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Abstract: Wafer maps provide engineers with important information about the root causes of failures
during the semiconductor manufacturing process. Through the efficient recognition of the wafer
map failure pattern type, the semiconductor manufacturing process and its product performance can
be improved, as well as reducing the product cost. Therefore, this paper proposes an accurate model
for the automatic recognition of wafer map failure types using a deep learning-based convolutional
neural network (DCNN). For this experiment, we use WM811K, which is an open-source real-time
wafer map dataset containing wafer map images of nine failure classes. Our research contents
can be briefly summarized as follows. First, we use random sampling to extract 500 images from
each class of the original image dataset. Then we propose a deep convolutional neural network
model to generate a multi-class classification model. Lastly, we evaluate the performance of the
proposed prediction model and compare it with three other popular machine learning-based models—
logistic regression, random forest, and gradient boosted decision trees—and several well-known deep
learning models—VGGNet, ResNet, and EfficientNet. Consequently, the comprehensive analysis
showed that the performance of the proposed DCNN model outperformed those of other popular
machine learning and deep learning-based prediction models.

Keywords: wafer map failure recognition; machine learning; deep learning; convolutional neural
network; multi-class classification; image data

1. Introduction

Nowadays, the semiconductor industry is developing rapidly, and more precise prod-
ucts are being designed and produced as a result of the great advances in technology.
However, semiconductor failure can occur at any step during the manufacturing process.
Such failures are usually caused by human mistakes, particles from equipment, chemical
stains, etc. [1]. The wafer map, which is a graphical representation of semiconductor
devices containing basic information regarding the thickness, size, and location of failures
in semiconductor wafers, can be used to visualize failures on semiconductor wafers [2].
Typically, experienced process engineers are able to define wafer failure pattern types as
Center, Donut, Local, Edge-Local, Edge-Ring, Scratch, Random, Near-Full, and None [3].
Each type of wafer failure occurs for different reasons during the manufacturing process.
For example, Scratch is caused by machine handling, while Center and Edge-Ring are
caused by thin film deposition and etching problems, respectively [4,5]. Hence, it is neces-
sary to accurately detect wafer map failure types during the semiconductor manufacturing
process.

The simple recognition of the wafer map failure pattern types can be conducted by
experienced semiconductor engineers for the detection of the actual causes of semicon-
ductor failure. However, this entire process is inefficient, expensive, and time-consuming.
The recognition of wafer map failure types by human experts has an accuracy of only
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45% or lower [6]. To recognize wafer map failure types more efficiently and accurately,
various machine learning (ML)-based approaches have been developed. If the wafer map
failure types are predefined in the training data, then supervised learning techniques such
as k-Nearest Neighbor (KNN) [7], decision tree [4], ANN [8], and SVM [3,9], etc., can be
applied to generate the classification models for the common wafer map failure types. On
the other hand, unsupervised learning techniques—such as the clustering [5], adaptive
resonance theory network 1 (ART1) [10], multi-step ART1 [11], etc., methods—can be used
to recognize wafer map failure types where there is unknown prior information regarding
failure type in the training data. In addition, deep learning (DL)-based approaches such as
convolutional neural networks (CNN) have recently been used for image processing tasks
in many domains [12–16]. It has become a standard method for achieving outstanding
image classification performance [17]. Several different classification models based on
CNN have also been used to recognize the failure types of wafer maps [1,9,17]. These
models were generated by taking the wafer map image as the input and then deciding the
wafer map failure types as the output of the models. Nevertheless, there are several chal-
lenging problems raised by previous research on wafer map failure pattern identification
in semiconductor manufacturing, as described in the following. First, there are no ML or
DL algorithms that can always be good in all domains, because each algorithm has various
limitations. Second, many previous studies used large-scale raw wafer map data, which
may cause the problems such as inefficiency, computational cost, and expensive storage.
Third, as manufacturing processes become more complicated and refined, changes often
occur in the wafer map failure pattern types [18].

Therefore, this paper proposes a DL-based multi-class classification model using
the deep convolutional neural network (DCNN) for the automatic recognition of wafer
map failure pattern types during semiconductor manufacturing processes on the basis of
real wafer map image data. The model can recognize the wafer map failure types while
automatically extracting its features. To demonstrate the performance of our proposed
model, we compare the proposed model with several popular ML-based models, such as
LR [19], RF [20], gradient boosted decision trees (GBDT) [21], and several well-known DL-
based algorithms: VGGNet [22], ResNet [23] and EfficientNet [24]. The major contributions
of this paper can be summarized as follows:

• The whole experiment was conducted using the real-time wafer map dataset WM-
811K [25].

• Using the random sampling technique, we were able to extract the representative
image data of different wafer map failure pattern types, improving the efficiency of
the experiment, and reducing the temporal and spatial complexity without the use of
large-scale raw wafer map data.

• A deep learning-based DCNN model is proposed for the automatic recognition of
wafer map failure pattern types.

• The experimental results demonstrate that the proposed model enhances the accuracy
of the recognition of wafer map failure pattern types compared to other popular ML-
and DL-based models.

The remaining part of this paper is organized as follows. In Section 2, we briefly
introduce previous studies focused on the recognition of wafer map failure types. Section 3
describes the methodology used in this paper. The experiments and discussion are shown
in Section 4. Finally, the conclusion is given in Section 5.

2. Literature Review

Over the past two decades, many different techniques have been developed to detect
wafer map failure patterns. In this section, several previous studies about the recognition
of wafer map failure types are briefly introduced. For instance, fault patterns have been rec-
ognized using the KNN rule-based technique (FD-KNN) for semiconductor manufacturing
processes, since it is able to overcome several limitations of principal component analysis
(PCA)-based methods, such as the nonlinearity of most batch processes, and multimodal
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batch trajectories due to product mix, etc., in the semiconductor manufacturing industry [7].
In addition, a principal component-based KNN (PC-KNN) was developed by combining
the advantages of PCA with respect to dimensionality reduction with those of FD-KNN
with respect to nonlinearity and multimode handling [26]. A recognition system using
multi-class SVM with a defect cluster index was presented to efficiently and accurately
recognize wafer defect patterns [27]. An RF algorithm was used to build prediction models
exploiting wafer map features as input variables in order to better predict the die-level fail-
ures in the final test [28]. Several ML-based detection approaches, such as Gaussian density
estimation, Gaussian mixture model, k-means Clustering, LR, stochastic gradient descent,
etc., have been used to detect faulty wafers in semiconductor manufacturing [29,30]. More-
over, ensemble learning-based ML approaches have also shown great performance in the
recognition of wafer map failure pattern types. For example, a decision tree ensemble
learning-based wafer map failure pattern recognition method was proposed based on
radon transform-based features, such as max, min, average, standard deviation, where
random sampling was used to select the experimental dataset [4]. A voting ensemble
classifier was developed to identify wafer map failure pattern types by combining several
popular ML classifiers, such as random forest (RF), logistic regression (LR), gradient boost
machines, and ANN with multiple feature types [8].

Additionally, with the rapid developments taking place within the semiconduc-
tor industry, manifold approaches have been designed using DL-based techniques for
the recognition of wafer map failure pattern types, such as different CNN structures,
convolution-based autoencoders, etc. As an example, [31] proposed a CNN-based method
for automatic wafer surface failure classification and the detection of unknown failure
classes. The results showed that it was able to outperform the multilayer perceptron,
SVM, and stacked autoencoder methods. A novel CNN-based method was also used to
automatically recognize the failure pattern types on wafer maps while using density-based
spatial clustering of applications with noise (DBSCAN) to reduce the effects of noise, and
applying data augmentation to improve the performance of the CNN method [1]. More-
over, a method using CNN for the classification of 22 wafer map failure pattern types and
image retrieval has been proposed [17]. A DL-based CNN for automatic wafer defect iden-
tification (CNN-WDI) was generated using a data augmentation technique to overcome
the class imbalance problem [9]. A CNN-based wafer bin map classification model, as
well as a neural network-based bin coloring method called Bin2Vec, have been proposed
and designed [32]. Additionally, a deep convolutional encoder-decoder neural network
architecture was proposed for detecting and segmenting the eight basic abnormal wafer
map failure patterns [33]. Furthermore, a novel methodology using deep selective learning
for wafer map failure pattern classification was presented, while proposing a convolutional
autoencoder model to build a data augmentation framework for synthetic sample genera-
tion [34]. A convolution-based variational autoencoder (CVAE) was also developed for the
identification of wafer map failure patterns while solving the data imbalance issue [18].

3. Methodology

This paper proposes a DL-based DCNN prediction model for the automatic recog-
nition of wafer map failure types on the basis of multi-class wafer map image data. To
evaluate the performance of the proposed prediction model, we compare the performance
of the proposed DCNN model with that of three state-of-the-art ML algorithms, LR, RF,
GBDT, and several well-known DL-based algorithms named VGGNet, ResNet, and Effi-
cientNet [19–24]. The proposed DCNN and the applied ML- and DL-based wafer map
failure recognition models will be briefly introduced in the following.

3.1. Convolutional Neural Network

A deep neural network (DNN) is an artificial neural network with multiple hidden
layers between the input and output layers, which can enhance classification accuracy.
CNN is a special type of DNN designed for image classification [35]. The basic structure
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of CNN consists of 5 layers: the input layer, the convolutional layer, the pooling layer,
the fully connected layer, and the output layer; detailed explanations of these layers are
provided in the following [1,12,32,36]:

• Input layer

The input layer receives the raw pixel values of the original images. This layer includes
a three-dimensional matrix, in which each dimension denotes one of the dimensions of the
image, for example, height, width, and the number of color channels.

• Convolutional layer

A convolution layer is also known as the feature extractor layer, since features are
extracted from the image within this layer. To perform the convolution, a convolution filter
is simply slid across the image while maintaining the spatial relationships between the
pixels, and the sum is calculated by multiplying the filter’s elements by the square of the
image it covers. The input to the convolutional layer consists of the three-dimensional
matrix, height, width, and the number of color channels. The convolutional process is
shown in Equation (1) [36]:

xl
i = f

(
ml−1

∑
j=1

xl−1
i wl

i,j + bl
i

)
,
(

i = 1, 2, . . . , ml
)

(1)

where xl
i is the ith output feature on the lth layer, xl−1

i is the jth output feature on the
(l−1)th layer, wl

i,j is the weight vector of the convolutional kernel between the ith feature

on the lth layer and the jth feature on the (l−1)th layer, bl
i is the bias, and ml is the number

of features on the lth layer. In addition, each component of the convolution feature map is
treated as a nonlinear function f (x).

In particular, the rectified linear unit (ReLU) [37] is a commonly used nonlinear
function, which we refer to as the activation function.

f (x) = max(0, x) (2)

• Pooling layer

The pooling layer is applied to reduce the amount of computational power required
to process the data by using dimensionality reduction. Two types of pooling method
are commonly used: max-pooling and average-pooling. In the max-pooling method, the
maximum value from the region covered by the filter is used, and in the average-pooling
method, the average of the values is used. The mathematical equations for both methods
are presented in Equations (3) and (4):

yij = Max xi,j (3)

yij = Average xi,j (4)

These two common types of pooling method are shown in Figure 1.

• Fully connected layer

The output of the final pooling or convolutional layer is flattened and fed as input to
the fully connected layer. The fully connected layer includes weights, biases, and neurons,
which are used to learn the possible nonlinear function in the space.

• Output layer

The output layer is also fully connected, and contains the class label that is the target
for the classification tasks. In this layer, the Sigmoid function is applied as an activation
function if the target is a binary classification task, and the Softmax activation function
activates each neuron for multi-class logistic regression and compresses its output to values
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between 0 and 1 for multi-classification tasks [1,12,35,38]. The mathematical equations for
the two activation functions are shown in Equations (5) and (6):

Sigmoid : f (x) =
1

1 + e−x (5)

Softmax : f (z)i =
ezi

∑K
j=1 ezj

, (i = 1, 2, . . . , K) (6)

where all zi values are the elements of the input vector to the final output layer and can
take any real value.

A simple CNN architecture is shown in Figure 2. The input layer receives the original
images as the input. The convolutional layer is used to extract high-level features from the
input images. The pooling layer reduces the sizes of particular features while maintaining
the most important information. During the convolutional and pooling layers, the output is
flattened to a 1D feature vector used as input for the fully connected layer, which connects
the neurons on the previous layer with the neurons on the current layer. The final prediction
results are calculated by the output layer.
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3.2. Proposed Method Architecture

The architecture of the proposed DCNN-based prediction model for wafer map failure
recognition is shown in Figure 3. In the proposed prediction model, the input image size
is 224 × 224, the ReLU [37] is used as an activation function for each convolutional layer
because of its efficiency, and the convolutional and max-pooling layers are used with 3 × 3
and 2 × 2 filter sizes, which are able to extract more detailed features while avoiding
there being too many parameters. During the training process, the number of filters is
increased with increasing depth of convolutional layers, which starts from 16 to 512 in
the proposed DCNN prediction model. He’s uniform variance scaling initializer [39,40]
and L2 regularization penalty (regularization parameter = 0.001) [41] are used in each
convolutional layer to improve the training speed while avoiding the overfitting issue,
and zero-padding [42] is used so that the output will have the same dimensions as the
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input. In addition, the proposed prediction model includes two fully connected layers
with 512 feature maps after the convolutional and max-pooling layers, and a dropout
rate of 0.5 is used to prevent overfitting [43] between the two fully connected layers. The
Softmax activation function [38] is used in the output layer with 8 neurons to classify
the input wafer map images with 8 classes, and the Adam optimizer [44] with a learning
rate of 0.001 is used for weight optimization, because it is computationally efficient and
can automatically decrease the learning rate [13]. The configuration parameters for the
proposed DCNN-based prediction model are shown in Table 1.
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denotes the convolutional layer, P the pooling layer, and FC the fully connected layer.

Table 1. The configuration parameters of the proposed DCNN-based prediction model.

Layer Detailed Parameters

Input layer Size (224 × 224)
C1 16 3 × 3 2D convolutional layer (Relu)
C2 16 3 × 3 2D convolutional layer (Relu)
P1 Max pooling layer 2 × 2
C3 32 3 × 3 2D convolutional layer (Relu)
C4 32 3 × 3 2D convolutional layer (Relu)
P2 Max pooling layer 2 × 2
C5 64 3 × 3 2D convolutional layer (Relu)
C6 64 3 × 3 2D convolutional layer (Relu)
P3 Max pooling layer 2 × 2
C7 128 3 × 3 2D convolutional layer (Relu)
C8 128 3 × 3 2D convolutional layer (Relu)
P4 Max pooling layer 2 × 2
C9 256 3 × 3 2D convolutional layer (Relu)
C10 256 3 × 3 2D convolutional layer (Relu)
P5 Max pooling layer 2 × 2

C11 512 3 × 3 2D convolutional layer (Relu)
C12 512 3 × 3 2D convolutional layer (Relu)
P6 Max pooling layer 2 × 2

Flatten
FC1 Fully connected layer 512 (Relu)

Dropout layer Dropout (rate = 0.5)
FC2 Fully connected layer 512 (Relu)

Output layer Output layer 8 (Softmax)

3.3. Applied Machine Learning and Deep Learning Methods for Comparison

To evaluate the performance of our proposed DCNN model, we applied three widely
used ML models—LR, RF, and GBDT—as well as several well-known DL models—VGGNet,
ResNet, and EfficientNet—and compared their performance with our proposed prediction
model. In the experiment, the representative VGG16, VGG19, ResNet50, ResNet101, and
EfficientNetB0 were used. All applied ML and DL algorithms are introduced briefly in the
following.
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LR [19] is a popularly used statistical model in ML, and uses a logistic function to
compress the output of linear equations in the classification problem to values between
0 and 1. The logistic function is used to describe the probabilities of possible outcomes.
RF [20] is an ensemble learning approach for classification, regression, and other tasks.
It constructs multiple decision trees that are then applied to different sub-samples of the
original dataset during training, and then it selects the class with the maximum votes of
the decision trees as the result during testing. Therefore, RF is able to deal with overfitting,
improving the final performance. GBDT [21] is a powerful ML algorithm for building
prediction models for both classification and regression problems. The models in GBDT
are built sequentially, and each subsequent model tries to reduce the error obtained by
the previous model. Finally, a strong model is produced that combines multiple decision
tree-based weak prediction models and maximizes the prediction accuracy. VGG16 and
VGG19 [22] are well-known VGGNet models, consisting of 16 and 19 weighted layers in
the architectures. They were proposed by the Visual Geometry Group of Oxford Univer-
sity in 2015 and were able to obtain accurate classification performance on a very large
image dataset. There are 13 convolution layers, 3 fully connected layers, 5 max-pooling
layers, and 1 Softmax layer in VGG16, and 16 convolution layers, 3 fully connected layers,
5 max-pooling layers, and 1 Softmax layer in VGG19. In the VGG16 and VGG19 models,
the number of filters increases with the increasing depth of convolution layers, which
starts from 64 to 512 feature maps during training and includes two fully connected layers
with 4096 neurons in each layer after the convolutional and max-pooling layers, and one
output layer with the Softmax activation function and 8 neurons. ResNet [23] is a highly
successful neural network that took first place in ImageNet Detection, ImageNet localiza-
tion, Coco detection, and Coco segmentation at the ILSVRC and COCO 2015 competitions.
ResNet50 and ResNet101 are residual network models that are 50 and 101 layers deep,
respectively [23]. The ‘shortcut connection’, which can fit the input from the previous
layer to the next layer without modifying the input, lies at the heart of the ResNet. In
2019, a novel CNN model called EfficientNet [24] was introduced, which is one of the most
efficient CNN models, and is able to achieve state-of-the-art accuracy on ImageNet as well
as common transfer learning tasks for image classification. The EfficientNet offers a range
of models (B0 to B7) that are both efficient and accurate at multiple scales. We used the
EfficientNetB0 in this paper. With a scaling heuristic, the efficiency-focused EfficientNetB0
model outperformed other models at each scale without requiring extensive grid searches
for the hyperparameters.

In addition, we also generated several models with less deep or much deeper layers
of our proposed DCNN-based model, DCNN1, DCNN2, DCNN3, and DCNN4, which
had very similar structures to that in the proposed method. The DCNN1 model includes
6 convolution layers, 3 max-pooling layers, 2 fully connected layers with 1 dropout layer
(rate = 0.5), and 1 Softmax layer. In comparison to DCNN1, DCNN2 has two extra convolu-
tion layers and one more max-pooling layer, the DCNN3 has two additional convolution
layers and one extra max-pooling layer than DCNN2, where the rest of the structures
in the models are similar to each other. The DCNN4 has a similar structure to that of
DCNN3, with the difference being that it only includes one fully connected layer, without
a dropout layer after that. In each model, the number of filters increases as the number
of convolutional layers becomes deeper, with (16, 32, and 64) filters in each feature map
of DCNN1, (16, 32, 64, and 128) in each feature map of DCNN2, (16, 32, 64, 128, and 256)
in each feature map of DCNN3, and (16, 32, 64, 128, 256, and 512) in each feature map of
DCNN4. The configuration of the DCNN1, DCNN2, DCNN3, DCNN4-based prediction
models is shown in Figure 4.
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4. Experiments and Discussion

In this section, we introduce the data description and preprocessing for the experiment,
and describe the performance measures for evaluating all of the ML and DL methods. After
that, the implementation environment for the experiments and the experimental results are
presented.

4.1. Data Description and Preprocessing

In this paper, we used the WM-811K dataset, which is a real-time semiconductor
dataset including 811,457 wafer map images collected from 46,293 lots during the semi-
conductor fabrication process [3]. This is an open-source dataset that can be downloaded
from the Multimedia Information Retrieval (MIR) laboratory website [25]. The dataset
includes nine regular wafer map failure pattern types: Center, Donut, Local, Edge-Local,
Edge-Ring, Scratch, Random, Near-Full, and None. The description of the dataset is shown
in Table 2. There are a total of 172,950 labeled data in the original dataset of 811,457, with
data for each failure class being highly imbalanced, especially the ‘Near-Full’ class, which
only contains 149 images. Hence, we removed the ‘Near-Full’ class from our experimental
data and focused on other eight wafer map failure pattern types. Figure 5 shows a typical
example of eight wafer map failure types. We used random sampling to extract 500 images
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for the eight classes from the original dataset. For the final experimental dataset, a total of
4000 images belonging to the eight classes were used. Then the experimental dataset was
split into training data, validation data, and test data, in proportions of 60%, 20% and 20%,
respectively.

Table 2. Data description.

Type Count

Center 4296 (2.5%)
Donut 555 (0.3%)
Local 3597 (2.1%)

Edge-Local 5199 (3.0%)
Edge-Ring 9682 (5.6%)

Scratch 1194 (0.7%)
Random 866 (0.5%)
Near-Full 149 (0.1%)

None 147,431 (85.2%)
Total 172,950 (100%)
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4.2. Performance Measures

To evaluate the performance of all ML- and DL-based prediction models for the
recognition of wafer map failures, we use the accuracy, precision, recall, F1-score, and
the area under the ROC curve (AUC) as the performance measures. The equations of the
performance measures are shown in Equations (7) to (10) as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

F1 − score =
(2 ∗ Recall ∗ Precision)

Recall + Precision
=

(2 ∗ TP)
2 ∗ TP + FP + FN

(10)

where the true positive, true negative, false positive, and false negative in the confusion
matrix are shown as TP, TN, FP, and FN in abovementioned equations, respectively.

4.3. Implementation Environment

For the experiment, all implementations were analyzed on a PC with Intel Xeon CPU
E5-2696 v5 @ 4.40 GHz, 512 GB RAM, and NVIDIA GeForce GTX 1080 24 GB. The ML- and
DL-based prediction models were developed using the Tensorflow [45], Keras [46], and
scikit-learn [47] packages in Jupyter Notebook [48] with Python (Version 3.6) [49].

4.4. Results of Prediction Models and Discussion

In the experiment, we proposed a DCNN prediction model for the recognition of wafer
map failures. The performance of the proposed DCNN prediction model was compared
with three popular ML-based algorithms—LR, RF, GBDT—and several well-known DL-
based algorithms—VGGNet, ResNet, and EfficientNet. The batch size and epochs of
the proposed DCNN and the other DL-based prediction models were designated as 96
and 25. The Adam optimizer was also used for the other predefined methods, because
of its efficiency. We tested different learning rates for the VGG16-, VGG19-, ResNet50-,
ResNet101-, and EfficientNetB0-based prediction models, and found that those five models
could be trained accurately using the training and validation dataset when the learning
rates were 0.0001, 0.0001, 0.000005, 0.00001, and 0.00001, respectively. The accuracy and loss
learning curves of the proposed DCNN model, as well as the VGG16-, VGG19-, ResNet50-,
ResNet101-, and EfficientNetB0-based prediction models are shown in Figures 6 and 7.
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Figure 6 shows the accuracy and loss learning curves of the proposed DCNN model
during training and validation. In Figure 6a, it can be seen that the training accuracy of
the proposed DCNN model dropped suddenly at the start of training, and then gradually
increased over the next few training epochs, while the validation accuracy was monotonous
during the first few epochs and then increased gradually. Figure 6b shows that the training
and validation loss declined slowly across all epochs.

Figure 7 shows the learning curves of the compared DL-based prediction models—
VGG16, VGG19, ResNet50, ResNet101, and EfficientNetB0. In Figure 7a,b, it can be seen
that the training and validation accuracy of the VGG16 model increased swiftly at first and
then increased gradually over several training epochs, whereas the training and validation
loss of the VGG16 model decreased rapidly at the beginning and then decreased gradually
over the following epochs. The training and validation learning curves of the VGG19 model
were very similar to those of the VGG16 model, as shown in Figure 7c–f, which illustrate
the learning curves of ResNet50, where the training accuracy slowly increased over time,
and the validation accuracy increased quickly during the initial stage and then steadily
increased over a series of training epochs, while the training loss exhibited little change,
and the validation loss decreased rapidly at the beginning and then gradually decreased
over the following epochs. The training and validation learning curves of ResNet101 and
EfficientNetB0 in Figure 7g–j are very similar to those of ResNet50, where it can be seen
that the validation accuracy increased faster than the training accuracy, and the range
of validation loss changes was higher than the training loss. However, the ResNet50-,
ResNet101-, and EfficientNetB0-based prediction models demonstrated a high probability
of overfitting compared to the VGG16- and VGG19-based prediction models, because those
three models had much deeper structures with much higher training accuracy and lower
training loss.

Table 3 shows the results of the performance measures precision, recall, F1-score, and
AUC of the proposed DCNN and the other compared models for all wafer failure pattern
types—Center, Donut, Edge-Ring, Edge-Local, Local, Random, Scratch, and None. The
results showed that the proposed DCNN-based prediction model was able to predict the
wafer failure pattern types more accurately than the other ML- and DL-based models,
possessing the best average recall, F1-score, and AUC, with values of 0.9919, 0.9766, and
0.999, respectively.

For each wafer failure patterns, the proposed DCNN model achieved the highest
precision, F1-score, and AUC results, with values of 0.8511, 0.8081, 0.9726, respectively, for
the ‘Local’ failure pattern types. Moreover, the proposed prediction model also achieved the
highest recall and F1-score, with values of 0.9837 and 0.9641, 0.9419 and 0.9419, and 0.9901
and 0.9852, for the ‘Center’, ‘Donut’, and ‘Edge-Ring’ failure pattern types, respectively, as
well as the highest recall and AUC results, with values of 1 and 1, for the ‘None’ failure
pattern type. In addition, the VGG19 and ResNet50-based prediction models also achieved
the best performance for the ‘None’ failure pattern type, with the highest values for
precision, recall, F1-score, and AUC (1, 1, 1, and 1, respectively). In addition, the ResNet50
model obtained the highest precision and AUC results (0.9899 and 0.9999, respectively)
for the ‘Edge-Ring’ failure pattern type. Additionally, the ResNet101 and EfficientNetB0
models received the best recall and AUC results (1 and 1, respectively) for the ‘None’ failure
pattern type, which was also the same as that obtained by the proposed DCNN model.
Furthermore, the GBDT model exhibited the highest precision, recall, F1-score, and AUC
results (0.989, 1, 0.9945, and 0.9999, respectively) for ‘Random’, and the best precision and
AUC results (0.9664 and 0.9988, respectively) for the ‘Center’ failure pattern types. The RF
model achieved the best performance for the ‘Edge-Local’ failure pattern type, with the
highest recall, F1-score, and AUC results (0.9802, 0.9754, and 0.9997, respectively), and the
‘Random’ and ‘Scratch’ failure pattern types, with the highest values of recall and AUC
(1 and 0.9999, respectively), and precision and AUC (0.9639 and 0.9974, respectively).
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Table 3. Performance comparison results of multi-class wafer map image classification.

Method Classifier Measure Center Donut Edge-Ring Edge-Local Local Random Scratch None Average

ML-based
Methods

LR

Precision 0.9573 0.9024 0.7603 0.9899 0.7228 0.9783 0.9326 0.7879 0.8726
Recall 0.9106 0.8605 0.8214 0.9703 0.7019 1 0.9121 0.8387 0.8747

F1-score 0.9333 0.881 0.7897 0.98 0.7122 0.989 0.9222 0.8125 0.8729
AUC 0.9971 0.9862 0.9714 0.9992 0.9612 0.9993 0.9967 0.9772 0.9872

RF

Precision 0.9512 0.9012 0.7759 0.9706 0.7037 0.9783 0.9639 0.9316 0.9414
Recall 0.9512 0.8488 0.8036 0.9802 0.7308 1 0.8791 0.8495 0.9004

F1-score 0.9512 0.8743 0.7895 0.9754 0.717 0.989 0.9195 0.8404 0.8958
AUC 0.9983 0.9871 0.9765 0.9997 0.9523 0.9999 0.9974 0.9846 0.9915

GBDT

Precision 0.9664 0.8889 0.7982 0.98 0.7054 0.989 0.9625 0.7961 0.8813
Recall 0.935 0.8372 0.8125 0.9703 0.7596 1 0.8462 0.8817 0.9084

F1-score 0.9504 0.8623 0.8053 0.9751 0.7315 0.9945 0.9006 0.8367 0.8936
AUC 0.9988 0.9774 0.9752 0.9997 0.9686 0.9999 0.9969 0.987 0.9929

DL-based
Methods

VGG16

Precision 0.9508 0.9524 0.9706 0.8286 0.699 0.9556 0.7864 0.978 0.9644
Recall 0.9431 0.9302 0.9802 0.7768 0.6923 0.9451 0.871 0.9889 0.966

F1-score 0.9469 0.9412 0.9754 0.8018 0.6957 0.9503 0.8265 0.9834 0.9652
AUC 0.9982 0.9984 0.9996 0.9809 0.9651 0.9959 0.9881 0.9999 0.999

VGG19

Precision 0.8897 0.9452 0.9524 0.9111 0.7297 0.9767 0.8073 1 0.9449
Recall 0.9837 0.8023 0.9901 0.7321 0.7788 0.9231 0.9462 1 0.9919

F1-score 0.9344 0.8679 0.9709 0.8119 0.7535 0.9492 0.8713 1 0.9672
AUC 0.9979 0.9953 0.9994 0.9765 0.9585 0.9979 0.9928 1 0.999

ResNet50

Precision 0.9652 0.9625 0.9899 0.8839 0.7154 0.9885 0.8723 1 0.9826
Recall 0.9024 0.8953 0.9703 0.8839 0.8462 0.9541 0.8817 1 0.9512

F1-score 0.9328 0.9277 0.98 0.8839 0.7753 0.9663 0.877 1 0.9664
AUC 0.9973 0.9973 0.9999 0.9903 0.9677 0.9997 0.9928 1 0.9987

ResNet101

Precision 0.9062 0.837 0.9709 0.7222 0.7439 0.957 0.8471 0.989 0.9476
Recall 0.9431 0.8953 0.9901 0.8125 0.5865 0.978 0.7742 1 0.9716

F1-score 0.9243 0.8652 0.9804 0.7647 0.6559 0.9674 0.809 0.9945 0.9594
AUC 0.9937 0.992 0.9979 0.976 0.9563 0.9995 0.9846 1 0.9969

EfficientNetB0

Precision 0.8333 0.7778 0.97 0.8037 0.625 0.9868 0.7865 0.9783 0.9058
Recall 0.8537 0.814 0.9604 0.7679 0.7212 0.8242 0.7527 1 0.9269

F1-score 0.8434 0.7955 0.9652 0.7854 0.6696 0.8982 0.7692 0.989 0.9162
AUC 0.9744 0.9792 0.9987 0.9805 0.9508 0.9979 0.9717 1 0.9872

Proposed
DCNN

Precision 0.9453 0.9419 0.9804 0.9052 0.8511 0.9888 0.914 0.9783 0.9618
Recall 0.9837 0.9419 0.9901 0.9375 0.7692 0.967 0.914 1 0.9919

F1-score 0.9641 0.9419 0.9852 0.9211 0.8081 0.9778 0.914 0.989 0.9766
AUC 0.9979 0.998 0.9983 0.9853 0.9726 0.9996 0.9936 1 0.999

Note: The best results are shown in bold.
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However, the highest F1-score achieved by the proposed DCNN model for the ‘Local’
failure pattern type was 0.8081, which is not a satisfactory result when compared to the
results obtained for the other wafer failure pattern types. A possible reason for this problem
is that there was noise in the original image dataset, or that the experimental dataset was
extracted by random sampling.

The overall performance comparison results of different prediction models are shown
in Table 4. As can be seen from the results, the performance of the proposed DCNN-based
prediction model outperformed the other eight prediction models in terms of precision,
recall, F1-score, AUC, and accuracy, with values of 0.9381, 0.9379, 0.9376, 0.9933, and
0.9375, respectively, while the ResNet50-based prediction model exhibited an equivalent
performance in AUC of 0.9933.

Table 4. Overall performance comparison results of different prediction models.

Classifier Precision Recall F1-score AUC Accuracy

LR 0.8789 0.8769 0.8775 0.9906 0.875
RF 0.8845 0.8804 0.882 0.991 0.88

GBDT 0.8858 0.8803 0.882 0.9914 0.88
VGG16 0.8902 0.8909 0.8902 0.991 0.8875
VGG19 0.9015 0.8946 0.8949 0.9897 0.8938

ResNet50 0.9222 0.9156 0.9179 0.9933 0.9137
ResNet101 0.8717 0.8725 0.8702 0.9879 0.87

EfficientNetB0 0.8452 0.8367 0.8394 0.9822 0.835
Proposed DCNN 0.9381 0.9379 0.9376 0.9933 0.9375

Note: The best results are shown in bold.

It can also be seen that the overall results for all prediction models mentioned in
Table 4 decreased with respect to the performance of each class mentioned in Table 3. This
may have been a result of the significantly lower performance of the ‘Local’ failure pattern
type compared to the other failure types. Additionally, the results also showed that the
DL-based techniques exhibited improved performances for the recognition of wafer map
failure pattern types compared to the ML-based methods when comparing the average
and overall performances of all ML- and DL-based prediction models.

We also developed several DCNN-based models with fewer or much deeper layers,
denoted as DCNN1, DCNN2, DCNN3, and DCNN4, which had very similar structures
to the proposed method. To develop these models, the Adam optimizer was also used in
the experiments due to its efficiency. We tested different learning rates for the DCNN1-,
DCNN2-, DCNN3-, and DCNN4-based prediction models, and found that the optimal
learning rate was 0.001 for all four models during training and validation. Figure 8
illustrates how the DCNN1-, DCNN2-, DCNN3-, and DCNN4-based prediction models
performed in terms of accuracy and loss learning curves.
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Figure 8. The learning curves of the compared DL-based prediction models: (a) the accuracy learning
curves of DCNN1; (b) the loss learning curves of DCNN1; (c) the accuracy learning curves of
DCNN2; (d) the loss learning curves of DCNN2; (e) the accuracy learning curves of DCNN3; (f) the
loss learning curves of DCNN3; (g) the accuracy learning curves of DCNN4; (h) the loss learning
curves of DCNN4.

In Figure 8a, it can be seen that the training and validation accuracy of the DCNN1
model increased suddenly during the first several epochs of training, and then gradually
increased with increasing number of epochs; Figure 8b shows that the training loss of
the DCNN1 model dropped rapidly during the initial stage and then declined slowly,
while validation loss decreased gradually over all epochs. The accuracy and loss learning
curves of the DCNN2 and DCNN4 models are similar to those of DCNN1, as shown in
Figure 8c,d,g,h; nonetheless, the validation loss of DCNN2 in Figure 8c dropped quickly at
first, and then declined rapidly over the following epochs. Figure 8e,f reveal the accuracy
and loss learning curves of the DCNN3 model in training and validation. In Figure 8e, it
can be seen that the training accuracy of the DCNN3 model increased slowly during the
first stage of training, and then swiftly improved for several epochs and then increased
steadily until the end; the validation accuracy suddenly decreased at the beginning and
then rapidly increased over the next few training epochs, before increasing gradually. The
behaviors of the loss learning curves in training and validation were the opposite of those
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of the accuracy learning curves during the training and validation, as shown in Figure 8f,
showing that the training loss initially declined quickly, before decreasing steadily, while
the validation loss increased in first epoch and then rapidly dropped before gradually
declining with increasing numbers of epochs.

Table 5 shows the results of the overall performance comparison of the DCNN predic-
tion models with different structures like DCNN1, DCNN2, DCNN3, and DCNN4, with
the results showing that the proposed DCNN-based method achieved the best performance
with the highest values for precision, recall, F1-score, AUC, and accuracy, at 0.9381, 0.9379,
0.9376, 0.9933, and 0.9375, respectively, outperforming the other four models.

Table 5. Overall performance comparison results of the DCNN-based prediction models with
different structures.

Classifier Precision Recall F1-score AUC Accuracy

DCNN1 0.9032 0.8903 0.8942 0.9912 0.8925
DCNN2 0.9104 0.9127 0.9113 0.9908 0.91
DCNN3 0.9037 0.9023 0.9006 0.9901 0.9012
DCNN4 0.8673 0.8746 0.867 0.9867 0.8688

Proposed DCNN 0.9381 0.9379 0.9376 0.9933 0.9375
Note: The best results are shown in bold.

5. Conclusions

This paper presents a DL-based convolutional neural network (DCNN) prediction
model for the recognition of wafer map failure types based on the real-time wafer map
image dataset. The performance of the proposed prediction model was compared with three
state-of-the-art ML-based prediction models—LR, RF, GBDT—and several well-known DL
models—VGGNet, ResNet, and EfficientNet. Consequently, our findings indicated that
the proposed prediction model achieved the best performance among the selected popular
ML- and DL-based models. In addition, the proposed prediction model outperformed the
other models with fewer or much deeper layers. However, the ‘Local’ failure pattern type
was recognized less accurately than other failure pattern types. Therefore, we will consider
generating a more robust model using more image datasets and removing the noise in the
dataset for experiments in the future. Moreover, the rule-based fuzzy classifier [50,51] has
a unique advantage with respect to interpreting the classification, which can be considered
in future work, because the ML- and DL-based techniques have a weakness with respect to
interpretability.

Limitations

However, there are a number of limitations to this paper. First, there is a high proba-
bility that the experimental image dataset was not represented in the raw dataset, because
it was extracted by a random sampling technique. Second, both the ML- and DL-based
models were less able to predict the ‘Local’ failure type accurately (F1-score = 0.8081 with
the proposed DCNN) than they were the other seven wafer map failure pattern types.
Third, the ResNet50, ResNet101, and EfficientNetB0-based prediction models may not
have been generated properly in this experiment, because they had deep structures and
were trained using large datasets, while the size of the training dataset was small in this
experiment.
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