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Abstract: Most isolators have numerous displacements due to their low stiffness and damping
properties. Accordingly, the supplementary damping systems have vital roles in damping enhance-
ment and lower the isolation system displacement. Nevertheless, in many cases, even by utilising
additional dampers in isolation systems, the occurrence of residual displacement is inevitable. To
address this issue, in this study, a new smart type of bar hysteretic dampers equipped with shape
memory alloy (SMA) bars with recentring features, as the supplementary damper, is introduced
and investigated. In this regard, 630 numerical models of SMA-equipped bar hysteretic dampers
(SMA-BHDs) were constructed based on experimental samples with different lengths, numbers,
and cross sections of SMA bars. Furthermore, by utilising hysteresis curves and the corresponding
ideal bilinear curves, the role of geometrical and mechanical parameters in the cyclic behaviour of
SMA-BHDs was examined. Due to the deficiency of existing analytical models, proposed previously
for steel bar hysteretic dampers (SBHDs), to estimate the first yield point displacement and post-yield
stiffness ratio in SMA-BHDs accurately, new models were developed by the artificial neural network
(ANN) and group method of data handling (GMDH) approaches. The results showed that, although
the ANN models outperform GMDH ones, both ANN- and GMDH-based models can accurately
estimate the linear and nonlinear behaviour of SMA-BHDs in pre- and post-yield parts with low
errors and high accuracy and consistency.

Keywords: shape memory alloy (SMA); SMA-equipped bar hysteretic dampers (SMA-BHDs);
hysteresis curves; artificial neural network (ANN); group method of data handling (GMDH)

1. Introduction

There are several techniques that can be used for improving seismic behaviour in
structures [1–4]. Adding certain elements to the structure, such as shear walls or steel
braces, would enhance the seismic strength of the structure. Due to this fact, the lateral
stiffness of the structure is increased, and the increased lateral stiffness will develop the
force applied to major structural components [5–7]. Increasing the seismic behaviour of
structures can be enhanced by insulating the foundations from the supports. Despite
strengthening strategy of structural elements affected by lateral loads, isolated structural
elements without any strengthening could be an alternative. When the seismic demand in
isolated systems is reduced, the structural performance can be enhanced without affecting
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main elements by increasing their internal forces. For the isolators to withstand the vertical
forces of the structure, they should be sufficiently stiff in the vertical direction [8–10].
Although to reduce the overall lateral stiffness of the structure and increase its time period,
the stiffness isolators should be significantly lower horizontally than vertically. Isolators,
in general, are low dampened, and adding additional dampers in some circumstances can
increase dampening and decrease the displacement of the isolation systems [11]. Despite
causing an increase in the force applied to the isolation system, utilising added dampers
may generally minimise the displacement of the whole structure. Therefore, dampers and
their impact on the performance of isolated structures should be thoroughly examined [12].
Recently, some new machine learning and artificial intelligence techniques were utilised to
solve complicated civil engineering problems related to bridges [13–15].

There are different kinds of dampers, among which are steel hysteretic dampers,
which attract the interest of many researchers due to their durable hysterical behaviour,
high potential in energy dissipation, long-term robustness, low production cost, and simple
replacement and installation [16,17]. In these dampers, plastic deformation occurs through
bending, shear, torsion, or the aforementioned mechanisms that deal with energy dissipa-
tion. Researchers such as Guerrero [18], Muto [19], Kelly et al. [20], and Skinner et al. [21]
were the first to introduce the idea of using steel as a damper. Known as the added damping
and stiffness (ADAS) tool, it has been introduced in several types; Bergman and Goel [22]
developed a well-known type of damper with X-shaped steel plates and connected parallel
to base plates of structures. The triangular-shape-added damping and stiffness (TADAS)
was then introduced by Tsai et al. [23]. Similar to the ADAS dampers, in TADAS dampers,
both ends of steel triangles are attached to the base plates. Many other researchers investi-
gated the behaviour of ADAS X-shaped and triangular dampers [24,25]. Shin et al. [26] and
Shin and Sung [27] proposed the rhombic ADAS dampers using low-strength steel with
pinned joints at each end. Their observation was that the pinned joints at both ends of the
damper prevent the plate from being subjected to unwanted axial forces. In addition, the
mechanical characteristics of low-strength steel improve energy absorption and damper
ductility. Han et al. [28] conducted additional experiments on rhombic ADAS dampers. The
slit steel damper (SSD), composed of a wide flanged steel section with seamless rounded
ends, was proposed by Chan and Albermani [29]. Other research works have also been
conducted to evaluate steel damper behaviour [30–35]. A shear panel damper (SPD), which
contains a steel plate linked to two upper and lower panels, has also been proposed and
investigated by some researchers [36–41]. Garivani et al. [42] developed a comb-teeth
damper (CTD), which comprises steel plates that resemble comb teeth. During in-plane
bending, the yielding process of teeth in these dampers could cause energy dissipation.
The E- and C-shaped tools, which dissipate energy due to the plastic deformation of steel
materials, were employed as a damper in several other investigations [43]. Kato et al. [44]
and Kato and Kim [45] employed steel J-shaped sheets as dampers, which allow the energy
to be dissipated by yielding of steel plate under the roll bending. In several research works,
U-shaped components were also employed as steel hysteretic dampers [46–53].

Recently, steel bars are also used as a novel type of hysteretic dampers, in which the
two ends of steel bars are connected to two steel plates in order to dispel energy through
the bending deformations mechanism. In addition to Ghaedi et al. [54,55], Aghlara and
Tahir [56] evaluated the steel bar dampers with repair capability of bar substitution. The
obtained results indicate that steel bar dampers have a high ability to dissipate energy and
withstand significant deformations. In an experimental study, Golzan et al. [57] considered
the steel bar hysteretic dampers (SBHD) as added dampers to elastomeric isolators and
proposed a simple method to design them. Jahangir et al. [58] conducted a comprehensive
numerical study on the role of geometrical parameters in SBHD dampers. SBHD with steel
bars of different lengths, numbers, and cross sections were analysed in their study, and
the seismic behaviour was investigated by utilising hysteresis curves. Moreover, using the
multiple nonlinear regression (MNLR) methods, some models were proposed to estimate
the behaviour of SBHDs in pre- and post-yielding point sections.
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Steel bar hysteretic dampers (SBHDs), as added dampers to isolation systems, could
withstand strong earthquakes, but the residual displacements result in higher repair costs,
lower safety levels, and a significant decline in the ability of SBHD-equipped structures
to withstand aftershocks. To overcome this problem, externally bonded composites can
strengthen structural components [59–64]. For the near-fault areas with greater seismic
risks, a substation of steel bars with shape memory alloys (SMAs) with recentring proper-
ties may be a better option. Scientists found that SMA materials could withstand significant
nonlinearities and return to their original shape after unloading. As a result of their ex-
cellent corrosion resistance, fatigue resistance, and damping capacity [65], these materials
reduce maintenance costs. The use of SMAs for structural purposes has been assessed
through some studies throughout the past several decades, including damping devices [66],
bridge supports [67–69], vibrational damage detection systems [70], reinforcement sys-
tems [65,71–74], and systems of seismic isolation [75]. On the opposite of SMA advantages
in improving structural behaviour, earlier studies have demonstrated that SMAs usage
poses certain drawbacks as a steel bar in SBHDs. In particular, large-diameter SMAs rebar
is difficult to manufacture due to their great hardness [76]. Moreover, due to the fragility of
the connecting point in SMA bars, they cannot be welded to steel sections [77]. Therefore,
one of the most challenging aspects of using SMAs is the high preparation costs. Despite a
decline in price over the past decade, the price for these alloys remains expensive when
compared with other contemporary materials. As a result, SMAs are usually used in an
optimum manner only in places where more deformation is experienced.

Despite several studies conducted on various hysteretic dampers with various geo-
metric shapes, there are still some questions regarding their behaviour, and in particular
their behaviour with steel bars. Moreover, the residual displacements in steel bar hysteretic
dampers (SBHDs) increase the maintenance and repair costs after earthquakes occurrence.
Utilising shape memory alloys (SMAs) as a smart material with recentring properties and
less residual displacement with respect to steel bars could be a proper alternative. As
the prices of SMAs are more than steel materials, their usage should be conducted in
an optimum manner. To address these gaps, this study proposed a novel developed bar
hysteretic damper as an added damper to an isolation system, in which the steel bars are
substituted optimally by SMA bars with different mechanical properties and geometrical
configurations. A comprehensive study was conducted to evaluate the role of different
geometrical such as the length, number, and cross section of the SMA bars on the cyclic
behaviour of SMA-equipped bar hysteretic dampers (SMA-BHDs). After evaluating exist-
ing analytical models for identifying the mechanical characteristics of SMA-BHDs, new
alternative models with higher accuracy and lower error values were proposed by utilising
different machine learning methods.

2. Shape Memory Alloys

Shape memory alloys (SMAs) are considered smart and innovative materials discov-
ered as early as 1932 and, in 1960, were manufactured from nickel and titanium [78] to
exhibit better behaviour than any other element used in memory alloys. These polymorphic
materials are composed of crystalline or chemical phases. SMAs are capable of enduring
large stresses without causing residual strains, and it is efficient in dissipating energy [79].
In shape memory alloys, the prevailing crystalline phase is dependent on the temperature
and stress. Austenite and martensite are the two crystalline phases of SMAs. Austenite
and martensite phases are stable at high and low temperatures and low and high stresses,
respectively [80]. Therefore, these two phases could be transformed into each other through
a heating process or by applying mechanical forces. SMAs exhibit different macroscopic
behaviour during the transition from one phase to another. There are certain characteris-
tics that distinguish SMAs from other alloys and metals, specifically, shape memory and
superelasticity features. SMAs’ mechanical behaviour under different levels of stress and
strain and various temperatures is shown in Figure 1. A shape memory feature is present
in SMAs at temperatures below the austenite-transformation-to-martensitic phase during
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cooling, Mf, and the superelasticity feature is created when the temperature is above the
finish temperature of the martensite-transformation-to-austenite phase during heating,
Af [79]. At temperatures below Mf and in the martensitic phase, SMAs deform under stress.
By load removal, the alloy could not return to its original shape and would experience
residual strains. In this case, named the one-way shape memory feature, the martensitic
phase is still dominant in SMAs.
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Figure 1. Shape memory and superelasticity features of SMAs [79].

In a one-way shape memory feature, just heating and cooling processes could convert
the martensite and austenitic phases into one another without stress being applied. This
case in which SMAs could remember their different shapes at high and low temperatures is
named the two-way shape memory feature. SMAs with two-way shape memory character-
istics are among the few that exist and are utilised in temperature-sensitive actuators and
reversible fasteners in medical research fields [78,80]. By applying stresses, the austenitic
phase of SMAs would be transformed into the martensitic phase at a higher temperature
than Af and lower than Md (a higher temperature than Af, at which the alloy has an elasto-
plastic feature). As shown in Figure 1, unloading in this situation leads to an unstable
martensitic phase, which undergoes an inverse transformation that leads SMAs to return
to their original state with no residual strain. This feature is named superelasticity and is
utilised in many engineering fields [79].

Researchers used this smart material in many different fields due to austenitic to
martensitic transformation, resulting in shape memory and superelasticity properties. The
superelasticity property of SMAs is used in this study to improve the seismic behaviour
of bar hysteretic dampers utilising the stress–strain model introduced by Auricchio and
Sacco [81] and also used in finite element SeismoStruct software [82]. As presented in
Figure 2, the most important parameters in this model are σf

EA (stresses relating to the
beginning transformation of the austenitic into the martensitic phase), σs

SA (stresses linked
to the end of the austenitic phase into the martensitic phase transformation), σs

AS (stresses
related to the beginning of unloading step), σf

AS (stresses relating to the ending of the
unloading step), εl (strain equivalent at the unloading step) and ESMA (elastic modulus in
the austenitic phase) [81].
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Figure 2. Stress–strain model of SMAs with superelasticity feature [81].

3. Methodology

In this paper, ANN and GMDH-NN were employed to estimate the cyclic behaviour of
SMA bar hysteretic dampers. The overall search flowchart in this paper is depicted in Figure 3.
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3.1. The Artificial Neural Networks (ANNs)

To address complex engineering issues, artificial neural networks (ANNs) are com-
monly used in machine learning techniques [83,84]. It is possible to think of a neural
network as a set of processes that turn inputs into outputs [85]. The ANNs are constructed
by duplicating biological neural networks, which can be trained using input and output
data sets [86]. To achieve a certain degree of accuracy, the neural network must be trained
in order to update the correlation weights and biases. The overall structure of ANN could
be seen in Figure 4, which consists of input layers (X1 to Xn), as well as an output layer (Y)
and several hidden layers [87]. It is then determined whether the model is acceptable for
output estimation once it has been trained, and its weights have been tested on a separated
unseen dataset [88].
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3.2. The Group Method of Data Handling (GMDH)

According to Volterra functional series, the relationship between input and output
variables may be estimated differently from the ANN method. The discrete equivalent of
the Volterra functional series is Kolmogorov-Gabor polynomials [89].

Y = a0 +
n

∑
i=1

aiXi +
n

∑
i=1

n

∑
j=1

aijXiXj +
n

∑
i=1

n

∑
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n

∑
k=1

aijkXiXjXk + · · · (1)

where A vector of weights is defined as a = (a0, a1, ..., an) for input variables X = (X1, X2, ...,
Xn). Despite its ability to approximate any stationary random series of observations, the
Kolmogorov–Gabor polynomial has two disadvantages. A lengthy and incomplete vector
of independent variables is most common, whereas the collection of observations is limited.
In addition, as the input vector increases in size, the computation time for calculating all
the necessary normal equations rises. Inspired by Kolmogorov-Gabor polynomials [89],
Ivakhnenko [90] created the group method of data handling (GMDH) as a heuristic self-
organisation method. Ivakhnenko strived to enhance the Kolmogorov polynomial using
lower orders for each pair, employing heuristic and Perceptron techniques. This approach,
which is based on the Perceptron-type structure, is more accurate and allows data clas-
sification into useful and harmful categories. As a result, it requires fewer observations
and decreases computation time [91]. An adaptive generalised polynomial-based function
model is created by GMDH-NN, which advances in complexity over time until it achieves
an ideal degree of complexity, at which it is neither too simple to generalise nor too compli-
cated to overfit, which would result in a network, as seen in Figure 5. Using the GMDH v,
the number of layers, the nodes that must be selected, and the properties of those nodes
are automatically determined.

4. Experimental Specimens and Numerical Models
4.1. Experimental Specimens

In this study, as shown in Figure 6, the experimental study conducted by Golzan et al. [57]
on steel bar hysteretic dampers (SBHDs) as an added damper to bridge isolator systems was
considered as a reference to conduct the numerical analysis. A vertical load representing
gravity loads allowed forces to be applied by two vertical jacks in their test setup. At the
same time, the horizontal displacement was applied to the isolation system. The geometry
of the test setup was designed to accommodate added damper parallel to the isolator
system. The isolation system contained a rubber isolator designed for highway bridge
piers in Quebec, Canada. The added damper included six horizontal steel bars of 38 mm
diameter and 1.5 m long [57]. The energy absorption mechanism in this damper occurred
when the cross section of bars reached the nonlinear range in bending, and plastic hinged
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induced in their two ends and mid-length. More comprehensive details regarding the
experimental test setup can be found in Jahangir et al. [58] research.
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Figure 6. The test device of steel bar hysteretic damper and integrated isolator system.

The seismic behaviour of isolation systems equipped using SBHDs was investigated
by applying a predefined cyclic load pattern, as shown in Figure 7. In the first step, to study
the isolator behaviour, the steel bar hysteretic dampers were not added to rubber isolators [57].
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4.2. Numerical Models

In this paper, considering the experimental study conducted by Golzan et al. [57], the
numerical models of isolation systems and SBHDs were generated in the SeismoStruct
software to determine whether the software could achieve the expected results [82]. In
these models, the same cyclic loading pattern presented in Figure 7 was applied, and using
the software link element, the rubber isolator was simulated by a bilinear spring. On the
other hand, since this study seeks the influence of geometrical parameters on the cyclic
behaviour of bar hysteretic dampers, according to Figure 8, the steel bars were precisely
modelled by SeismoStruct software.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 29 
 

4.2. Numerical Models 
In this paper, considering the experimental study conducted by Golzan et al. [57], the 

numerical models of isolation systems and SBHDs were generated in the SeismoStruct 
software to determine whether the software could achieve the expected results [82]. In 
these models, the same cyclic loading pattern presented in Figure 7 was applied, and us-
ing the software link element, the rubber isolator was simulated by a bilinear spring. On 
the other hand, since this study seeks the influence of geometrical parameters on the cyclic 
behaviour of bar hysteretic dampers, according to Figure 8, the steel bars were precisely 
modelled by SeismoStruct software. 

 
Figure 8. Numerical model of rubber isolator equipped by SBHDs in SeismoStruct software. 

Figure 8 shows that steel bars are integrated into the isolation system by passing 
through orifices of a loading plate (Loading Plate) subjected to cyclic loads. According to 
the experimental test setup, each free ends of the bars are restrained by two plates (Bearing 
Plates) from lateral movement and rotation (from the experiment supports). Based on the 
mechanical characteristics of steel materials reported in Golzan et al. [57] experiments, 
with an elastic modulus of 200 GPa, yield stress of 250 MPa, and yield strain of 0.002, the 
same mechanical properties of steel materials were introduced into the software for use 
in the numerical model. 

The responses of the numerical models under cyclic loading were obtained by eval-
uating support reactions and mid-length displacements of bars, and the integrated results 
were presented as hysteresis curves. The experimental and numerical hysteretic curves 
shown in Figure 9 compare the bare rubber isolator and those isolators equipped by 
SBHDs. Figure 9 illustrates the hysteresis curves of the bare rubber isolators, and those 
equipped with SBHDs obtained from numerical models are fitted with the corresponding 
experimental results. Consequently, using SeismoStruct software and the mechanism uti-
lised to generate this numerical model is reliable to conduct geometrical investigations. 

In this paper, to compare the cyclic behaviour of utilising SMA bars as an alternative 
of steel bars in hysteretic dampers, the proposed SBHD sample by Golzan et al. [57] in-
cludes 6 steel bars with 38 mm diameter and 1.5 m long, which was selected as the refer-
ence. Then, all SMA-BHD numerical models were constructed by considering equal elastic 
stiffness (Ke) as presented in Equation (2). 

_ _e eK SMA K STEEL=  (2) 

Figure 8. Numerical model of rubber isolator equipped by SBHDs in SeismoStruct software.

Figure 8 shows that steel bars are integrated into the isolation system by passing
through orifices of a loading plate (Loading Plate) subjected to cyclic loads. Accord-
ing to the experimental test setup, each free ends of the bars are restrained by two
plates (Bearing Plates) from lateral movement and rotation (from the experiment supports).
Based on the mechanical characteristics of steel materials reported in Golzan et al. [57]
experiments, with an elastic modulus of 200 GPa, yield stress of 250 MPa, and yield strain of
0.002, the same mechanical properties of steel materials were introduced into the software
for use in the numerical model.

The responses of the numerical models under cyclic loading were obtained by evalu-
ating support reactions and mid-length displacements of bars, and the integrated results
were presented as hysteresis curves. The experimental and numerical hysteretic curves
shown in Figure 9 compare the bare rubber isolator and those isolators equipped by SBHDs.
Figure 9 illustrates the hysteresis curves of the bare rubber isolators, and those equipped
with SBHDs obtained from numerical models are fitted with the corresponding experi-
mental results. Consequently, using SeismoStruct software and the mechanism utilised to
generate this numerical model is reliable to conduct geometrical investigations.
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Figure 9. Hysteresis curves of experimental sample [57] and numerical model of (a) rubber isolator and (b) rubber isolator
equipped with steel bar hysteretic damper.

In this paper, to compare the cyclic behaviour of utilising SMA bars as an alternative of
steel bars in hysteretic dampers, the proposed SBHD sample by Golzan et al. [57] includes 6
steel bars with 38 mm diameter and 1.5 m long, which was selected as the reference. Then,
all SMA-BHD numerical models were constructed by considering equal elastic stiffness
(Ke) as presented in Equation (2).

Ke_SMA = Ke_STEEL (2)

Based on Equation (3), the elastic stiffness of bar hysteretic dampers could be calcu-
lated by their corresponding geometrical and mechanical properties.

Ke_Eqs. =
3NπD4E

L3 (3)

In Equation (3), N, D, and L, respectively, represent the number, diameter, and length of
bars, and E indicates the elasticity modulus of the utilised materials in bar hysteretic damper.
In this paper, as reported in Table 1, based on an experimental study [92], three different
sets of SMA materials (Figure 2) were considered to be compared with the corresponding
steel material used in bar hysteretic dampers.

Table 1. Mechanical properties of SMA materials.

Mechanical Property Set 1 Set 2 Set 3

ESMA (GPa) 30 24.6 28
εL (‰) 4.8 4.10 4.25

σf
EA (Mpa) 350 280 320

σs
SA (MPa) 370 350 460

σs
AS (MPa) 150 250 260

σf
AS (MPa) 135 40 190

For each of Set 1 to Set 3 material, one to ten (1, 2, 3, 4, 5, 6, 7, 8, 9, and 10) numbers
of SMA bars (N) with cross sections ranging from 10 to 50 mm (Φ10, Φ12, Φ14, Φ16, Φ18,
Φ20, Φ22, Φ24, Φ26, Φ28, Φ30, Φ32, Φ34, Φ36, Φ38, Φ40, Φ42, Φ44, Φ46, Φ48, and Φ50
rebar) in diameter (D) were selected. Then, by considering equal Ke for SMA-BHDs and
corresponding reference experimental SBHD, the equivalent length (L) of SMA bars could
be obtained by Equations (2) and (3). SeismoStruct software [82] was utilised to build
the numerical models to investigate the influence of different geometric parameters and
mechanical features on SMA-BHDs’ cyclic behaviour. In total, 630 different SMA-BHD
models were constructed for which the Oo_Ll_Nn was used as a notation, to label them.
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Here, o refers to the diameter of the SMA rebar, followed by the calculated length and
numbers of SMA bars, n and l, respectively. A schematic of hysteretic damper models of
SMA bars of varying numbers (1 to 10) is presented in Figure 10.
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In each model, hysteresis curves were used to evaluate support reactions (Force) versus
displacement (Dis.). Figures 11 and 12 show some examples of hysteresis curves for selected
SMA-BHD numerical models with mechanical features of Set 1 and different numbers on
bars (with 50 mm diameter) and various cross-sectional diameters (with 10 numbers of
bars), respectively. It should be mentioned that the hysteretic curves of some models
resulted in just elastic part, which could not obtain any information regarding the post-
yield properties. Therefore, from the total number of 630 numerical models, 389 models
were selected.

Hysteresis curves derived from the numerical models were evaluated to estimate
the effects of length, numbers, and the cross-sectional diameter of SMA bars on the cyclic
behaviour of SMA-BHDs. As shown in Figure 13, the hysteresis curves of each curve
were idealised as bilinear envelope curves. The ideal bilinear curves were derived by
means of displacements and forces associated with the first yield point (Dy_Hys., Fy_Hys.),
and the ultimate loading point (Du_Hys. and Fu_Hys.) of hysteresis curves. This paper
identified the initial yield point in the hysteresis curve based on the first slope change, and
the ultimate loading point was determined based on the final loading displacement stage
Du_Hys. (0.06 m). A line with a slope equal to the hysteresis curve slope before the first yield
point determined the first line of the bilinear curve. The second part of the bilinear curve
was depicted based on the equal slope of the hysteresis curve slope before the ultimate
point was reached. The bilinear curve had a yield point (Dy_Bi and Fy_Bi) where the lines
between the first and second parts intersected. Figure 13 illustrates that because of the
nonlinear behaviour of hysteresis curves, the resulting displacement and the corresponding
force at the yield point in bilinear curves, Dy_Bi and Fy_Bi, respectively, are greater than the
displacement and force indicative of the first yield point in the hysteresis curves (Dy_Hys.
and Fy_Hys., respectively). In contrast, considering the same ultimate point, the hysteresis
curves and bilinear curves exhibit equal displacement (Du_Hys. = Du_Bi. = 0.06 m) and
equal force (Fu_Hys. = Fu_Bi.) at the ultimate point.
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Apart from displacement and forces at the first yield (Dy and Fy) and ultimate (Du and
Fu) points, there are additional parameters in hysteresis and bilinear curves that can help in
assessing the cyclic behaviour. Parameters such as elastic stiffness (Ke), post-yield stiffness
(Kp), and α, which is the post-yield stiffness ratio and equals to the ratio of post-yield
stiffness (Kp) to the elastic stiffness (Ke), could be calculated by Equations (4)–(6):

Ke_Hys. = Ke_Bi. =
Fy_Hys.
Dy_Hys.

(4)

Kp_Hys. =
Fu_Hys.− Fy_Hys.

Du_Hys.− Dy_Hys.
, Kp_Bi. =

Fu_Bi.− Fy_Bi.
Du_Bi.− Dy_Bi.

(5)

α_Hys. =
Kp_Hys.
Ke_Hys.

, α_Bi. =
Kp_Bi.
Ke_Bi.
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Figure 11. Typical hysteresis curves of SMA-BHD numerical models with 50 mm diameter (Φ50) and different number of
bars in Set 1: (a) one; (b) two; (c) three; (d) four; (e) five; (f) six; (g) seven; (h) eight; (i) nine; (j) ten.
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Figure 12. Typical hysteresis curves of SMA-BHD numerical models with 10 numbers of bars of different cross-sectional
diameters in Set 1: (a) Φ18; (b) Φ20; (c) Φ22; (d) Φ24; (e) Φ26; (f) Φ28; (g) Φ30; (h) Φ32; (i) Φ34; (j) Φ36; (k) Φ38; (l) Φ40;
(m) Φ42; (n) Φ44; (o) Φ46; (p) Φ48 and (q) Φ50.

The amount of dissipated energy in dampers is another important parameter that
should be taken into consideration. Based on the adopted bilinear curve presented in
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Figure 14, the process of estimating dissipated energy (E) in SMA-BHD dampers are
reported in Equations (7)–(9):

Fy_Bi. = Ke_Bi.× Dy_Bi. (7)

Fu_Bi. = Fy_Bi. + Kp_Bi.× (Du_Bi.− Dy_Bi.) (8)

E = 2× (Fu_Bi.−Q_Bi.)× (Du_Bi.− Dy_Bi.) (9)

where Fy_Bi. and Fu_Bi. represent the yield and ultimate force, and Dy_Bi. and Du_Bi. show
their corresponding displacements in the idealised bilinear curves, respectively. Moreover,
Ke_Bi. and Kp_Bi. are, respectively, elastic and post-yield stiffness. Q_Bi. shows the yield
force corresponding to the unloading step of the bilinear curve at the ultimate displacement
and can be obtained as (σf

AS / σf
EA) × Fy_Bi. + Kp_Bi. × (Du_Bi. − Dy_Bi.), where σf

EA

is the stress relating to the beginning transformation of the austenitic into the martensitic
phase, and σf

AS is the stress relating to the ending of the unloading step, as presented in
Figure 2. Both σf

EA and σf
AS are the mechanical properties of SMA materials (Figure 2)

and, therefore, are known parameters. Moreover, Fy_Bi. is equal to Ke_Bi. × Dy_Bi. as
presented in Equation (7), where Ke_Bi. (elastic stiffness of bilinear curve) is equal to
Ke_Hys. (elastic stuffiness of hysteretic curve), as stated in Equation (4), and Dy_Bi. should
be determined as an unknown parameter. Furthermore, as presented in Equation (6), Kp_Bi.
is equal to α × Ke_Bi., where Ke_Bi. is a known parameter (is equal to Ke_Hys.), and α
should be determined as an unknown parameter. As the ultimate point in bilinear curves
is considered to be the same as hysteresis curves, their corresponding displacements are
equal (Du_Bi. = Du_Hys.), and therefore, Du_Bi. is a known parameter. As a result, as
shown in Figure 15, the only unknown parameters in the process of Q_Bi. determination
are Dy_Bi. and α which should be taken to consideration.

Instead of utilising hysteretic curves parameters, there are already existing analytical
equations which used geometrical and mechanical properties of hysteretic bar dampers to
identify their cyclic behaviour. The yield displacement (Dy) and an elastic stiffness (Ke) of
SMA-BHDs could be described as follows [58]:

Dy_Eqs. =
fyL2

12ED
(10)

Ke_Eqs. =
3NπD4E

L3 (11)

In Equations (10) and (11), fy and E are, respectively, the yield stress and elasticity
modulus of materials, and as reported before, N, D, and L are the numbers, diameter, and
calculated length of SMA bars, respectively. In most analytical cases, the ideal bilinear curve,
obtained from an experimental hysteretic curve, is considered as the analysis reference. As
could be inferred from Figure 13, as a result of the high nonlinear behaviour of SMA-BHDs,
although the slope of the elastic parts is equal (Ke), the first yield point of the bilinear
curve is quite different from the corresponding experimental one. Therefore, the proposed
analytical equation for estimating the yield point displacement (Dy) should be modified by
a modification factor (β) as follows:

Dy_Mod. = β ·
(

fyL2

12ED

)
(12)

where Dy_Mod. is the modified version of the existing first yield point displacement (Dy)
analytical equation. On the other hand, both Dy and Ke parameters are related to the elastic
part of SMA-BHDs behaviour, and no analytical equation has been proposed to identify
the post-yield behaviour, specifically the stiffness ratio α. Therefore, the purpose of this
paper was to complete the analytical equations and assess their ability to predict the cyclic
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behaviour of SMA-BHDs in the nonlinear section via machine learning techniques such as
artificial neural network (ANN) and group method of data handling (GMDH).

5. Machine Learning Approaches
5.1. Numerical Database

In order to conduct machine learning approaches, the obtained database from
389 numerical models (selected from 630 numerical models based on their proper hysteretic
curves including post-yield portion), with geometrical and mechanical properties of SMA-
BHDs, was collected. The statistical properties of the obtained database in this paper
are presented in Table 2, in which, D, L, N, E, and Fy, as diameter, length and numbers,
elasticity modulus, and yield stress of SMA bars, were considered as the inputs, and the
β_Bi and α_Bi, as yield displacement modification factor and the post-yield stiffness ratio,
resulted from ideal bilinear curves considered as outputs.

Table 2. Statistical properties of the numerical database.

Mechanical Property Inputs Outputs

Statistical Feature D (m) L (m) N E (GPa) Fy (MPa) β_Bi. α_Bi.

Min 0.018 0.324 1 24.6 280 0.005 0.061
Max 0.050 1.362 10 30 350 0.040 0.720
Ave 0.037 0.728 6.286 27.658 318.274 0.022 0.268
SD 0.008 0.241 2.597 2.203 28.564 0.008 0.110

CoV (%) 24.016 32.901 41.303 8.010 8.977 36.725 41.720

As can be seen, the collected numerical data cover a wide range of each contributing
parameter, and hence, these parameters can be proper inputs for estimating the exact values
of modification factor of first yield point displacement (β) and the post-yield stiffness ratio
(α) in SMA-BHDs.

5.2. Data Pre-Processing

With the following linear equation, the collected data from numerical models were
normalised and scaled across the same ranges in order to ensure stability and convergence
of weight and biases in the process of ANN and GMDH-NN development:

Xscaled =

[
0.80× X− Xmin

Xmax − Xmin

]
+ 0.1 (13)

Here, X represents the input or output variable, while Xmin and Xmax represent its
minimum and maximum values, respectively. The ANN and GMDH-NN structure for
the first yield point displacement modification factor (β) and also post-yield stiffness ratio
(α) prediction is formed by considering inputs including the diameter (D), length (L), and
numbers (N) of bars as long as elastic modulus (E) and yield strength (Fy) of SMA bars.

5.3. Proposed ANN Models

According to the proposed method by Shahin et al. [93], in ANN models, the obtained
database (containing 389 data) is divided into two training (around 75% of all datasets equal
to 292 data) and testing (around 25% of all datasets equal to 97 data) classes. Moreover, to
assure the ANN and GMDH-NN models efficiency, the train set (around 75% of dataset
equal to 292 data) itself is classified into three subsets, including train, test, and validation,
with around 80% (232 data), 10% (30 data) and 10% (30 data) ratios, respectively. In
order to determine the structure of the ANN models, the feed-forward back propagation
model, which has a single input layer and one hidden layer with the tan-sigmoid activation



Appl. Sci. 2021, 11, 10057 15 of 28

function (fn2), as shown in Equation (14), and an output layer having linear activation
function (fn1, expressed as ax + b where a and b are constants) is used.

f 2
n =

2
1 + e−2x − 1 (14)Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 29 
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MATLAB was used to train the connecting weights of network neurons using feed-
forward backpropagation and the Levenberg–Marquardt method [94]. The literature has
supported the usage of one hidden layer to tackle various nonlinear problems [85,95]. The
optimum artificial neural network was created using the trial-and-error approach. In this
study, the number of neurons in the hidden layer was assumed to be between 3 and 25.
The optimal configuration was determined by using conventional statistical error and
performance metrics, such as the correlation coefficient (R), the mean square error (MSE),
and the mean absolute percent error (MAPE). The results of the ANN models in estimating
the first yield point displacement modification factor (β) and also post-yield stiffness ratio
(α) are shown in Tables 3 and 4, respectively. Figure 16 shows the R and MSE values for
different neurons in the hidden layer of ANN models.
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Table 3. ANNs performances for optimised β model.

NN MSE_Tr MSE_Ts MAPE_Tr MAPE_Ts R_train R_test R_valid

3 0.00503 0.00663 18.86 19.80 0.8355 0.7715 0.8399
4 0.00556 0.00894 19.44 22.07 0.8089 0.7980 0.7799
5 0.00237 0.00518 9.16 10.76 0.9283 0.9274 0.8995
6 0.00012 0.00047 2.60 3.31 0.9972 0.9958 0.9916
7 0.00339 0.00362 11.91 12.12 0.8840 0.8388 0.8082
8 0.00059 0.00223 5.32 7.61 0.9884 0.9461 0.9847
9 0.00204 0.00420 9.84 13.16 0.9392 0.9413 0.9063

10 0.00211 0.00475 11.33 16.83 0.9410 0.8542 0.9528
11 0.00220 0.00424 12.12 17.43 0.9493 0.8766 0.9017
12 0.00071 0.00260 6.13 9.42 0.9849 0.9717 0.9470
13 0.00068 0.00186 5.88 8.75 0.9833 0.9568 0.9713
14 0.00065 0.00258 4.69 8.04 0.9930 0.9470 0.9733
15 0.00115 0.00240 8.12 11.35 0.9777 0.9123 0.9537
16 0.00086 0.00276 7.31 12.71 0.9875 0.8958 0.9543
17 0.00050 0.00206 5.64 10.36 0.9913 0.9617 0.9756
18 0.00408 0.00513 15.96 18.47 0.8495 0.8222 0.8120
19 0.00124 0.00412 9.47 15.32 0.9753 0.9034 0.9403
20 0.00057 0.00182 6.27 9.78 0.9853 0.9601 0.9806
21 0.00154 0.00389 9.40 14.16 0.9763 0.8408 0.9180
22 0.00140 0.00424 8.21 13.34 0.9841 0.8850 0.9081
23 0.00093 0.00265 6.02 10.57 0.9891 0.9017 0.9717
24 0.00112 0.00293 8.31 14.38 0.9713 0.9291 0.9634
25 0.00384 0.00753 15.56 20.61 0.9024 0.6701 0.8679

As can be seen in Table 3 and Figure 16, the structure of the best ANN model for
estimating β contains six neurons in the hidden layer with R values of 0.9972, 0.9958, and
0.9916 in training, testing, and validation data sets and considerably small MSE values of
0.00012 and 0.00047, and MAPE values of 2.60% and 3.31%, in training and testing data
sets, respectively. On the other hand, as reported in Table 4 and Figure 16, to estimate the α
values, selecting 10 neurons in the hidden layer is the most proper ANN model with the R
values of 0.9986, 0.9966, and 0.9972 in training, testing, and validation data sets and MSE
values of 0.00007 and 0.00008, and MAPE values of 2.34% and 2.43%, in training and testing
data sets, respectively. It should also be noted that training data division in the network
includes one step of verification, which uses 80%, 10%, and 10% for training, testing, and
validation, respectively. However, in order to provide a more reliable and efficient model,
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testing data division, including 97 data (25% out of 389 data), are entirely unseen for the
models and provide a double-check step for the models.

Table 4. ANNs performances for optimised α model.

NN MSE_Tr MSE_Ts MAPE_Tr MAPE_Ts R_train R_test R_valid

3 0.00424 0.00481 15.92 15.73 0.8892 0.8540 0.8898
4 0.00516 0.00569 19.52 18.71 0.8609 0.8567 0.7405
5 0.00154 0.00193 8.59 8.86 0.9656 0.9444 0.9369
6 0.00020 0.00030 4.11 4.30 0.9956 0.9917 0.9936
7 0.00245 0.00275 10.05 10.18 0.9330 0.8941 0.9229
8 0.00304 0.00347 10.89 11.10 0.9209 0.8901 0.8737
9 0.00421 0.00501 15.76 15.51 0.8839 0.8381 0.8575

10 0.00007 0.00008 2.34 2.43 0.9986 0.9966 0.9972
11 0.00023 0.00034 4.31 4.77 0.9954 0.9890 0.9904
12 0.00011 0.00015 2.82 3.20 0.9983 0.9938 0.9920
13 0.00011 0.00014 2.87 3.14 0.9981 0.9966 0.9927
14 0.00011 0.00021 2.70 2.94 0.9983 0.9890 0.9967
15 0.00013 0.00025 3.02 3.82 0.9978 0.9915 0.9943
16 0.00007 0.00009 2.13 2.45 0.9992 0.9939 0.9952
17 0.00007 0.00011 2.17 2.61 0.9992 0.9925 0.9967
18 0.00017 0.00037 2.91 3.47 0.9975 0.9906 0.9920
19 0.00009 0.00019 2.45 3.15 0.9991 0.9950 0.9941
20 0.00014 0.00020 2.92 3.39 0.9979 0.9895 0.9941
21 0.00007 0.00012 2.13 2.75 0.9991 0.9957 0.9958
22 0.00018 0.00044 2.61 3.81 0.9991 0.9893 0.9871
23 0.00015 0.00028 2.99 4.15 0.9980 0.9892 0.9943
24 0.00021 0.00034 3.23 3.99 0.9979 0.9812 0.9896
25 0.00025 0.00048 3.88 5.15 0.9972 0.9839 0.9894
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Figure 16. The R and MSE values at different neurons in hidden layer of ANN model: (a) β; (b) α.

Using the weights and bias acquired from the proposed ANN models, the following
formula was developed to establish the mathematical relationship between input (D, L, N,
E, and Fy) and outputs (β and α) variables:

Y = f 1
n

{
b0 +

h

∑
k=1

[
wk f 2

n

(
bhk +

m

∑
i=1

wikXi

)]}
(15)
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where Y denotes the values corresponding to output parameters (β and α), fn1 and fn2

are the transfer functions, h indicates the number of neurons in the hidden layer (in this
paper equals to 6 and 10 for ANN(β) and ANN(α), respectively), Xi is the input values of
the network (D, L, N, E, and Fy), m is the number of the input variables (equals to 5), Wik
indicates the link weight between the ith input layer and kth neuron in the hidden layer,
wk is the link weight between kth neuron in the hidden layer and the independent output
layer, bhk represents a bias in the kth neuron of the hidden layer, and b0 is the bias value in
the output layer.

Therefore, to ensure other researchers may profit from these results, network weights
and bias values were supplied in this study. The estimated β and α using ANN models,
respectively, can be achieved by Equation (15), and the results are presented in Table 5.

The β and α estimations based on ANN models are expressed as following with
respect to Equation (15), and the weights are presented in Table 5:

ANN(β) = 10.051A1 + 3.784A2 − 1.853A3 − 5.004A4 + 1.520A5 − 3.428A6 + 10.821 (16)

ANN(α) = −3.141C1 − 0.520C2 − 0.252C3 − 3.149C4 + 0.741C5 − 0.250C6 − 2.342C7
− 0.353C8 − 4.083C9 − 2.730C10 + 3.533

(17)

where A1 to A6 and C1 to C10 are the response of the hidden neurons which feed the network
output and are calculated as A and Carray elements (Equation (18)) using Equations (19)
and (20).

AT
=
[

A1 A2 A3 A4 A5 A6
]
; CT

=
[

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
]

(18)

A = Tansig
(
Wβ I + Bβ

)
(19)

C = Tansig(Wα I + Bα) (20)

where I is the input array, Wβ and Bβ, and Wα and Bα are, respectively, corresponding β
and α weight and bias matrices which are presented in Equations (21)–(23).

IT =
[

D L N E Fy
]

(21)

Wβ =



3.965 −20.960 −0.619 0.187 −0.620
−1.108 4.541 0.132 0.415 −0.837
−1.193 5.374 0.216 1.576 −1.959
−2.051 8.078 0.261 0.024 −0.998
1.008 0.108 0.645 0.208 −0.059
2.392 −9.337 −0.315 1.584 −0.635

; Bβ =



−17.347
1.343
0.845
3.198
−2.189
−3.944

 (22)

Wα =



0.559 −2.633 −0.276 1.729 −2.516
1.366 −4.664 −0.196 −0.520 2.946
0.843 −2.784 −0.621 −1.609 −2.580
−0.616 2.599 0.258 −0.818 1.907
0.947 −0.272 0.538 2.254 2.055
−0.321 −2.157 0.185 −0.133 0.139
−0.673 3.086 0.070 −0.913 −0.159
−0.962 5.921 0.561 0.350 2.526
−1.300 7.781 0.364 1.100 −0.862
0.833 −3.854 −0.185 2.809 −1.610


; Bα =



1.216
0.335
2.271
−1.095
2.634
−1.712
1.988
3.006
7.370
−2.643


(23)
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Table 5. The weights and bias of the β and α using ANN (β) and ANN (α).

ANN
Model

Neuron
Number

Weight
Bias

Wik Wk
D (m) L (m) N E (Pa) Fy (Pa) bhk b0

ANN (β)

1 3.965 −20.960 −0.619 0.187 −0.620 10.051 −17.347

10.821

2 −1.108 4.541 0.132 0.415 −0.837 3.784 1.343
3 −1.193 5.374 0.216 1.576 −1.959 −1.853 0.845
4 −2.051 8.078 0.261 0.024 −0.998 −5.004 3.198
5 1.008 0.108 0.645 0.208 −0.059 1.520 −2.189
6 2.392 −9.337 −0.315 1.584 −0.635 −3.428 −3.944

ANN (α)

1 0.559 −2.633 −0.276 1.729 −2.516 −3.141 1.216

3.533

2 1.366 −4.664 −0.196 −0.520 2.946 −0.520 0.335
3 0.843 −2.784 −0.621 −1.609 −2.580 −0.252 2.271
4 −0.616 2.599 0.258 −0.818 1.907 −3.149 −1.095
5 0.947 −0.272 0.538 2.254 2.055 0.741 2.634
6 −0.321 −2.157 0.185 −0.133 0.139 −0.250 −1.712
7 −0.673 3.086 0.070 −0.913 −0.159 −2.342 1.988
8 −0.962 5.921 0.561 0.350 2.526 −0.353 3.006
9 −1.300 7.781 0.364 1.100 −0.862 −4.083 7.370

10 0.833 −3.854 −0.185 2.809 −1.610 −2.730 −2.643

5.4. Proposed GMDH Models

Around 25% of the database (97 data out of 389 data) was arbitrarily put aside in
GMDH-NN techniques, analogous to ANN models, in order to suggest more trustworthy
closed-form equations. After many tests, using the GMDH-NN methods, Equations (24)
and (25) were proposed to estimate the β and α parameters, respectively. For the matter of
brevity, further details of the GMDH-NN method are not included here; interested readers
are encouraged to refer to the relevant published papers [85,96–99].

GMDH −NN(β) = −3.624 + 28.948N10 + 41.850N10 · N2 + 8.402N10 · N2
2 − 72.915N2

10
− 40.419N2

10 · N2 + 54.341N3
10 − 7.389N2 − 6.552N2

2
N2 = 0.252 + 0.638E− 2.068E · N3 − 0.131E · N2

3 + 2.642E2 · N3 − 1.011E3 + 1.291N2
3 − 0.382N3

3
N3 = 0.049 + 2.992N4 · N5 − 1.326N4 · N2

5 − 0.939N2
4 · N5

N5 = −0.062− 2.936L · N2
7 + 3.492L2 − 3.424L3 + 1.887N2

7
N7 = 211.914− 318.443L + 839.305L · N10 − 563.851L · N2

10 + 185.822L2 − 226.389L2 · N10
− 42.135L3 − 893.032N10 + 1272.570N2

10 − 609.212N3
10

N4 = −1.401 + 6.141N6 + 22.290N6 · N2
9 − 11.104N2

6 − 24.236N2
6 · N9 + 15.5168N3

6 + 4.181N9 − 8.881N2
9

N9 = 29.662− 198.001N10 + 216.561N10 · N13 + 254.998N2
10 − 200.840N2

10 · N13 − 85.519N3
10 − 50.323N2

13
N13 = 0.572− 0.068F3

y
N6 = 181.620− 200.824L + 658.575L · N11 − 516.201L · N2

11 + 60.644L2 − 120.965L2 · N11
− 844.46N11 + 1286.790N2

11 − 643.663N3
11

N11 = 0.878− 0.726L− 0.668L · N + 1.069L2 · N
N10 = 0.850 + 0.214D− 1.203L + 0.669L3

(24)

GMDH −NN(α) = 0.017 + 0.936N17 + 21.868N17 · N3 + 36.544N17 · N2
3 − 13.872N2

17
− 78.697N2

17 · N3 + 42.287N3
17 − 8.068N2

3
N3 = 0.203− 2.336N39 − 6.58638N39 · N7 + 6.709N2

39 − 1.216N3
39 + 2.054N7 + 2.176N2

7
N7 = −0.007 + 1.117N14 + 1.986N14 · N16 − 1.583N2

14 − 0.174N16 − 0.378N3
16

N16 = −0.443 + 0.409D− 4.486D · N20 + 3.206D · N2
20 + 0.434D2 + 3.350N20 − 1.521N3

20
N14 = 0.051 + 0.052E + 0.631E · N19 − 0.849E · N2

19 + 0.124E2 · N19 − 0.288E3 + 0.675N19
+ 0.419N2

19
N19 = 2.128− 2.779L + 28.021L · N37 − 19.2193L · N2

37 − 3.247L2 − 23.794L2 · N37 + 7.899L3

− 15.099N37 + 24.820N2
37

N37 = 0.021− 1.336D + 5.768D · L− 6.182D · L2 + 3.512L− 10.896L2 + 10.483L3

N17 = −0.159 + 0.412N49 − 0.437N49 · N2
20 + 1.107N20

N20 = 0.233 + 1.034L− 182.342L · N2
39 + 158.349L2 · N39 − 45.763L3 − 0.982N39 + 70.831N3

39
N39 = −0.082 + 2.429L− 0.703L · F2

y − 5.053L2 + 0.744L2 · Fy + 3.738L3 + 0.106Fy

N49 = 0.204 + 0.188N + 0.056N2 · Fy + 0.227Fy + 0.005F2
y − 0.301F3

y

(25)
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5.5. ML Proposed Models Performances

To evaluate the performance of the ANN and GMDH-NN models, Equations (26)–(31)
were used, which are typical criteria for measuring error and model performance [100],
including the correlation coefficient (R) and the coefficient of determination (R2), mean
square error (MSE), root-mean-square error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE). Detailed results are presented in Table 6 for each
developed model.

R =

n
∑

i=1

(
Ai − A

)(
Fi − F

)
√

n
∑

i=1

(
Ai − A

)2 n
∑

i=1

(
Fi − F

)2
(26)

R2 =


n
∑

i=1

(
Ai − A

)(
Fi − F

)
√

n
∑

i=1

(
Ai − A

)2 n
∑

i=1

(
Fi − F

)2


2

(27)

MSE =
1
n

n

∑
i=1

(Ai − Fi)
2

(28)

RMSE =

√√√√ 1
n

n

∑
i=1

(Ai − Fi)
2

(29)

MAE =
1
n

n

∑
i=1
|Ai − Fi| (30)

MAPE =
1
n


n
∑

i=1
|Ai − Fi|
n
∑

i=1
|Ai|

× 100 (31)

In Equations (26)–(31), Ai indicates the analysed value, and Fi represents the estimated
value, n is the number of the considered data, A is the mean analysed values, and F is the
mean estimated values.

Table 6. The errors and performances of ANN and GMDH-NN models.

Parameter Method Data
Partition R R2 MSE RMSE MAE MAPE (%)

β
ANN (β) Training 0.9974 0.9949 0.00008 0.00903 0.00572 0.91

Testing 0.9917 0.9834 0.00024 0.01538 0.00773 1.18

GMDH-NN (β) Training 0.9726 0.9459 0.00554 0.07441 0.05507 3.55
Testing 0.9744 0.9494 0.00423 0.06507 0.05080 3.03

α
ANN (α)

Training 0.9986 0.9972 0.00004 0.00597 0.00444 2.23
Testing 0.9985 0.9971 0.00003 0.00578 0.00464 2.21

GMDH-NN (α)
Training 0.9597 0.9210 0.00100 0.03159 0.02334 10.90
Testing 0.9685 0.9379 0.00070 0.02642 0.01991 8.16

As shown in Table 6, R and R2 for the ANN models (ANN (β) and ANN (α)) in both
training and testing steps are more than the GMDH-NN models (GMDH-NN (β) and
GMDH-NN (α)). In the same manner, the evaluated error criteria demonstrate that the
ANN models became more accurate than corresponding GMDH-NN models. In particular,
the ANN (β) model with R2 values of 0.9949 and 0.9834 and MAPE values of 0.91 and 1.18,
respectively, in training and testing stages, outperforms the corresponding GMDH-NN (β)
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model, with R2 values of 0.9459 and 0.9494 and MAPE values of 3.55 and 3.03, respectively,
in training and testing stages. Moreover, regarding the α estimation models, ANN (α)
model with R2 values of 0.9972 and 0.9971 and MAPE values of 2.23 and 2.21, respectively,
in training and testing stages, outperforms corresponding GMDH-NN (α) model, with R2

values of 0.9210 and 0.9379 and MAPE values of 10.90 and 8.16, respectively, in training
and testing stages. The comparison between the measured and predicted values obtained
from the ANN and the GMDH models in the training and testing phases for estimating α
and β are presented in Figures 17 and 18, respectively.

Figures 17 and 18 indicate that the ANN models produce more accurate and well-
fitted ideal fit lines than the GMDH-NN models. Additionally, the error values of β and
α proposed models for training and test data stages are presented in Figures 19 and 20,
respectively. An acceptable very low error for both proposed ANN and GMDH-NN models
could be inferred from Figures 19 and 20.

5.6. Sensitivity Analysis

Sensitivity analysis was performed to evaluate the contribution of each input parame-
ter to the ANN and GMDH developed β and α models. Results for each input variable were
obtained by assuming that each input variable varies between its minimum and maximum
values and that other parameters are maintained at their mean values. Therefore, it was
analysed how each parameter affects the correlation coefficient (R) and the root-mean-
square error (RMSE). By substituting all or none of the variables with their mean values,
the impact on R and RMSE could be considered to be zero and 100%, respectively. The R
and RMSE impact may be defined as a percentage value using the following equation [101]:

Effect = [(Zvar − ZOri) / (Zall − ZOri)] × 100% (32)
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Figure 17. Measured vs. predicted β for training and testing stages using: (a) and (b) ANN
(β); (c) and (d) GMDH-NN (β).
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Figure 18. Measured vs. predicted α for training and testing stages using: (a) and (b) ANN
(β); (c) and (d) GMDH-NN (β).
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Figure 19. Error values in test and train stages of β in proposed models: (a,b) ANN (β); (c,d) GMDH-NN (β).
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Figure 20. Error values in test and train stages of α in proposed models: (a,b) ANN (α); (c,d) GMDH-NN (α).

In this equation, ZVar is the R and RMSE values for the considered variable, ZOri is
the effect of zero on the R and RMSE, and Zall is equal to the R and RMSE value of the
proposed model when all the variables are substituted with their mean values. As shown
in Figures 21 and 22, for both β and α, the calculated SMA bars length (L) is the most
influential input variable in both ANN and GMDH-NN models. On the other hand, the
number of SMA bars (N) has the least effect in both ANN and GMDH-NN models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 29 
 

were obtained by assuming that each input variable varies between its minimum and 
maximum values and that other parameters are maintained at their mean values. There-
fore, it was analysed how each parameter affects the correlation coefficient (R) and the 
root-mean-square error (RMSE). By substituting all or none of the variables with their 
mean values, the impact on R and RMSE could be considered to be zero and 100%, respec-
tively. The R and RMSE impact may be defined as a percentage value using the following 
equation [101]: 

Effect = [(Zvar − ZOri) / (Zall − ZOri)] × 100% (32)

In this equation, ZVar is the R and RMSE values for the considered variable, ZOri is the 
effect of zero on the R and RMSE, and Zall is equal to the R and RMSE value of the proposed 
model when all the variables are substituted with their mean values. As shown in Figures 
21 and 22, for both β and α, the calculated SMA bars length (L) is the most influential input 
variable in both ANN and GMDH-NN models. On the other hand, the number of SMA 
bars (N) has the least effect in both ANN and GMDH-NN models. 

 
Figure 21. The effect of the input parameters on β estimation by considering R and RMSE values in proposed models: (a) 
ANN; (b) GMDH-NN. 

 
Figure 22. The effect of the input parameters on α estimation by considering R and RMSE values in proposed models: (a) 
ANN; (b) GMDH-NN. 

5.7. Computational Costs 
Various machine learning (ML) techniques could be utilised to estimate the first yield 

point displacement and post-yield stiffness ratio in SMA-BHDs. However, in this paper, 
new models were developed by the artificial neural network (ANN) and group method 
of data handling (GMDH) techniques. The previous sections showed that proposed ANN 
models outperform GMDH models with lower errors and higher with low errors and high 
accuracy. On the other hand, considering the computational costs related to ML models’ 

D L N E Fy All None
R 18.09 43.37 3.93 8.99 12.02 100 0
RMSE 21.58 56.43 7.41 10.24 13.08 100 0

0

25

50

75

100

Ef
fe

ct
 (%

)

Contributing Parameter

R RMSE GMDH-NN (β)

(b)

D L N E Fy All None
R 27.84 48.45 7.98 17.53 24.74 100 0
RMSE 34.26 67.02 15.24 25.81 34.26 100 0

0

25

50

75

100

Ef
fe

ct
 (%

)

Contributing Parameter

R RMSE ANN (β)

(a)

D L N E Fy All None
R 12.02 47.41 4.94 16.06 22.13 100 0
RMSE 15.91 52.75 5.99 18.75 27.25 100 0

0

25

50

75

100

Ef
fe

ct
 (%

)

Contributing Parameter

R RMSE ANN (α)

(a)

D L N E Fy All None
R 8.25 39.18 2.06 10.31 16.50 100 0
RMSE 11.01 44.83 4.67 15.24 23.69 100 0

0

25

50

75

100

Ef
fe

ct
 (%

)

Contributing Parameter

R RMSE GMDH-NN (α)

(b)

Figure 21. The effect of the input parameters on β estimation by considering R and RMSE values in proposed
models: (a) ANN; (b) GMDH-NN.
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Figure 22. The effect of the input parameters on α estimation by considering R and RMSE values in proposed
models: (a) ANN; (b) GMDH-NN.
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5.7. Computational Costs

Various machine learning (ML) techniques could be utilised to estimate the first yield
point displacement and post-yield stiffness ratio in SMA-BHDs. However, in this paper,
new models were developed by the artificial neural network (ANN) and group method of
data handling (GMDH) techniques. The previous sections showed that proposed ANN
models outperform GMDH models with lower errors and higher with low errors and high
accuracy. On the other hand, considering the computational costs related to ML models’
complexity, it can be mentioned that the proposed GMDH models, with less complex
closed-form equations, perform better in comparison with ANN models.

6. Conclusions

A novel bar hysteretic dampers equipped with shape memory alloy (SMA) bars,
named SMA-BHDs, as an added damper to isolation systems, was studied in this paper. In
order to predict the cyclic behaviour of these dampers, 630 numerical models including
different geometrical and mechanical properties were constructed in SeismoStruct soft-
ware. The obtained hysteretic curves from numerical models were idealised by bilinear
curves to achieve pre- and post-yield parameters such as the first yield point displacement
(Dy), elastic stiffness (Ke), and post-yield stiffness ration (α). The analyses show that the
existing analytical equation for determining Dy is not consistent with obtained results from
hysteretic curves and needs modification. Moreover, there is no analytical equation for
estimating the α parameter. Therefore, two machine learning approaches, named artificial
neural network (ANN) and group method of data handling integrated by a neural network
(GMDH-NN), were utilised to estimate the Dy modification factor (β) and propose an
equation for α parameter for the first time. An overview of the results of this paper is
presented as follows:

1. As expected, by substituting SMA bars instead of steel bar in bar hysteretic dampers,
no residual displacement could be seen in hysteretic curves, which shows the excellent
performance of SMA-BHDs as added dampers to isolation systems.

2. Considering the ANN models with one hidden layer and varying neuron numbers
between 3 to 25, the neural networks with 10 and 6 hidden neurons were selected
as the optimised network structure for β and α parameters, respectively. The ANN
(β) model has the R values of 0.9972, 0.9958, and 0.9916 in training, testing, and
validation data sets and considerably small MSE values of 0.00012 and 0.00047, and
MAPE values of 2.60% and 3.31%, in training and testing data sets, respectively. On
the other hand, ANN (α) model has the R values of 0.9986, 0.9966, and 0.9972 in
training, testing, and validation data sets and MSE values of 0.00007 and 0.00008, and
MAPE values of 2.34% and 2.43%, in training and testing data sets, respectively.

3. In the GMDH-NN models, similarly to ANN models, around 25% of all databases
(97 data from 389 data) were randomly set aside for the test stage and considered
unseen data. The results show that the proposed ANN models with higher R2 and
lower error values in both the training and testing stages outperform the proposed
GMDH-NN models. However, compared with the ANN model, GMDH-NN models
present more user-friendly and easy-to-interpret closed-form equations.

4. The sensitivity analysis of the input parameters in the developed ANN and GMDH-
NN models for estimating both β and α parameters showed that the calculated SMA
bars length (L) variable with higher R and RMSE values is the most influential input
variable. Furthermore, the number of SMA bars (N) with lower impact values on the
R and RMSE has the least effect.
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