effectively distinguish water bodies from the
background [14]. Different water indexes have already been proposed in the past few
decades. Specifically, in 1996, McFeeters [15] introduced the normalized difference water
index (NDWI) model to extract water bodies. However, this model is unable to distinguish
between dark shadow and water bodies. To overcome the shortcomings of NDWI, in
2006, Xu [16] proposed the modification of normalized difference water index (MNDWI) to
enhance open water features in remotely sensed imagery, and this model has better results
for urban water bodies extraction. The water body index method has the characteristics
of high precision and low computational cost, which has been widely used in practical
applications. In the last few decades, the MNDWI of Xu is one of the most widely used
water indices for various fields, including surface water mapping, land use/cover change
analyses, and ecological research [17–20].

(2) Machine learning methods: These methods feature pixel-based pattern recogni-
tion analysis, mainly including supervised and unsupervised classification techniques.
The supervised methods mainly include neural network [21–25], support vector machine
(SVM) [26–28], logistic regression [29,30], and random forest [31–33], and the unsupervised
classification methods mainly include K-means clustering [34] and ISODATA cluster-
ing [35,36] methods. The machine learning algorithm has been widely used in remote
sensing water extraction due to its high accuracy.

(3) Object-based image analysis methods (OBIA): Due to the limitations of pixel-based
classification methods, such as the salt and pepper phenomenon in classification results,
object-based classification techniques have been increasingly applied in remote sensing
classification in recent years [37,38]. Many successful cases of water body extraction using
OBIA methods have been reported [39–43]. Given that urban functional zones (UFZs)
are composed of diverse geographic objects, Du et al. [44] presented a novel object-based
UFZ mapping method using very-high-resolution (VHR) remote sensing images. Based
on object-oriented analysis technology and multi-source data, Guo et al. [45] proposed a
multi-level classification scheme based on goals and rules to study the changes of glacier
environments.

In addition, some studies also have used synthetic aperture radar (SAR) data to
monitor the surface dynamics, because these data are insensitive to clouds [14,46,47]; the
area of surface water can be extracted from SAR data based on textural analysis [48], change
detection [49], automatic segmentation [50], and classification [51].

At present, machine learning algorithms to extract water bodies mainly include neural
networks, support vector machines, and random forest algorithms. The studies carried
out in the past have identified the best performing classification algorithm by comparing
different classification algorithms. However, none of them provides a comprehensive
comparative analysis of some popular classification algorithms [37,52].

There are few studies on the evaluation of the transfer performance of each machine
learning algorithm applied to remote sensing images in different periods. Based on Landsat-
8 images, this study uses machine learning algorithms such as decision tree, logistic
regression, random forest, and neural network to extract water bodies. First of all, the effect
of each machine learning algorithm on the test set is discussed. After that, each machine
learning algorithm is applied to three different local areas, and its effect on each local area
is evaluated. At last, each machine learning algorithm is applied to remote sensing images
in different periods to evaluate the model transfer performance of each machine learning
algorithm, and three threshold methods are compared. The results could shed light on the
future work of water body extraction based on remote sensing.
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2. Data and Pre-Processing
2.1. Data

Landsat-8 data from the website (http://glovis.usgs.gov/ (accessed on 20 October
2021)) of the United States Geological Survey are used. Landsat-8, launched as a collabo-
ration between the United States Geologic Survey (USGS) and National Aeronautics and
Space Administration (NASA) on 11 February 2013, carries onboard the OLI push broom
multispectral radiometer [53]. As shown in Table 1, the Landsat-8 OLI/TIRS imagery has
11 spectral bands in total, including eight spectral bands (i.e., three visible bands, two
bands for describing aerosol, water vapor, and cirrus clouds, two short-wave infrared
bands (SWIR) and near infrared (NIR)) with spatial resolution of 30 m, one panchromatic
spectral band with a spatial resolution of 15 m, and two thermal spectral bands with a
spatial resolution of 100 m [54]. Landsat-8 remote sensing images (path 123; raw 039) of
the same area acquired on 4 October 2019 and 20 October 2019 are used in our experiment.
Specifically, the data on 20 October 2019 are used to establish the model and compare the
effect of each algorithm, and the data on 4 October 2019 are used to examine the perfor-
mance of model transfer. Three different areas with different surface features are selected
from remote sensing images. As shown in Figure 1, Area1 has a large area of water with
relatively simple surface object types, while Area2 has a small water area and complex
surface environment, and its water extraction is affected by numerous vegetation and
mountain shadow. Area3 is located in the urban built-up area and has multiple contiguous
water bodies; thus, the water extraction is affected by nearby buildings and roads.

To avoid the effects of too many clouds and aerosol, images with fewer clouds are
selected here. All original data are processed by converting the original digital number
(DN) value into spectral radiance, through Equation (1) [55]. The formula is given as
follows:

Lλ = ML·Qcal + AL (1)

where:
Lλ = spectral radiance

(
W/m2·sr·um

)
;

ML = radiance multiplicative scaling factor for the spectral band(radiance_mult_band_n
from the metadata);

AL = radiance additive scaling factor for the spectral band(radiance_add_band_n
from the metadata);

Qcal = raw digital numbers (DN).

Table 1. Spectral band spatial resolution and wavelength of the Landsat-8 image.

Landsat-8 OLI and TIRS Bands Wavelength (um) Spatial Resolution (m)

Coastal/Aerosol 0.435–0.451 30
Blue 0.452–0.512 30

Green 0.533–0.590 30
Red 0.636–0.673 30
NIR 0.851–0.879 30

SWIR-1 1.566–1.651 30
TIR-1 10.60–11.19 100
TIR-2 11.50–12.51 100

SWIR-2 2.107–2.294 30
Pan 0.503–0.676 15

Cirrus 1.363–1.384 30

http://glovis.usgs.gov/
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Figure 1. Landsat-8 remote sensing images are displayed in false color in bands 7, 5, and 3. Three 
local areas are extracted from this image. Area1 has a large area of water distribution with a simple 
ground environment and is only affected by vegetation; Area2 is affected by mountain shadow and 
vegetation; Area3 is located in the urban built-up area with scattered water distribution and is af-
fected by roads and buildings. 
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the sample set contains 340 water samples and 454 non-water samples. To avoid the in-
fluences of heterogeneous categories in the subsequent classification, the ratio of other 
ground object samples to the water body samples remains at 1.3:1. 

Figure 1. Landsat-8 remote sensing images are displayed in false color in bands 7, 5, and 3. Three
local areas are extracted from this image. Area1 has a large area of water distribution with a simple
ground environment and is only affected by vegetation; Area2 is affected by mountain shadow
and vegetation; Area3 is located in the urban built-up area with scattered water distribution and is
affected by roads and buildings.

2.2. Pre-Processing

By adopting spectral band combinations 7/5/4, 7/4/3, 6/5/4, and 4/3/2 combined
with visual interpretation, a sample dataset is selected from Landsat images for classifica-
tion; the sample set contains 340 water samples and 454 non-water samples. To avoid the
influences of heterogeneous categories in the subsequent classification, the ratio of other
ground object samples to the water body samples remains at 1.3:1.

The characteristics of the data, such as a large correlation between multiple spectral
bands in the original images and similar information and structures between different spec-
tral bands, generally bring significant amounts of redundancy. For this reason, principal
component analysis (PCA) for dimensionality reduction is applied to remove repetitive and
redundant information between various spectral bands [56]. The first and second principal
components in the PCA with a cumulative variance contribution of 99% are selected as
classification characteristics.

Based on the PCA, four generally used texture features, i.e., contrast, autocorrelation,
dissimilarity, and entropy are extracted. The distance is set to be 1 pixel (distance of 30 m),
2 pixels (distance of 60 m), and 3 pixel (distance of 90 m), and 3 × 3, 5 × 5, 7 × 7, and 9 × 9
are selected as windows with orientations of 0◦, 45◦, 90◦, and 135◦. Optimal combined
features are selected as the characteristic spectral bands for water body extraction. When
the two parameters—i.e., window size and distance—increase, the edges of the images get
fuzzy, and the window size shows more effects than distance. Considering the factors of
ground objects correlation and image resolution, we set the distance to 1 pixel and select a
3 × 3 window with four orientations of 0◦, 45◦, 90◦, and 135◦.
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After the size and window parameters are determined, J-M distance [57,58] and
transformed divergence [59] (T-D) in many extracted texture features are used for studying
the separability of ground objects; thus, the characteristics ultimately used for classification
are determined as well. As shown in Table 2, the separability of the first component
(PCA1) and the second component (PCA2) is compared in detail, and the separability of
J-M dissimilarity in PCA2 is the optimal. Therefore, in later classifications, a total of six
characteristics are selected.

Table 2. Separability of the samples.

PCA1 PCA2

J-M T-D J-M T-D

Contrast 1.723 1.9991 1.825 1.0000
Autocorrelation 1.404 1.6832 1.787 1.989

Dissimilarity 1.562 1.9232 1.84 1.0000
Entropy 1.634 1.9746 1.816 1.999

3. Research Methods

First of all, the performance of machine learning algorithms with a different sample
number is discussed. During this process, the optimal parameters of the models are deter-
mined and the indices, such as precision and AUC, are used to evaluate the performances
of algorithms in the test set. Then, according to spectral characteristics, the water indices
are constructed, and on this basis, thresholds are selected; thus, water bodies and other
ground objects are classified and identified. Moreover, machine learning methods, such
as SVM, decision tree, and random forest, are used to extract water bodies. At last, the
accuracy of the test results is verified for the same area at different times.

3.1. MNDWI

In 2006, Xu [16] presented a modification of normalized difference water index
(MNDWI) (Equation (2)) by replacing the NIR spectral band used in NDWI with the
SWIR spectral band to reduce the influence of building information on water bodies. By
using the MNDWI water index method, the MNDWI image is binarized by selecting an
appropriate threshold to achieve water bodies extraction. The determination of thresholds
affected the accuracy of water body extraction, and different thresholds might be made
by subjective judgments of different people. To reduce such influences, three methods
for determining thresholds are used for comparison and discussion. The three threshold
methods used in this article are as follows: (1) the user-defined threshold method, which is
determined according to visual effect through multiple experiments; (2) the Otsu threshold
method [60,61]; and (3) the adaptive threshold method, which is used to scan the image
through a 3*3 window.

The MNDWI is expressed as follows:

MNDWI =
GREEN − SWIR
GREEN + SWIR

(2)

where Green is the radiance of the green band, which corresponds to the 3rd Landsat-8
image band; SWIR represents the short-wave infrared band radiance, namely band 6 of the
Landsat-8 image.

3.2. Machine Learning Algorithms

In this research, six machine learning algorithms are selected, all of them used the same
group of sample set, and the whole samples are divided into a training set and a test set by
the ratio of 7:3. Furthermore, in the process of model training, the relevant parameters of
the models are further trained by using 10-fold cross-validation with hierarchical sampling
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of the training set. Finally, some indices, such as accuracy, recall rate [62], and AUC [63],
are utilized to assess the results.

3.2.1. SVM

SVM has a simple structure but a strong generalization ability to solve problems with
high-dimensionality, small sample numbers [64,65]. In this study, the Gaussian radial basis
function is selected as the kernel function. By using the grid search method in combination
with 10-fold cross-validation, the optimal parameters are determined as C = 3 and γ = 0.003.

3.2.2. Decision Tree

The decision tree determines the categories of the samples in the dataset by assigning
the sample data to a certain leaf node. There are many methods for constructing the
decision tree, but all of them are based on the different purity indices selected and sample
attributes for classification [66]. The algorithms ID3, C4.5, C5.0, etc. are generally used. A
classification and regression tree (CART) algorithm is used in this study, and pre-pruning
is utilized to avoid the overfitting problem. The parameters mainly include the limited
depth of the decision tree, the minimum sample number of leaf nodes, and the least
sample number of separable leaf nodes. By using the grid search method and 10-fold
cross-validation, the final parameters are determined as follows: the entropy is selected as
the purity index and the maximum depth is 7. The lowest sample number of separable leaf
nodes is 8, and the minimum sample number of leaf nodes is 1.

3.2.3. Multi-Hidden-Layer Neural Network

The neural network uses specific learning algorithms to learn from data through many
learning algorithms; however, the network is generally trained by iteratively modifying
connection weights and deviations until the error between the output generated by the
network and the expected output is smaller than some specified threshold [21]. The input
characteristics are passed to the next layer of nerve cells through a non-linear activation
function and then continue to be passed down after activation of the nerve cells in this layer.
That process is repeated and cycled to the output layer. The repeated superposition of these
non-linear functions ensures that the neural network has sufficient non-linear fitting ability,
while different activation functions can affect the output of different neural networks. By
selecting a sigmoid activation function, it is determined that the neural network structure
should have four layers based on multiple tests through cross-validation. Except for input
and output layers, the numbers of nerve cells in the two hidden layers are eight and six,
respectively.

3.2.4. Random Forest

The random forest is an ensemble method specially designed for a decision tree
classifier, and the selection of random attributes is further added to its training process.
Using similar parameters to those used for the decision tree, the random forest model
is easy to implement and shows good effects [32,33]. In this research, parameters are
determined by using cross-validation and grid search methods. The main parameters of
random forest are as follows, there are 10 weak estimators in the decision tree, and the
maximum depth is 4. Moreover, a Gini function is selected as the purity index.

3.2.5. XGBoost

The core of XGBoost is an ensemble algorithm based on the gradient boosting decision
tree (GBDT), and it can be used for classification or regression problems. Its modelling
process is as follows: a decision tree is built, and one more tree is added upon each iteration
to form a strong evaluator integrating many numerical models [67,68]. The accuracy
is superior to that of a weak estimator, and its calculation speed and performance are
good [69]. The main parameters are set as follows: the maximum depth of each tree is 3,
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and a weak classification estimator with 300 decision trees is established. The learning rate
is set to be 0.01.

3.2.6. Logistic Regression Algorithm

The logistic regression is a type of classification model. It establishes a regression
formula for samples and a sigmoid function is used for classification. For more information,
please refer to references [70,71].

4. Experiment and Analysis
4.1. Effects of the Sample Number on Learning Algorithms

For each classification algorithm in machine learning, the basic requirement is that
the training and test set are reliable and there are enough samples for training. In this
way, a good classifier can be trained. It is assumed that the samples selected by visual
interpretation are reliable: namely, the various classes of the sample points are assigned
to correct labels. Based on this, a small sample is randomly selected from the training set
and divided into a training set and a validation set in the proportion of 7:3. By using the
accuracy of the validation set of the small sample as an evaluation index, the effects of the
sample number on the classification effects of each algorithm are discussed, so as to judge
whether the sample number selected is sufficient to achieve the purpose of the training
model.

As demonstrated in Figure 2, the accuracies of the classification algorithms in the
validation set of the experiment all tend to increase with the sample number, and they
show a smaller error relative to the accuracy in the training set. Moreover, the accuracies
gradually tend to be equal. This indicates that there is almost no underfitting of the
samples, and the parameters of each algorithm are well adjusted. The accuracy of the
logistic regression algorithm is improved rapidly, approximating to the accuracy in the
training set when the sample number is small, suggesting that there is almost no overfitting.
As the sample number increases, the accuracy stabilizes; however, other classification
algorithms need larger samples to achieve this stability, and the accuracy fluctuates (albeit
within a small range), therefore, the number of training samples selected in the experiment
can meet the needs of model training.

4.2. Analysis of Performance Indices of Machine Learning Algorithms

After testing the performance of the models when using each algorithm on sets of
different sample numbers, the effect of each model in the same test set is further evaluated,
so as to reflect the predictive abilities of the models to some extent and judge the general-
ization abilities of the algorithms. As shown in Table 3, the value of the accuracy index and
recall index of each model in classifying water bodies and other ground objects are high,
the accuracy index is in the range of 0.945–1, and the recall index is in the range of 0.911–1.
However, the AUC index can better represent the comprehensive performances of the
models and the higher the value, the better the performance [63]. There is little difference
in the effect of each machine learning algorithm on the test set, and the AUC index ranges
from 0.956 to 0.987; by analyzing AUC data, the logistic regression and XGBoost algorithm
are found to perform best on the test set, followed by the SVM, the neural network, then
the random forest, while the decision tree has (in general) the worst performance. Whether
the evaluation of these algorithms in the test set can accurately represent the generalization
abilities of the algorithms for classifying water bodies in the remote sensing images needs to
be discussed and studied using remote sensing images acquired under different conditions.
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Table 3. Analysis of performance indices of each algorithm.

Accuracy Recall AUC

SVM
Water 1.000 0.949

0.983Other 0.968 1.000

Random Forest
Water 0.975 0.975

0.979Other 0.983 0.983

Decision Tree
Water 1.000 0.911

0.956Other 0.945 1.000

Neural Network
Water 1.000 0.962

0.981Other 0.976 1.000

Logistic Regression Water 1.000 0.975
0.987Other 0.984 1.000

XGBoost
Water 1.000 0.975

0.987Other 0.984 1.000

4.3. Comparative Analysis of NDWI and Machine Learning Algorithms

The model established by 2019/10/20 training data is used for water extraction in
three areas of 2019/10/20. Statistical results of AUC indicators of each algorithm are
shown in Figure 3 (For more details, see Tables A1–A4 in the Appendix A). In general, the
XGBoost algorithm has the best accuracy, with an average AUC of 0.966, and the AUC
indicators in the three regions are 0.985, 0.972, and 0.941 respectively, which is followed
by the random forest algorithm with an average AUC of 0.964, and the AUC indicators
in the three regions are 0.985, 0.973, and 0.935; the SVM algorithm has the worst accuracy,
the average AUC is 0.898 and the AUC indicators in the three regions are 0.982, 0.789, and
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0.923, respectively. When each machine learning algorithm is applied to three different
local regions, the average range of AUC index is 0.898–0.966 (for more details, see Table A1
in Appendix A), and the descending order of each machine learning algorithm is XGBoost,
random forest, decision tree, logistic regression, neural network, and SVM according to the
value of the AUC index. However, this is inconsistent with the conclusion of Section 4.2. In
Section 4.2, there is little difference in the accuracy of each machine learning algorithm on
the test set, and the AUC index ranges from 0.956 to 0.987. The machine learning algorithms
are XGBoost, LR, SVM, NN, RF, and DT in descending order according to the value of
the AUC index. It further explains that the evaluation on the test set cannot represent
the effect of each algorithm applied in a local area. Among the threshold classification
methods, the Otsu threshold algorithm is the best, with an average AUC of 0.957, and the
AUC indicators in the three regions are 0.985, 0.922, and 0.964, respectively, followed by the
custom threshold algorithm, and the worst performance among all algorithms is adaptive
threshold algorithm: the average AUC is only 0.764.
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The image water extraction results of each algorithm were placed in the supplementary
materials, as shown in Figure S1: Classification results of each algorithm in Area1 on
October 20; Figure S2: Classification results of each algorithm in Area2 on October 20;
Figure S3: Classification results of each algorithm in Area3 on October 20. As can be seen
from the results graph, compared with other algorithms, the salt and pepper phenomenon
for the adaptive threshold and custom threshold is very serious, there is a large number of
non-water body “noise”, other algorithms basically have the same visual interpretation
effect, and there is no obvious difference, but the edge part is slightly different due to the
influence of adjacent features.

4.4. Reliability Test

To discuss the effects of the aforementioned algorithms in water body extraction from
remote sensing images in different periods, a remote sensing image captured on 4 October
2019 in the same region is selected. Based on this, the water bodies are classified using the
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same algorithms and parameters. The aim is to verify whether the experimental results
of each algorithm under different image conditions are reliable and decide whether the
models are universal.

The model established by the data of 2019/10/20 is used in the data of 2019/10/04
for water body extraction. The statistical results of the AUC indicators of each algorithm
are shown in Figure 4 (for more details, see Tables A5–A8 in Appendix A). As shown in
Table 4, the AUC indicators of each machine learning algorithm for three regions all show
a significant decline, with a decreased range of 0.33–66.52% As shown in Figure 4, the
differences among the different algorithm performances in the three areas are obvious. In
the surface complex Area2, the AUC index of the machine learning algorithms is near 0.5,
which means it is difficult to extract water bodies accurately. In Area1 with a simple surface
environment, although the accuracy of all machine learning algorithms decreases, the
errors are still within an acceptable range. In general, the decision tree algorithm has better
transfer performance, with an average AUC of 0.668, and the AUC indexes of the three
regions are 0.790, 0.518, and 0.697 respectively. The XGBoost algorithm has an average
AUC of 0.631, and its AUC index in the three regions is 0.718, 0.512, and 0.665, respectively.
The logistic regression algorithm has the worst accuracy, with an average AUC of 0.392, the
AUC index in the three regions is 0.329, 0.489, and 0.357, respectively, which is inconsistent
with the conclusion in Sections 4.2 and 4.3. When the model is directly transferred to
remote sensing images of different periods for water extraction, the generalization ability of
each machine learning algorithm is different. Among the threshold classification methods,
the Otsu threshold algorithm is optimal, and its average AUC is 0.832. The AUC indexes
in the three regions are 0.970, 0.617, and 0.908, respectively, which exceed the accuracy
of the other machine learning algorithms. For the other two threshold algorithm, custom
threshold, whose average AUC is 0.700, and the AUC indexes in the three regions are 0.842,
0.549, and 0.708 respectively. The adaptive threshold algorithm has an average AUC of
0.611, and its AUC indicators in the three regions are 0.703, 0.506, and 0.623 respectively.
All in all, for different periods of remote sensing images, the threshold method is better
than most of the machine learning algorithms, because the sensor imaging is affected by
clouds, sun angles, and sensors. Due to the influence of the angle and other factors, the
characteristics of remote sensing images will be very different during the adjacent imaging
time. Even if there is no major change in the surface features, the pixel value of the remote
sensing image could also change significantly. Therefore, the machine learning models
trained on the data of 2019/10/20 may not be suitable for different periods.

Table 4. AUC index changes statistics of each machine learning algorithm.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold −8.41% −12.27% −5.37% −8.68%

Otsu Threshold −1.49% −33.10% −5.78% −13.46%
Adaptive Threshold −0.92% −0.16% −0.33% −0.47%

Machine Learning Method

Logistic Regression −66.52% −47.37% −61.74% −58.54%
SVM −66.25% −32.20% −60.49% −52.98%

Random Forest −30.12% −49.73% −62.68% −47.51%
XGBoost −27.16% −47.32% −29.35% −34.61%

Neural Network −30.13% −42.96% −62.13% −45.07%
Decision Tree −19.60% −46.28% −25.40% −30.43%
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However, the water extraction effect of the threshold method is related to the remote
sensing image data, and the water extraction effects of remote sensing images from different
periods do not affect each other.

The water extraction results of each algorithm were placed in the supplementary
materials, as shown in Figure S4: Classification results of each algorithm in Area1 on
October 4; Figure S5: Classification results of each algorithm in Area2 on October 4;
Figure S6: Classification results of each algorithm in Area3 on October 4. It can be seen
from the classification result diagrams that most of the machine learning pepper and salt
phenomenon is very serious, and there is a large number of non-water “noise”. The visual
effects of various algorithms are also significantly different.

5. Discussion

This study mainly selects neural network, support vector machine (SVM), logistic
regression, random forest, decision tree, and XGBoost from machine learning algorithms,
and it selects the MNDWI water index combined with three threshold methods to extract
the water bodies. Michael Schmitt [72] pointed out that for a simple surface environ-
ment, only the threshold method can achieve satisfactory results, and when the surface
environment is slightly more complicated, a supervised classification method, such as
SVM, needs to be introduced. However, for the supervised classification method, how to
choose the appropriate number of samples is a problem worthy of research. For example,
Deepakrishna Somasundaram et al. [73] selected 3765 water samples and 2685 non-water
samples from the four-view Landsat-8 OLI image; Wei Jiang et al. [74] selected more than
10,000 water samples and non-water samples in each study area. The choice of these large
numbers of training samples brings additional costs. In order to study the influence of
sample size on various algorithms, an experiment was designed in this paper, as outlined
in Section 4.1. As shown in Figure 2, there are great differences in the number of samples
required for various algorithms to reach their optimal. The logistic regression algorithm
requires the lowest number of samples, which is close to 110. The SVM algorithm has the
best performance when the number of samples reaches 150. As the number of samples
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increases, the order of the optimal model is neural network, random forest, decision tree,
and XGBoost. The primary task of water body extraction is to select a certain number of
samples for the training model. The conclusion of the sample number requirements of
each machine learning algorithm in this paper can be used as a reference for other similar
applications to reduce the cost of sample selection.

Most studies only use test set samples to evaluate the optimal model and use the
selected model for the final classification of images. However, Liu Yang et al. [75] pointed
out that in different surface environments, various types of shadows or background noises
need to be considered. For example, compared with arid areas, the influence of vege-
tation on water extraction should be considered in humid areas. In mountainous areas,
the extracted water is often mixed with mountain shadow. These types of background
information have different influences on different water extraction algorithms [61,76]. For
the above reasons, it is worth discussing whether the evaluation effect on the test set can
explain the actual generalization performance of the model, that is, whether the evaluation
effect on the test set is consistent with the evaluation effect on the local area. For this reason,
three local areas with different ground conditions are selected. As shown in Figure 3, in
general, the simpler the ground scene, the better the classification accuracy. If the ground
scene is complex, the accuracy of various algorithms has a great difference. Generally, three
algorithms (decision tree, XGBoost, and Otsu) can perform well in various scenarios. In the
case of mountain shadow in the ground background, it is suggested to give priority to the
XGBoost algorithm. In the case of roads and buildings in the ground background, besides
the XGBoost or decision tree algorithms, a logistic regression algorithm with a relatively
simple model can also be tried.

However, when multi-stage extraction research on water bodies is needed, the original
model will naturally be directly used to extract water bodies from remote sensing images
in other different periods. As shown in Table 4, when various machine learning algorithms
are directly used to extract water bodies from remote sensing images in different periods,
the AUC indicators of each machine learning algorithm for the three regions all show a
significant decline, with a decrease range of 0.33–66.52%. Generally, simple ground scenes
have higher accuracy, while complex ground scenes have some effects for different machine
learning algorithms. As shown in Table 4, among all the machine learning algorithms,
the accuracy of decision tree decreased the least in the three regions on average, and
the AUC index decreased 30.43% on average, followed by XGBoost. In the threshold
method, although the change of adaptive threshold is small, its accuracy is always very
low, while the Otsu algorithm not only has a good accuracy, but also the average decline
of the AUC index is small, which is 13.46%. The decision tree algorithm can still achieve
better classification results, and the Otsu algorithm also performs well. Experiments show
that it is not recommended to directly use the machine learning model to extract water
from remote sensing images in different periods. The Otsu classification result can be
used as a reference, so that training samples can be selected in other periods quickly and
conveniently to extract water bodies using machine learning algorithms.

In summary, for water extraction from remote sensing images, although various
algorithms can achieve satisfactory results under certain conditions, none of them can be
applied to all remote sensing image and scenes. The factors affecting the classification
accuracy of remote sensing images mainly include the complexity of the field landscape,
the availability of data, the effectiveness of the processing method, and the experience
judgment of the processing personnel [5,76]. Therefore, on the basis of this study, when
extracting water from remote sensing images, the water index (MNDWI preferred) can be
used first and combined with the Otsu algorithm to classify water bodies. This result is
in agreement with the results obtained by Ya’nan Zhou et al. [38], who used the NDWI
image to select water samples from the input image. However, if the accuracy does not
meet the requirements of the application, on the basis of its classification, researchers
can further select the number of samples that meet the requirements of various machine
learning algorithms (Figure 2) and select the corresponding machine learning training
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model. Among the various machine learning algorithms, XGBoost, decision tree, and
logistic regression algorithms are preferentially recommended.

6. Conclusions

Based on Landsat-8 images, decision tree, logistic regression, random forest, neural
network, support vector machine, and XGBoost algorithms are used to extract water
bodies. Firstly, the effect of each machine learning algorithm on the test set is discussed.
Secondly, each machine learning algorithm is applied to three different local areas, and
the consistency between the accuracy of each machine learning algorithm on the test set
and the accuracy of the local area is evaluated. Finally, each machine learning algorithm is
applied to remote sensing images in different periods, the model transfer performance of
each machine learning algorithm is examined, and three threshold methods are compared.
The following conclusions are drawn:

(1) There are great differences in the numbers of samples required for various al-
gorithms to reach their optimal. The logistic regression algorithm requires a minimum
number of samples, about 110. The SVM algorithm has the best performance when the
number of samples reaches 150. As the number of samples increases, the optimal order of
the model is neural network, random forest, decision tree, and XGBoost.

(2) The accuracy evaluation effect of each machine learning on the test set cannot
represent the effect on the local area, because the surface complexity is not same in the
three local areas. In Area1 with a single surface type, its AUC range is 0.982–0.985; in Area2
with complex surface environment (numerous vegetation and mountain shadow), its AUC
range is 0.789–0.973; in Area3 with wide water distribution, its AUC range is 0.923–0.941 in
an urban built-up area.

(3) When the models are directly applied to remote sensing images in different peri-
ods, the model accuracy is greatly reduced, the AUC indicators of each machine learning
algorithm for three regions all show a significant decline, with a decreasing range of
0.33–66.52%. In general, among the machine learning algorithms, the decision tree algo-
rithm has good transfer performance, with an average AUC of 0.668, and the AUC indexes
in the three regions are 0.790, 0.518, and 0.697 respectively. Among the threshold methods,
the Otsu threshold algorithm is the optimal, with an average AUC of 0.832 and AUC
indexes in the three regions are 0.970, 0.617, and 0.908, respectively.

(4) Owing to the complex distribution of ground objects and many influential factors
in the remote sensing image classification, it is difficult to collect small and dispersed water
bodies in this research. This limits the performances of these models in the environment
with many hill shadows and complex ground objects. The accuracy of these models needs
to be further improved; more samples should be collected from images over different areas
and periods to train the models in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112110062/s1, Detailed descriptions of Figure S1: Classification results of each algorithm
in Area1 on October 20; Figure S2: Classification results of each algorithm in Area2 on October 20;
Figure S3: Classification results of each algorithm in Area3 on October 20; Figure S4: Classification
results of each algorithm in Area1 on October 4; Figure S5: Classification results of each algorithm in
Area2 on October 4; Figure S6: Classification results of each algorithm in Area3 on October 4.

Author Contributions: Supervision, A.L.; Writing—original draft, M.F.; Writing—review and editing,
M.F., G.Q., Y.X. and H.W. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by the Joint Funds of National Natural Science Foundation of China
(Grant no. U1704125).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

https://www.mdpi.com/article/10.3390/app112110062/s1
https://www.mdpi.com/article/10.3390/app112110062/s1


Appl. Sci. 2021, 11, 10062 14 of 20

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Statistics of the AUC index of each algorithm applied in the three regions.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold 0.919 0.626 0.748 0.764

Otsu Threshold 0.985 0.922 0.964 0.957
Adaptive Threshold 0.709 0.507 0.625 0.614

Machine Learning
Method

Logistic Regression 0.984 0.929 0.933 0.949
SVM 0.982 0.789 0.923 0.898

Random Forest 0.985 0.973 0.935 0.964
XGBoost 0.985 0.972 0.941 0.966

Neural Network 0.984 0.850 0.935 0.923
Decision Tree 0.982 0.965 0.935 0.961

Table A2. Statistics of various indexes of each algorithm in Area1 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.998 0.945 0.971

0.984other 0.971 0.999 0.985

Random Forest
water 0.997 0.950 0.973

0.985other 0.973 0.998 0.986

SVM
water 0.999 0.933 0.965

0.982other 0.964 1.000 0.982

XGBoost
water 0.996 0.952 0.974

0.985other 0.974 0.998 0.986

Logistic Regression water 0.999 0.942 0.970
0.984other 0.969 1.000 0.984

Decision Tree
water 0.998 0.937 0.966

0.982other 0.966 0.999 0.982

Adaptive Threshold water 0.508 0.909 0.652
0.709other 0.911 0.515 0.658

Custom Threshold
water 0.838 0.999 0.912

0.919other 0.999 0.894 0.944

Otsu Threshold
water 0.979 0.983 0.981

0.985other 0.991 0.988 0.990
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Table A3. Statistics of various indexes of each algorithm in Area2 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.708 0.595 0..647

0.850other 0.992 0.995 0.993

Random Forest
water 0.962 0.241 0.385

0.973other 0.984 1.000 0.992

SVM
water 0.585 0.712 0.642

0.789other 0.994 0.989 0.992

XGBoost
water 0.961 0.221 0.360

0.972other 0.984 1.000 0.992

Logistic Regression water 0.869 0.498 0.633
0.929other 0.990 0.998 0.994

Decision Tree
water 0.948 0.144 0.250

0.965other 0.982 1.000 0.991

Adaptive Threshold water 0.027 0.670 0.052
0.507other 0.986 0.496 0.660

Custom Threshold
water 0.256 0.825 0.391

0.626other 0.996 0.950 0.972

Otsu Threshold
water 0.856 0.361 0.508

0.922other 0.987 0.999 0.993

Table A4. Statistics of various indexes of each algorithm in Area3 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.982 0.690 0.810

0.935other 0.889 0.995 0.939

Random Forest
water 0.999 0.628 0.771

0.935other 0.870 1.000 0.930

SVM
water 0.995 0.567 0.722

0.923other 0.852 0.999 0.919

XGBoost
water 0.998 0.671 0.802

0.941other 0.883 0.999 0.938

Logistic Regression water 0.997 0.624 0.768
0.933other 0.869 0.999 0.929

Decision Tree
water 0.984 0.682 0.805

0.935other 0.886 0.995 0.938

Adaptive Threshold water 0.405 0.747 0.525
0.625other 0.846 0.558 0.673

Custom Threshold
water 0.497 1.000 0.664

0.748other 1.000 0.593 0.745

Otsu Threshold
water 0.970 0.893 0.930

0.964other 0.958 0.989 0.973

Table A5. AUC index statistics of each algorithm in three regions on October 4.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold 0.842 0.549 0.708 0.700

Otsu Threshold 0.970 0.617 0.908 0.832
Adaptive Threshold 0.703 0.506 0.623 0.611

Machine Learning
Method

Logistic Regression 0.329 0.489 0.357 0.392
SVM 0.331 0.535 0.365 0.410

Random Forest 0.688 0.489 0.349 0.509
XGBoost 0.718 0.512 0.665 0.631

Neural Network 0.688 0.485 0.354 0.509
Decision Tree 0.790 0.518 0.697 0.668
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Table A6. Statistics of various indexes of each algorithm in Area1 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.379 0.999 0.550

0.688other 0.996 0.097 0.177

Random Forest
water 0.377 1.000 0.547

0.688other 1.000 0.087 0.160

SVM
water 0.020 0.001 0.001

0.331other 0.643 0.994 0.781

XGBoost
water 0.435 1.000 0.607

0.718other 1.000 0.284 0.442

Logistic Regression water 0.017 0.001 0.001
0.329other 0.642 0.990 0.779

Decision Tree
water 0.579 1.000 0.734

0.790other 1.000 0.599 0.749

Adaptive Threshold water 0.493 0.918 0.641
0.703other 0.913 0.478 0.628

Custom Threshold
water 0.685 0.998 0.812

0.842other 0.998 0.746 0.854

Otsu Threshold
water 0.949 0.985 0.967

0.970other 0.992 0.971 0.981

Table A7. Statistics of various indexes of each algorithm in Area2 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.028 0.999 0.055

0.485other 1.000 0.283 0.441

Random Forest
water 0.022 1.000 0.042

0.489other 1.000 0.050 0.095

SVM
water 0.090 0.039 0.054

0.535other 0.980 0.992 0.986

XGBoost
water 0.024 1.000 0.048

0.512other 1.000 0.165 0.283

Logistic Regression water 0.001 0.001 0.001
0.489other 0.978 0.937 0.957

Decision Tree
water 0.037 0.992 0.072

0.518other 1.000 0.463 0.633

Adaptive Threshold water 0.026 0.692 0.050
0.506other 0.986 0.451 0.619

Custom Threshold
water 0.100 0.925 0.181

0.549other 0.998 0.826 0.904

Otsu Threshold
water 0.248 0.314 0.277

0.617other 0.986 0.980 0.983
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Table A8. Statistics of various indexes of each algorithm in Area3 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.007 0.001 0.001

0.354other 0.702 0.944 0.805

Random Forest
water 0.001 0.002 0.001

0.349other 0.697 0.924 0.794

SVM
water 0.020 0.001 0.002

0.365other 0.709 0.978 0.822

XGBoost
water 0.329 1.000 0.496

0.665other 1.000 0.183 0.309

Logistic Regression water 0.002 0.001 0.001
0.357other 0.712 0.994 0.830

Decision Tree
water 0.395 1.000 0.567

0.697other 1.000 0.386 0.557

Adaptive Threshold water 0.399 0.756 0.523
0.623other 0.847 0.543 0.662

Custom Threshold
water 0.419 0.997 0.590

0.708other 0.997 0.444 0.615

Otsu Threshold
water 0.828 0.973 0.895

0.908other 0.988 0.919 0.952
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