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Abstract: Brassinin derived from Chinese cabbage has been reported to act as an anti-cancer agent on
prostate, liver, and colon cancer cells. However, its mechanism and impact are largely unknown in
colon cancer cells. Here, we first published a report that Brassinin induces apoptosis and inhibits the
survival of colon cancer cells by activating p53. We found that Brassinin induces p53 and p21 dose-
and time-dependent manner in wild type of p53 colon cancer cells. Interestingly, Brassinin induces
apoptosis in wild-type of p53 cancer cells, but not in null-type of p53 cancer cells dose dependently.
Additionally, Brassinin induces apoptosis through L5. Furthermore, Brassinin enhanced the apoptotic
effect with doxorubicin by activating p53. Altogether, our findings suggest that Brassinin is a new
p53 regulator via induce apoptosis and inhibit the proliferation in colon cancer cells.
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1. Introduction

The tumor suppressor p53 prevents tumorigenesis, blocks metastasis, stops cancer
cell proliferation, and induce apoptosis, resulting in mutations in cancer cells [1]. p53 is
important to various biological functions include numerous target genes, such as p21, is
involved in p53-dependent cell cycle arrest, while the Puma play important roles in p53
mediated apoptosis [2]. Furthermore, p53 is activated by regulator genes as well [1,3,4].
p53 is the primary regulator of cell cycle arrest or apoptosis in mammalian cell reactions
to cellular stress, including nuclear or ribosomal stress [5–7]. Furthermore, p53 induce
the anti-oxidant genes, such as GLS2. These genes remove the reactive oxygen species
(ROS) and protect against oxidative insults [8]. Although many anti-cancer drugs involved
in p53-dependent apoptosis have been studied, the p53-regulatory pathways are not
completely understood.

Ribosomal biogenesis is essential for growth of cancer cell. Many ribosomal proteins,
such as L5, L11, and L23, were able to inhibit growth of tumor cells by activating p53 in
response to ribosomal stress. It appears that L5 and L11 work together to activate p53.
Furthermore, L5, L11, and L23 are also bind to MDM2 [9–12].

The colon cancer is known as the third common cancer in the world [13]. Despite
advances in modern medicine, about 50% of colon cancer patients have experienced cancer
recurrence and mortality rate is about 40% [14]. Surgery is the main treatment for colon
cancer and treatments, such as 5-FU and Oxaliplatin, are used. However, these treatments
are accompanied by a variety of side effects such as anemia, loss of appetite, feeling sick,
headache, etc. [15–17]. This is why the discovery and scientific proof of new colorectal
cancer treatments is needed.

Brassinin is a phytoalexin found in crucible vegetables, which is anti-cancer ef-
fects [18,19]. Brassinin inhibits human liver cancer cell proliferation via mitochondrial
dysfunction and inhibits invasive potential of lung cancer cells via PI3K/Akt/mTOR sig-
naling cascade [18,20]. Recently, Brassinin enhances the anti-cancer actions of paclitaxel by
targeting JAKs/STAT3 pathways in colon cancers [19]. However, the detail mechanism of
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Brassinin in colon cancer cells are not fully understand so far. Thus, in this study, we hy-
pothesized that Brassinin may suppress the proliferation of colon cancer cells and induces
apoptosis through activating p53.

2. Materials and Methods
2.1. Cell Culture and Reagents

HCT116p53+/+ (p53 wild-type human colon cancer), SW-480, HT-29 cells were pur-
chased from the Korean Cell Line Bank (Seoul, Korea). Additionally, HCT116p53−/− (p53
knockout human colon cancer) cells were kindly obtained from Prof. Wonchae Choe
(Kyung Hee University, Korea). Cells were cultured in RPMI1640 with 10% fetal bovine
serum (FBS) and 2 µM L-glutamine and penicillin/streptomycin at 37 ◦C in incubator
with 5% CO2. Brassinin (≥98% of purity) (product ID: B6801) was purchased from LKT
laboratories (Minneapolis, MN, USA).

2.2. RNA Interference

p53 siRNA was purchased from Bioneer (ID: 7157-1) (Daejeon, Korea). RPL5 siRNA
was purchased from Santa Cruz Biotechnologies (SC-78649) (Santa Cruz, CA, USA).
HCT116p53+/+ cells were seeded on the 6-well plate for overnight and then cells were trans-
fected with siRNA, as indicated in figure legends by INTERFERin® (Polyplus-transfection
SA, Illkirch, France) follow the manufacturer’s protocol. After 48 h later, cells were treated
with Brassinin (80 µM) or DMSO (control). Transfection assay was conducted as described
earlier [21].

2.3. Cytotoxicity Assay

Cytotoxic effect of Brassinin in HCT116p53+/+, HCT116p53−/−, SW-480, and HT-29
cells were examined by CCK8 assay kit (Dojindo, Rockville, MD, USA) as described in
Jung et al.’s paper [1]. Cells were seeded 1 × 104 cells/well in 96-well culture plates for
overnight. Additionally, treated with Brassinin (12.5, 25, 50, or 100 µM) or DMSO (control)
for 24 h. The cell viability was calculated by the following equation: cell viability (%) =
[OD (puromycin) − OD (blank)]/[OD (control) − OD (blank)] × 100.

2.4. Colony Formation Assay

HCT116p53+/+ cells were treated with Brassinin (40, 80 µM) or DMSO (control). After
24 h later, cells were distributed onto 6 well cell culture plate at 1000 cells/well. Addi-
tionally, then, we replaced the media (RPMI1640 with 10% fetal bovine serum (FBS) and
2 µM L-glutamine and penicillin/streptomycin at 37 ◦C in incubator with 5% CO2) every
two days. After a week, the cells were washed with PBS several times and then fixed
with Diff Quick Solution (Sysmex, Kobe, Japan). Then, we counted the colonies using
the microscope.

2.5. Western Blotting

Cell lysates were separated in SDS-PAGE gel (8–15%). The detailed description of
western blotting from Jung’s paper [6]. HCT116p53+/+ and HCT116p53−/− cells were treated
with Brassinin (40, 80 µM) or DMSO (control) for 24 h. Furthermore, HCT116p53+/+ cells
were treated with Brassinin (80 µM) for 24, 48, or 72 h. The membranes were incubated
with various antibodies against CNOT2 (1:1000), RPL5 (1:1000) (Cell signaling Technology
Inc., Danvers, MA, USA), PARP (1:1000), p53 (DO-1) (1:1000), (Santa Cruz Biotechnologies,
Santa Cruz, CA, USA), p21 (1:500) (Ab frontier, Seoul, Korea) and β-actin (1:2000) (Sigma
Aldrich Co., St. Louis, MO, USA).

2.6. Flow Cytometry Analysis

HCT116p53+/+ and HCT116p53−/− cells were treated with Brassinin (40, 80 µM) or
DMSO (control) for 24 h. After then, the cells were collected and washed three times
with PBS. The cells were fixed in 70% EtOH at −20 ◦C for overnight. Next day, the cells
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were incubated with RNase A (10 mg/mL) for 1 h at 37 ◦C. Additionally, then, cells were
stained with propidium iodide (PI) for 30 min in dark. The stained cells were analysis with
FACSCalibur by using Cellquest software (Becton Dickinson, Franklin Lakes, NJ, USA).

2.7. Statistical Analysis

The statistical analysis was performed as described previously [22]. All data were
presented as means ± standard deviation (SD). Student t-test was used for comparison of
two groups. Additionally, the one-way analysis of variance (ANOVA) followed by Tukey’s
post hoc test was performed for multi-group comparison using GraphPad Prism software
(Version 5.0, San Diego, CA, USA). The statistically differences between the DMSO (control)
and Brassinin-treated groups were calculated using student’s t-test. All experiments were
conducted three times. p-value of 0.05 or less was considered as significant.

3. Results
3.1. Brassinin Induces p53 and Its Target Gene p21

Brassinin has been shown to inhibit cancer cell proliferation, but needs to learn
more about the role of Brassinin in cancer development. To solve this problem, we first
treated Brassinin in HCT116p53+/+ cells. As shown in Figure 1A,B, Brassinin induced
the expression of endogenous p53 in HCT116p53+/+ cells and expressed dose-dependent
and time-dependent on the p53-target gene p21 and apoptotic marker cleaved-PARP.
Furthermore, Brassinin inhibits CNOT2 expression, which is related to metastasis in cancer,
and it is acting as a oncogene, dose-dependently.

Figure 1. Brassinin induces p53 dose- and time-dependently. (A) HCT116p53+/+ cells were treated
with Brassinin (0, 40, 80 µM). p53, p21, cleaved-PARP, and CNOT2 were determined by western
blotting. (B) HCT116p53+/+ cells were treated with Brassinin (40 µM) for 0, 6, 12, and 24 h. Data
represent means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control. Values of Western blotting
images represent relative level of protein expression/β-actin.
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3.2. Brassinin Induces Apoptosis by Activating p53

To confirm if Brassinin plays an important role in regulation of apoptosis by activating
p53, we treated Brassinin both p53 wild type or null type cancer cells. First of all, we
tested whether Brassinin induces apoptosis p53-dependent manner or not. As shown in
Figure 2A, Brassinin induces apoptosis partly by activating p53 in cancer cells. Consistently,
knockdown of p53 treated with Brassinin in HCT116p53+/+ cells has shown that Brassinin
induces apoptosis by activating p53 (Figure 2B).

Figure 2. Brassinin induces apoptosis partly by p53 activating. (A) HCT116p53+/+ and HCT116p53−/−

cells were treated with Brassinin were incubated 24 h. Cleaved-PARP and p53 were determined by
western blotting. *** p < 0.001 vs. untreated control. Values of Western blotting images represent
relative level of protein expression/β-actin. (B) HCT116p53+/+ cells were transfected with p53
siRNA (40 nM) or scramble siRNA were incubated or 48 h then treated with Brassinin for 24 h.
Additionally, then cleaved-PARP, p53 and p21 were confirmed by western blotting. ** p < 0.01,
*** p < 0.001 vs. untreated control. Values of Western blotting images represent relative level of
protein expression/β-actin.

3.3. Effect of RPL5 Depletion with Brassinin on the Apoptosis in Colon Cancer Cells

Ribosomal proteins, such as L5, L11, and S14, related with MDM2 binding and
activation of p53 in human cancer cells [23–28]. L5 was involved in p53 pathway and
regulates apoptosis [22]. In attempt to address this question, we tested whether Brassinin
induces apoptosis through L5. By performing western blotting assay, we found that
Brassinin does not induces apoptosis marker cleaved-PARP via knockdown of L5 (Figure 3).
This results suggest that Brassinin induces apoptosis via L5.



Appl. Sci. 2021, 11, 10036 5 of 9

Figure 3. Brassinin induces apoptosis through the L5. HCT116p53+/+ cells were transfected with
L5 siRNA (40 nM) or scramble siRNA for 48 h. After that, cells were treated with Brassinin
(80 µM) for 24 h. Cleaved-PARP and L5 were determined by western blotting. ** p < 0.01,
*** p < 0.001 vs. untreated control. Values of Western blotting images represent relative level of
protein expression/β-actin.

3.4. Brassinin Is Cytotoxic and Preservative to Colorectal Cancer Cells

To check the cytotoxicity and anti-proliferation effects of Brassinin, several colorectal
cancer cells were employed MTT assay and colony formation assay. Here, Brassinin
suppressed the cell viability of HCT116p53+/+ (p53 wild-type cell) cells in a concentration–
dependent manner compared to HCT116p53−/− (p53 knockout cell), SW480 cells using
an CCK8 assay (Figure 4A,B). Similarly, Brassinin suppressed the HCT116p53+/+ cells
proliferation dose-dependent manner (Figure 4C).

Figure 4. The cytotoxic effects of Brassinin in colon cancer cells. (A,B) Cytotoxicity of Brassinin
in HCT116p53+/+, HCT116p53−/−, SW-480, and HT-29 cells in a dose-dependent manner by CCk8
assay. (C) Photo and bar graph for colony formation of Brassinin in HCT116p53+/+. The colonies
were stained with crystal violet. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. untreated control. Values of
Western blotting images represent relative level of protein expression/β-actin.
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3.5. Brassinin Regulates Apoptosis with a Growing Sub-G1 Population

To check cytotoxic effects of Brassinin are due to apoptosis, cell cycle analysis was
performed in HCT116p53+/+ cells. As shown in Figure 5A,B, Brassinin increased the sub-G1
population in HCT116p53+/+ cells better than HCT116p53−/− cells. This results suggest that
Brassinin induces more apoptosis in p53 wild type cells.

Figure 5. Brassinin increases the sub-G1 population partially p53-dependent manner. (A–C) Effect
of Brassinin (40 or 80 µM) on cell cycle distribution in HCT116p53+/+ and HCT116p53−/− cells. Cell
cycle analysis was performed after prolidium iodide (PI) staining by flow cytometry system. Bar
graphs showed the percentages of DNA contents undergoing sub-G1 and quantification of cell cycle
related cancer cells population (%). Cell cycle division was analyzed by FACS.

3.6. Combination Effect of Brassinin and Doxorubicin in HCT116p53+/+ Cells

A doxorubicin is potent drug to many kinds of solid tumors. However, the dosage
of this drug which is essential for maximizing their anti-cancer effect [29,30]. Therefore,
it is necessary to find new medications for combination therapy using compounds. To
check the combination of Brassinin and doxorubicin in HCT116p53+/+ cells by western
blotting. As shown in Figure 6A, Brassinin enhanced the apoptotic protein cleaved-PARP
and tumor suppressor p53 expression with doxorubicin in a dose-dependent manner in
HCT116p53+/+ cells.
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Figure 6. Combination effect of Brassinin and doxorubicin. (A) HCT116p53+/+ cells were treated with
or without doxorubicin for 24 h. Western blotting was conducted with antibodies cleaved-PARP, p53
and β-actin. (B) A mechanistic scheme for Brassinin-induced p53 dependent apoptosis via L5.

4. Discussion

Brassinin have been study as anti-cancer drug in cancer cells [18,20]. The most recent
paper found that Brassinin may be a novel anti-colon cancer target therapy through STAT3–
JAK2 pathway. However, these studies did not discuss its fundamental mechanisms,
especially p53 in cancer cells. As far as we know, this is the first study to discover the
Brassinin induces apoptosis by activating p53 in colon cancer cells.

It is known that p53 acts as a tumor suppressor gene in various cancer cells.
Once p53 is activated, it causes apoptosis, ferroptosis, senescence, and cell cycle arrest;

and inhibits migration, and metastasis in cancer cells. Many of drugs have been identified
about p53 responsive regulation of cancer cell growth and apoptosis [1,4,31]. Our cell-
based studies showed that Brassinin activating of p53 expression dose- and time-dependent
manner. Additionally, Brassinin induced apoptosis dose- and time-dependent manner
as well. Consistently, Brassinin increased the sub-G1 population in HCT116p53+/+ and
HCT116p53−/− cells.

To check whether Brassinin induced apoptosis by activating p53, we treated Brssinin
on p53 wild-type HCT116 and p53 null-type HCT116 cells. Furthermore, we treated
Brassinin after treated with p53 siRNA for knockdown of p53 in p53 wild-type HCT116
cells. Interestingly, Brassinin induced apoptosis in p53 wild-type HCT116 cells more than
p53 null-type HCT116 cells. Additionally, Brassinin needs L5 to cause apoptosis in cancer
cells. According to previous studies, ribosomal RNA processing is critically involved in p53
activation. It is known that L5 or L11 plays a role in controlling the activity of p53 [24,25,32].
Here, our data suggested that Brassinin induced apoptosis through RPL5 in HCT116 cells.

CNOT2, a subunit of the CCR4-NOT complex, is known to be involved in apopto-
sis, metastasis, angiogenesis, and autophagy in various type of cancer cells as an onco-
gene [6,33,34]. We found that Brassinin reduced the expression of CNOT2 dose- and
time-dependent manner in HCT116 cells.

Additionally, Brassinin enhanced the anti-cancer effect in HCT116 cells with a doxoru-
bicin which is used to treat colon cancer drug. Brassinin induced p53 and cleaved-PARP
in p53 wild-type HCT116 cells, demonstrating the combination effect of Brassinin and
doxorubicin by western blotting. The results of this experiment show the possibility that
Brassinin can be administered in combination with existing treatments as a new drug for
colon cancer cells.
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5. Conclusions

Thus, these new findings will provide more insight into the p53 activation function of
Brassinin. In summary, our study demonstrates that Brassinin induced apoptosis by p53
activating in cancer cells. This information would be useful for anti-cancer drug discovery
in the future.
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