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Abstract: Background: Aim of the study was to test the accuracy of AI-based software for de-
tection of large vessel occlusion (LVO) with computed tomography angiography (CTA) in stroke
patients using an experienced neuroradiologist’s evaluation as the reference. Methods: Consecutive
patients who underwent multimodal brain CT for suspected acute ischemic stroke were retrospec-
tively identified. The presence and site (classified as proximal and distal) of LVO were assessed
in CTA by an experienced neuroradiologist as a reference and compared to readings of three med-
ical students and AI-based software, the e-CTA. Results: One-hundred-eight participants with a
mean age of 70 years (±12.6); 55 (50.9%) females were included. Neuroradiologist found LVO in
70 (64.8%) cases: 45 (41.7%) proximal, and 25 (23.1%) distal. The overall sensitivity for e-CTA was
0.67 (95%CI 0.55–0.78); 0.84 (95%CI 0.71–0.94) for proximal, and 0.36 (95%CI 0.18–0.57) for distal LVOs.
Overall specificity and accuracy for e-CTA were 0.95 (95%CI 0.82–0.99) and 0.77 (95%CI 0.68–0.84),
respectively. The student’s performance was similar to e-CTA. Conclusions: The tested software’s
performance is acceptable for the detection of proximal LVOs, while it appears to be not accurate
enough for distal LVOs.

Keywords: artificial intelligence; cerebral angiography; spiral computed tomography; acute stroke;
cerebrovascular occlusion

1. Introduction

Mechanical thrombectomy (MT) is the current standard of care in patients with acute
stroke and large vessel occlusion (LVO) [1,2]. The presence or absence of an LVO is a pre-
requisite in patient selection for MT. For this purpose, computed tomography angiography
(CTA) is the most frequently used modality. It demonstrates the site of cerebral artery
occlusion and yields noninvasive information on the extra- and intracranial vasculature
before endovascular treatment.

Recently, several artificial intelligence (AI) based automated analysis platforms for
detecting LVO on CTA images have been introduced and are increasingly used. They are
supposed to allow faster review of CTA data for therapy decisions. One of the vendors of
automated analysis platforms claims a very high accuracy of their software for detecting
LVOs, reaching a sensitivity of 97% and a specificity of 96% [3]. However, the results of
several previous studies, all within the last two years, are significantly discrepant, providing
inconclusive evidence for the real diagnostic value of automated analysis platforms for the
detection of LVOs [4–8].

A systematic review published by Murray et al. in 2020 cites only three conference
abstracts on using AI algorithms to detect LVOs from CTA images [9].
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Therefore, there is an ongoing discussion within neuroradiological and neurological
communities regarding the application of AI-based automated analysis platforms for the
detection of LVOs in making therapeutic decisions in stroke patients. The role of this
software in the diagnostic work-up of stroke patients has not been established yet.

Considering this, we designed the study aiming to test the diagnostic accuracy of an AI-
based automated analysis platform for detection of LVO on CTA images in acute ischemic
stroke patients using an experienced neuroradiologist’s evaluation as the reference.

2. Material and Methods
2.1. Study Participants

The study was approved by the local institutional review board. Written consent was
waived based on the retrospective study design.

Consecutive patients presenting to our institution between October 2020 and February
2021 who underwent multimodal brain CT for a suspected acute ischemic stroke and met
the inclusion criteria were retrospectively identified using our Radiological Information
System and Picture Archiving and Communication System. The inclusion criteria were:
(1) patient ≥18 years old, and (2) multimodal stroke CT protocol performed within 24 h
of symptom onset or last seen well. Exclusion criteria were: (1) technically inadequate
CTA (poor contrast bolus or substantial motion or metal artifact that precluded accurate
assessment of the intracranial arteries to the level of the distal M2 segments of the mid-
dle cerebral arteries by an experienced neuroradiologist), and (2) localization of LVO in
posterior circulation as the tested AI software does not provide an assessment of posterior
circulation vessels.

2.2. CT Image Acquisition and Reconstruction Technique

All patients were scanned on a 128-slice multi-detector CT SOMATOM Definition
AS+ (Siemens Healthcare GmbH, Erlangen, Germany). Our institution’s routine multi-
modal stroke CT protocol consisted of unenhanced CT followed by computed tomography
perfusion (CTP) and CTA.

Unenhanced CT scans were acquired in the helical mode with the following parame-
ters: 0.6 mm slice collimation, spiral pitch factor of 0.55, tube voltage of 120 kV, and image
matrix 512 × 512. Images were reconstructed at 1 mm overlapping sections, iterative recon-
struction factor of 5 and convolution kernel J30s. Axial, coronal, and sagittal multiplanar
reconstructions were performed at 3 mm slice thickness.

For CTP, 50 mL of nonionic contrast agent was injected intravenously at a rate of
6 mL/s followed by 40 mL saline flush administered at the same rate. The scanning
parameters were 80 kVp and 200 mA. Scans were performed every 3 s during the first
10 s, every 1.5 s during the following 25 s, and again every 3 s during the remaining 25 s.
They were started with a delay of 2 s after contrast material injection, providing a total
of 28 volume datasets. The total coverage in the z-axis was 96 mm, with a slice width of
10 mm obtained in 5 mm increments using a shuttle mode (adaptive 4-D spiral).

Perfusion parameters were calculated using the commercial perfusion software pack-
age syngo.via CT Neuro Perfusion (Siemens Healthcare GmbH, Erlangen, Germany) based
on a deconvolution algorithm with the least mean square fitting.

For the subsequent CTA, 80 mL of the same nonionic contrast agent was injected
intravenously at a rate of 5 mL/s, followed by a 40 mL saline flush administered at the
same rate. Contrast bolus triggering was performed in the aortic arch. Parameters for
the helical acquisition were as follows: craniocaudal coverage from the aortic arch to
vertex, 100 kV tube voltage with dose modulation, slice collimation width 0.6 mm, image
matrix 512 × 512, and spiral pitch factor 0.5. The following reconstruction parameters were
used: iterative reconstruction factor of 5 and convolution kernel H10f. Axial images were
reconstructed at 0.6 mm overlapping sections. Axial, coronal, and sagittal MIP images
were reconstructed at 3 mm thickness.
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2.3. LVO Definition

For this study, the term intracranial LVO was classified into two types: (1) proximal
anterior circulation occlusions involving the supraclinoid internal carotid artery (ICA)
segment and the middle cerebral artery (MCA-M1); the MCA-M1 segment was defined as
from its origin to its genu along the inferior aspect of the Sylvian fissure. The MCA beyond
the origin of the anterior temporal artery or beyond early bifurcations was considered as
an M1 continuation, provided the postbifurcating course preceded the genu; and (2) distal
anterior circulation occlusions involving the MCA-M2. The M2 segments were defined as
those immediately distal to the MCA bifurcation/trifurcation that ascend vertically within
the Sylvian fissure.

Proximal occlusions were further classified as limited to supraclinoid ICA, ICA extending
to proximal part of MCA-M1, and limited to MCA-M1.

2.4. Image Analysis

The reference standard was set by a board-certified interventional neuroradiologist
with 15 years of experience blinded to all clinical and imaging data, including data on
interventional therapy and follow-up. CTAs were assessed in axial, coronal, and sagittal
MIP images reconstructed at 3 mm thickness.

The CTAs were also assessed by three last year medical students from the Radiological
Scientific Circle of our University after 2 h training in assessing CTA. They were blinded to
any supporting information. Three students assessed CTAs together, and their findings
were recorded in consensus. They analyzed images in the same manner used by an
interventional neuroradiologist.

The technical adequacy of the CTA was first assessed.
The following features were then recorded: the presence, side, and site of an intracranial LVO.
The time gap from CTA to the initial digital subtraction angiography (DSA) series was

recorded as well.
All CTP exams were assessed regularly by a radiologist on duty for clinical use,

but their results were not recorded for the purpose of this study.

2.5. LVO Detection Using Automated Software

An automated tool—e-CTA (a part of e-STROKE, version 10.1p3, Brainomix Ltd.,
Oxford, UK)—was used to analyze each patient’s CTA raw data for the presence, side, and site
of an intracranial LVO.

The e-Stroke Suite image processing algorithms follow an AI approach, with a combi-
nation of traditional 3D graphics and statistical methods and machine learning classification
techniques. The input DICOM data is first resampled to correct any gantry tilt and stan-
dardize the input resolution. Then, a fast proprietary registration approach is applied to
re-align the data, removing any tilt and rotation. This ensures that the image is presented
in a standard reference frame.

The e-CTA uses a combination of machine learning and deep learning algorithms to
identify LVOs. The e-CTA received CE mark certification in 2018.

In all cases, processing time, defined as the time from data transmission to the recep-
tion of results, was recorded.

2.6. Statistical Analysis

The analysis of sensitivity, specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and accuracy to detect LVOs on the correct side was performed for any
occlusion (overall: proximal or distal). For proximal occlusions (excluding distal occlusions)
and distal occlusions (excluding proximal occlusions), the analysis of sensitivity was per-
formed, and 95% confidence intervals were calculated with the exact method. Interobserver
agreement between the neuroradiologist, medical students and e-CTA was assessed with
Cohen’s kappa coefficient. Statistical calculations were performed by a medical statistician
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(K.S.) using Statistica 13 data analysis software (TIBCO Software Inc., Palo Alto, CA, USA)
with Plus Bundle 5.0.96.

3. Results

The inclusion criteria were met by 113 patients. Five patients with posterior circulation
occlusion were excluded. None of the patients were excluded due to technically inadequate
CTA. Finally, 108 participants were included in the study. Their mean age was 70 years
(±12.6 years), and 55 (50.9%) were females.

The neuroradiologist found LVOs in 70 (64.8%) cases, of which 45 (41.7%) were prox-
imal, and 25 (23.1%) were distal occlusions. In all 70 cases with LVOs detected by a
neuroradiologist, MT was subsequently performed. Initial DSA series preceding MT con-
firmed the presence of LVOs detected by a neuroradiologist with CTA in all cases without
false positive ones. This gave the specificity of 100% for interventional neuroradiologist.

The mean time gap from CTA to the initial DSA series was 24 min (±8 min). In patients
treated with intravenous thrombolysis, the initial DSA series showed migration of throm-
bus from the proximal to the distal part of M1 in two cases and from the proximal to the
distal part of M2 in one case.

Medical students detected 63 (58.3%) LVOs, while e-CTA revealed 49 (45.4%) LVOs.
The findings are presented in detail in Table 1.

Table 1. Distribution of LVOs detected by neuroradiologist, e-CTA and medical students.

Occlusion Localization Neuroradiologist
(n = 70)

e-CTA
(n = 49)

Medical Students
(n = 63)

Proximal

ICA 14 13 8

ICA+MCA-M1 7 6 9

MCA-M1 24 22 36

Distal M2 25 8 10

Out of the 70 LVOs, 23 (32.9%) were missed by e-CTA, from which 7 out of 45 (15.6%)
were proximal and 16 out of 25 (64.0%) were distal. Examples of proximal and distal LVOs
detected by e-CTA are illustrated in Figure 1.
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Figure 1. CTAs of stroke patients with LVOs correctly detected by e-CTA. (A) e-CTA detected
proximal LVO of the right MCA-M1 (red circle); (B) e-CTA detected distal LVO of the left MCA-M2
(red circle).

This gave the overall sensitivity for e-CTA of 0.67 (95% CI 0.55–0.78), 0.84 (95% CI 0.71–0.94)
for proximal LVOs, and 0.36 (95% CI 0.18–0.57) for distal LVOs. Overall specificity,
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PPV, NPV and accuracy for e-CTA were 0.95 (95%CI 0.82–0.99), 0.96 (95%CI 0.86–0.99),
0.61 (95%CI 0.47–0.73), and 0.77 (95%CI 0.68–0.84), respectively. The mean processing time
was 96 seconds (±23 s).

In total, 17 out of 70 (24.3%) LVOs were missed by the medical students, from which
3 out of 45 (6.7%) were proximal, and 14 out of 25 (56.0%) were distal. The medical students
achieved the overall sensitivity of 0.76 (95% CI 0.64–0.85), 0.93 (95% CI 0.82–0.99) for
proximal LVOs, and 0.44 (95% CI 0.24–0.65) for distal LVOs. Students reached the overall
specificity, PPV, NPV, and accuracy of 0.74 (95% CI 0.57-0.87), 0.84 (95% CI 0.73–0.92),
0.62 (95% CI 0.47–0.76), and 0.75 (95% CI 0.66–0.83), respectively.

Table 2 summarizes the performance of e-CTA and medical students.

Table 2. Distribution of proximal, distal, and overall LVOs falsely detected and missed by e-CTA and medical students with
overall sensitivity, specificity, PPV, NPV, and accuracy.

Occlusion Localization
e-CTA Medical Students

Falsely Detected
LVOs Missed LVOs Falsely Detected

LVOs Missed LVOs

Proximal

ICA (n = 14) — 2 3 —

ICA+MCA-M1 (n = 7) — 1 — —

MCA-M1 (n = 24) 2 4 4 3

Distal M2 (n = 25) — 16 3 14

Overall false results 2/38 (5.3%) 23/70 (32.9%) 10/38 (26.3%) 17/70 (24.3%)

Overall sensitivity 0.67 (0.55–0.78) 0.76 (0.64–0.85)

Overall specificity 0.95 (0.82–0.99) 0.74 (0.57–0.87)

Overall PPV 0.96 (0.86–0.99) 0.84 (0.73–0.92)

Overall NPV 0.61 (0.47–0.73) 0.62 (0.47–0.76)

Overall accuracy 0.77 (0.68–0.84) 0.75 (0.66–0.83)

Notes: 95% CI are provided in brackets.

Interobserver agreement between the neuroradiologist and medical students was
0.47 (Cohen’s kappa) overall, 0.68 for proximal LVOs and 0.18 for distal LVOs. Levels of
interobserver agreement between neuroradiologist and e-CTA were 0.55, 0.78, and 0.34,
respectively. Finally, respective levels of interobserver agreement between medical students
and e-CTA were 0.45, 0.57, and 0.03.

4. Discussion

The introduction of MT revolutionized the treatment of ischemic stroke, significantly
improving outcomes. This therapy became the standard of care in patients with occlusion
of major arteries supplying the brain, termed large vessel occlusion (LVO). As the baseline
inclusion criterion for MT is the presence of an LVO, its accurate and rapid detection
is necessary.

Routinely, CTA is used for this purpose as a part of diagnostic stroke protocols.
However, its quick and accurate assessment targeted at LVO’s detection needs expertise and
relies on the learning curve. The most competent assessment is guaranteed by experienced
neuroradiologists. However, as they are usually accessible in comprehensive stroke centers
performing MT, the majority of stroke patients primarily are transported to the nearest
stroke unit without a neuroradiologist present. Therefore, deciding whether a patient is
eligible for MT is frequently challenging in primary stroke units.

In the last few years, several vendors developed AI-based software packages assist-
ing radiologists in the selection of stroke patients for MT, particularly in LVO detection:
e-STROKE (Brainomix Ltd., Oxford, UK), RAPID CTA (iSchemaView, Menlo Park, CA, USA),
and Viz LVO (Viz.ai, San Francisco, CA, USA).

We tested the performance of e-CTA, a part of the e-STROKE package, for LVO
detection using an experienced neuroradiologist’s reading as the reference. Our results
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show low overall sensitivity of 0.67 and accuracy of 0.77 for e-CTA in LVO detection,
especially for distal occlusions—0.36 and 0.71, respectively. The sensitivity of 0.84 for
proximal LVOs could be considered satisfactory. However, the sensitivity of 0.36 for distal
LVOs should be regarded as insufficient. The e-CTA missed 32.9% LVOs. The majority of
missed occlusions were localized distally. This means that 1/3 of stroke patients with LVO
would be falsely disqualified from MT by e-CTA, which must be declared inadmissible.

Possibly, e-CTAs performance could be improved by a more comprehensive and more
precise training on large datasets containing a wide range of real-world CT scans from
stroke patients (focused on cases with distal LVOs) and negative controls, with ground-truth
data from additional imaging such as MRI and CT, along with other modalities and clinical
information. These datasets should contain examples of scans captured with scanners
from all major manufacturers from a wide range of countries worldwide. Noteworthy,
in our study, the last year medical students after 2 h training reached similar sensitivity and
accuracy but much lower specificity compared to AI-based software. Such a constellation
may be caused by e-CTA’s settings which prefer high specificity at the expense of sensitivity.

It is worth referring to the overdetection of MCA-M1 occlusions by medical students,
with a total of 36, vs. 24 revealed by the neuroradiologist. However, students found
significantly fewer ICA (8 vs. 14) and MCA-M2 (10 vs. 25) occlusions compared to
neuroradiologist. This could be explained by students mistakenly classifying some ICA
occlusions as proximal MCA-M1 while some proximal MCA-M2 occlusions as distal
MCA-M1. These mistakes were presumably caused by their limited experience assessing
complicated anatomy of the cerebral arteries in CTA images.

We found only a single study testing the same software published by Seker et al.,
who found a higher overall sensitivity of 0.84 in a group of 144 stroke patients [7].
The performance of e-CTA in both studies is similar for proximal LVO. In this group,
the sensitivity reported by Seker et al. was 0.93 vs. 0.84 in our study, and their accuracy was
0.97 vs. 0.89 in our study [7]. This discrepancy could be explained by a different definition
of proximal and distal LVOs used in both papers. Seker et al. limited proximal LVO to
the initial part of MCA-M1 up to its anterior temporal branch, while the continuation of
MCA-M1 beyond the anterior temporal branch was classified as distal LVO [7]. We used a
different approach based on anatomy, as described in the methods section.

The added value of our study is a more comprehensive analysis by including distal
LVOs, which was omitted in the paper published by Seker et al. [7]. It should be emphasized
that according to guidelines, MT is recommended in distal LVOs as well

The only study showing similar results to ours was presented as the conference
abstract by Dornbos et al., who reported the overall sensitivity of 0.66 and 0.39 for distal
LVO using Viz LVO [10].

However, other studies evaluating Viz LVO revealed much higher sensitivities of
0.81–0.90 overall, 0.92 for proximal, and 0.54 for distal occlusions [8,11–13].

Similarly, two papers evaluating RAPID CTA showed much higher sensitivity values
compared to ours. Amukotuwa et al. report the sensitivity of 0.92 overall, 0.94 for proximal,
and 0.86 for distal LVO detection [4]. Dehkharghani et al. show an overall sensitivity of 0.96 [5].

According to the only systematic review published in 2020 by Murray et al., LVO detection
studies variably report AI software performance with broad sensitivities of 0.67–0.98 [9].
However, this systematic review is based only on several conference abstracts, as all of the
above-mentioned studies were published later.

Although all comprehensive platforms by iSchemaView, Viz.ai, and Brainomix are
based on a convolutional neural network (CNN) algorithm to detect LVOs, each vendor
uses different modifications of this method. These modifications include different software
settings that prefer high sensitivity at the expense of specificity or vice versa. Additionally,
in RAPID CTA, a CTA vessel density detection feature is used to identify relative distal
MCA vessel asymmetries suggestive of an LVO. These differences may impact the results
of the evaluation studies causing the above-presented discrepancies.
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Relatively poor performance of the tested AI-based software in our study, especially
for distal LVOs, could be partially explained by the inconsistent definition of proximal and
distal LVOs in the literature. Some authors, like Seker et al. and Amukotuwa et al. [4,7],
define the vessel segment beyond the anterior temporal branch as a so-called M2 trunk
which is classified as distal, while others, like the authors in the present study, regard it as
the distal portion of the M1 segment which is classified as proximal. This difference could
reduce the sensitivity of e-CTA for distal LVO detection in our study.

Lower sensitivity for distal LVO detection compared to proximal could also be caused
by the more complex anatomy of MCA-M2 branches, which makes automatic segmentation
more challenging; the smaller size of vessels with poorer contrast filling and their greater
individual anatomical variability compared to ICA and MCA-M1.

The other source of discrepant results could be that AI systems were evaluated against
different reference standards of different qualities. In the study by Seker et al., it was a
neuroradiologist with more than ten years of experience; in the study by Amukotuwa
et al., two diagnostic neuroradiologists with eight and nine years of post-fellowship expe-
rience; in the study by Dehkharghani et al., three board-certified neuroradiologists with
11, 7, and 7 years of experience [4,5,7]. In our study, the reference standard was set by a
board-certified interventional neuroradiologist with 15 years of experience in assessing
CTA. Therefore, a unified definition of “ground truth” against which algorithms will be
evaluated is warranted.

Despite limited and inconclusive evidence, there is no doubt that AI has the potential to
improve fast and accurate stroke diagnosis and LVO triage. In our study, the mean processing
time of e-CTA was about 1.5 min, which is significantly shorter than human reading.

AI-based software packages are not limited to LVO detection but automatically cal-
culate ASPECTS score and perfusion results required for decision-making in an extended
therapeutic window of >6 h for MT. The application of AI software in the interpretation of
large stroke imaging datasets may reduce false-negative human errors in image interpreta-
tion, increase the efficiency of stroke triage, and finally improve long-term outcomes.

Considering the ongoing improvement of AI-based algorithms, we share the opinion
expressed by Murray et al. that the value of the AI software as a tool for clinicians in the
management of stroke patients will presumably increase in the future [9].

Study Limitations

The present study is limited to testing only one AI software on a relatively small popula-
tion. Another limitation is the usage of a single reader assessment as the reference standard.

There remains a paucity of clinical trials evaluating AI software. Systematic and
standardized methods for validating and comparing these tools with established “ground
truth” are also warranted.

5. Conclusions

In conclusion, our study results show that the tested AI software’s accuracy is similar
to medical students and much poorer compared to the reference established by neuroradiol-
ogist, especially for distal LVOs. However, its sensitivity of 0.84 in detecting proximal LVOs
exceeds the threshold of 0.80, which is considered satisfactory for correct LVO detection [5].
Generally, despite its important advantage, which is the ability to deliver immediate results,
at the current stage of development, it is not accurate enough to support physicians in LVO
detection in stroke patients.
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