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Abstract: The main objective of this study is to propose an artificial neural network (ANN)-based tool
for predicting the cantilever wall deflection in undrained clay. The excavation width, the excavation
depth, the wall thickness, the at-rest lateral earth pressure coefficient, the soil shear strength ratio
at mid-depth of the wall, and the soil stiffness ratio at mid-depth of the wall were selected as the
input parameters, whereas the cantilever wall deflection was selected as an output parameter. A set
of verified numerical data were utilized to train, test, and validate the ANN models. Two commonly
used performance indicators, namely, root mean square error (RMSE) and mean absolute error (MAE),
were selected to evaluate the performance of the proposed model. The results indicated that the
proposed model can reliably predict the cantilever wall deflection in undrained clay. Moreover, the
sensitivity analysis showed that the excavation depth is the most important parameter. Finally, a
graphical user interface (GUI) tool was developed based on the proposed ANN model, which is
much easier and less expensive to be used in practice. The results of this study can help engineers to
better understand and predict the cantilever wall deflection in undrained clay.

Keywords: cantilever wall deflection; machine learning; artificial neural network; graphical user
interface; undrained clay

1. Introduction

In recent decades, embedded retaining structures have been increasingly used for
excavations in urban areas around the world [1–4]. The cantilever wall is a conventional
earth-retaining structure with a relatively simple construction process and is commonly
used for excavations no more than 6 m deep. Generally, they provide open excavations
and do not require bracing or anchoring. However, excavation work will inevitably cause
cantilever wall deflection, i.e., the wall top displacement, and ground movement, ultimately
posing a risk to adjacent structures. Therefore, the control of deformation is as important as
the safety requirements against collapse in the design of such retaining walls [5,6]. In this
regard, an accurate and practical tool for predicting the cantilever wall deflection should
be of great interest to engineers and stakeholders.

Numerous studies have been conducted to analyze the cantilever wall deflection using
various methods, such as field measurements [7–9], centrifuge modelling tests [10,11], nu-
merical analyses [12–16], and analytical methods [17–19]. Zhou et al. [9] analyzed the moni-
toring data of diaphragm wall deflection using a Bayesian network. Kunasegaram et al. [11]
developed a centrifuge modelling system to study the response of a cantilever retaining
wall. Hashash et al. [12] conducted a series of numerical analyses to investigate the ground
movement caused by deep excavations in soft clay. Sert et al. [13] studied the effect of
soil spatial variability on the excavation-induced lateral wall deflection through a large
number of numerical simulations. Zhang et al. [16] developed a simplified polynomial
regression model to predict the maximum wall deflection. More recently, Qi et al. [19]
developed an efficient probabilistic back-analysis method for braced excavations using wall
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deflection data at multiple points. Generally, it is noted that the studies of field measure-
ment and centrifuge modelling test are of high cost, and thus it is hard to obtain sufficient
datasets. The analytical method is relatively rapid and of low cost, but the existing ones
are commonly quite complex and sensitive to the input parameters, which are hard for
engineers to validate from case to case. Numerical analysis [15] is most commonly used by
the researchers among the above-mentioned investigated methods. However, it requires
special soil testing to calibrate the parameters used in soil constitutive models and lengthy
computer calculations [16], which are practically unrealistic especially at the preliminary
design stage.

As an alternative, machine learning (ML) algorithms have recently been introduced in
the field of geotechnical engineering because of their advantages in dealing with nonlinear
complicated problems [20–22]. One of the strongest ML algorithms is the so-called artificial
neural network (ANN), which is widely used in predicting the ground displacements or
the response of retaining structures. In general, traditional prediction methods such as the
numerical approach generally need intensive simulations to obtain enough analysis results.
Recently developed ANN models can be used as a convenient and reliable substitute for
time-consuming field measurements or numerical analyses so that less computational
power is needed for further studies. Considering the power of artificial neural networks
(ANN) to solve nonlinear complicated problems, the application of ANNs in geotechnical
problems is quite promising and can provide powerful tools for civil engineers in practice.

In the past decades, many researchers have tried to apply ANN-based models to geotech-
nical problems. For instance, Chua and Goh [20] proposed a Bayesian neural network-based
approach to predict the wall deflections in deep excavations. Gowda et al. [21] used the
ANN approach to predict the optimized cantilever earth retaining wall. Ozturk et al. [22]
evaluated the earthquake-induced deformation of geosynthetic reinforced retaining walls
by an ANN-based method. Alias et al. [23] predicted the stability of cantilever retaining
walls based on an ANN-based approach. Gordan et al. [24] adopted the neural network
technique to estimate the safety factors of retaining wall under different loading conditions.
Zhang et al. [25] estimated the deflections of diaphragm walls caused by a deep braced
excavation through the ANN model. More recently, Mishra et al. [26] reported their work
on proposing a probabilistic design procedure of a retaining wall using the ANN method.
It is concluded that ANNs were widely applied in the field of geotechnical engineering.
However, the application of ANN in predicting the cantilever wall deflection has not
yet been investigated. Moreover, the study by Nguyen et al. [27] also indicated that an
ANN-based prediction tool, which is much simpler and cost-efficient, can be developed for
easy application in practical engineering.

In view of the above limitations, this study is devoted to predicting the cantilever
wall deflection in undrained clay based on a machine learning model, namely, an artificial
neural network (ANN). First, a database of cantilever wall deflections was generated from
rigorously verified finite element models. Then, six important factors were utilized as the
input parameters for the proposed ANN model, while the cantilever wall deflection in
undrained clay was set as the output parameter. The acceptable performance of the devel-
oped ANN model was verified, and the relative importance of various input parameters on
the cantilever wall deflection was highlighted. Finally, an explicit mathematical equation
as well as a graphical user interface (GUI) tool were established using the developed ANN
model to facilitate the prediction of the cantilever wall deflection in undrained clay.

2. Materials and Methods
2.1. Generation of Database

In this study, the database was constructed through a series of numerical simulations. The
finite element model of the soil–cantilever wall system was built by Plaxis 2D, a commercial
software. The typical numerical model is shown in Figure 1. As the soil small strain behavior
is well recognized from the case histories, the Hardening Soil model with small strain stiffness
(HSsmall) available in Plaxis is used for the simulation of clays in this study. The HSsmall
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model includes not only the stress dependency but also the strain dependency of the soil
stiffness. The undrained condition was assumed for the analyses [28,29]. The retaining wall
is linear elastic. A half width of the excavation was modeled because of symmetry of the
problem. The size of the finite element mesh depends on the excavation size for each case
history. The adopted finite element mesh is presented in Figure 1. Basically, four times the wall
length was required for the distance from the wall to the right-side boundary [6]. The bottom
boundary was set to 50 m deep to minimize the effect of the presence of bottom boundary on
the wall deflection [15], and it was restricted from both horizontal and vertical movements,
while the left- and right-side boundaries were only restricted horizontally. Moreover, the
soil mass and the retaining structure were modelled by about 1200 15-node triangular soil
elements and 15 5-node plate elements, respectively.
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Figure 1. Finite element model in Plaxis.

It is worth noting that the finite element method (FEM) analysis was rigorously verified
based on 14 centrifuge tests and 45 field cases [30]. Figure 2 presents the comparisons
between the cantilever wall deflections δFEM, i.e., the wall top displacements, calculated by
Plaxis 2D and the measured displacements δm. Since the results of FEM were quite close to
the 45◦ trend line, the rationality of the analysis of FEM was demonstrated. Therefore, the
use of database from the verified finite element model in ANN is appropriate and reliable.
More detailed information about the numerical models used and the validation process
can be found in the authors’ previous work [30]. As a result, a total of 191 numerical
simulations of the soil–cantilever wall system were conducted, and the corresponding
numerical data of the cantilever wall deflection δ as well as other associated parameters
were obtained.



Appl. Sci. 2021, 11, 9760 4 of 21
Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21 
 

 

Figure 2. Cantilever wall deflections by Plaxis 2D versus measured values. 

From the above numerical results, it is noted that the cantilever wall deflection δ is 

significantly influenced by the excavation width B, the excavation depth Hc, the wall thick-

ness t, the at-rest lateral earth pressure coefficient K0, the soil shear strength ratio at mid-

depth of the wall su/σv′, and the soil stiffness ratio at mid-depth of the wall Eur/su. There-

fore, these six important parameters were selected as the main influential factors used in 

the following ANN model. Finally, as described previously, a total of 191 results of finite 

element analyses of the cantilever wall deflection were used, and the statistical analysis of 

these data sets is presented in Table 1. In this database, the excavation width B is distrib-

uted between 10.00 and 150.00 m, the excavation depth Hc is distributed between 0.50 and 

6.00 m, the wall thickness t is distributed between 0.60 and 1.60 m, the at-rest lateral earth 

pressure coefficient K0 is distributed between 0.50 and 1.10, the soil shear strength ratio at 

mid-depth of the wall su/σv′ is distributed between 0.30 and 0.70, and the soil stiffness ratio 

at mid-depth of the wall Eur/su is distributed between 199.38 and 900.00. 

Table 1. Statistical results of these datasets. 

Data B (m) Hc (m) t (m) K0 su/σv′ Eur/su δ (m) 

Minimum 10.00 0.50 0.60 0.50 0.30 199.38 4.48 × 10−4 

Mean 68.59 2.74 1.04 0.79 0.46 500.51 0.055 

Maximum 150.0 6.00 1.60 1.10 0.70 900.00 0.753 

Standard Deviation (StD) 44.44 1.82 0.27 0.12 0.12 201.31 0.109 

Figure 3 presents the relationship between each input and output parameter. The 

results in Figure 4 indicate that the correlation between all input parameters is weak, so 

the input datasets used in this study are appropriate. 

0.10

1.00

10.00

0.10 1.00 10.00

δm/Hc

45 Field Cases

14 Centrifuge Tests

45
°

tr
en

d
lin

e

δ
F

E
M
/H

c

Cantilever deflection d

D

Hc

B/2 t

Figure 2. Cantilever wall deflections by Plaxis 2D versus measured values.

From the above numerical results, it is noted that the cantilever wall deflection δ
is significantly influenced by the excavation width B, the excavation depth Hc, the wall
thickness t, the at-rest lateral earth pressure coefficient K0, the soil shear strength ratio at
mid-depth of the wall su/σv

′, and the soil stiffness ratio at mid-depth of the wall Eur/su.
Therefore, these six important parameters were selected as the main influential factors
used in the following ANN model. Finally, as described previously, a total of 191 results
of finite element analyses of the cantilever wall deflection were used, and the statistical
analysis of these data sets is presented in Table 1. In this database, the excavation width B
is distributed between 10.00 and 150.00 m, the excavation depth Hc is distributed between
0.50 and 6.00 m, the wall thickness t is distributed between 0.60 and 1.60 m, the at-rest
lateral earth pressure coefficient K0 is distributed between 0.50 and 1.10, the soil shear
strength ratio at mid-depth of the wall su/σv

′ is distributed between 0.30 and 0.70, and the
soil stiffness ratio at mid-depth of the wall Eur/su is distributed between 199.38 and 900.00.

Table 1. Statistical results of these datasets.

Data B (m) Hc (m) t (m) K0 su/σv
′ Eur/su δ (m)

Minimum 10.00 0.50 0.60 0.50 0.30 199.38 4.48 × 10−4

Mean 68.59 2.74 1.04 0.79 0.46 500.51 0.055
Maximum 150.0 6.00 1.60 1.10 0.70 900.00 0.753

Standard Deviation (StD) 44.44 1.82 0.27 0.12 0.12 201.31 0.109

Figure 3 presents the relationship between each input and output parameter. The
results in Figure 4 indicate that the correlation between all input parameters is weak, so the
input datasets used in this study are appropriate.

2.2. Introduction of ANN

The ANN, which works similarly to human cognition, is one of the best machine
learning models to handle complex nonlinear problems, and it has been successfully
applied to many geotechnical problems. Typically, an ANN model consists of an input
layer, one or more hidden layers, and an output layer. The input layer receives the
information from the input data and transforms it into the hidden layer. The hidden layer
and the output layer perform the complex computations of the ANN model. In this work,
the ANN model was constructed in the spirit of multilayer perceptron, typically trained
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using the feed-forward back-propagation algorithm [31]. For simplicity, only one hidden
layer was used, as previous research [32,33] has reported that the ANN model with one
hidden layer can perform well in handling similar problems. Hence, the final ANN model
consisted of a single input, hidden, and output layer.
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The so-called weights, biases, and activation functions are used to connect to the
neurons of different layers, and based on them, the whole ANN model can be represented
in a mathematical form, as shown below:

Y = f (X) (1)

f (X) = f 2(b 2+W2×( f 1(b 1+W1×X))) (2)

where Y is the final output for the ANN model; X is the matrix of input parameters; f 1, B1,
W1 are the activation function, the weight matrix, and the biases vector of the hidden layer,
respectively; and f 2, B2, W2 are the activation function, the weight matrix, and the biases
vector of the output layer, respectively. For the activation functions, this study adopted the
commonly used LOGSIG function and PURELIN function in the hidden and output layers,
respectively. Their functions are presented in Figure 5.
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In the training process of the ANN model, the connecting weights and biases are
adjusted to minimize the error of the ANN. A term named the mean square error (MSE)
is widely utilized to terminate the training of the model. The MSE can be calculated by
Equation (3) below:

MSE =
1
N

N

∑
i=1

(ei)
2 (3)

where N represents the number of input datasets; ei is the difference between the predicted
and actual results.

2.3. Architecture of the Developed ANN Model for Cantilever Wall Deflection

To select the appropriate hidden neurons to obtain the best ANN geometry, a trial-
and-error procedure was performed. First, the collected datasets were normalized in a
range of −1 and 1 based on Equation (4) to achieve dimensional consistency for all the
parameters and avoid potential overfitting issues.

Zn= 2× (Z i − Zmin)

(Z max − Zmin)
−1 (4)

where Zn represents the normalized data sample; Zi represents the data sample; Zmax
and Zmin stand for the maximum and minimum values of the data for the interested
parameter, respectively.

Second, the collected database was randomly spilt into training, testing, and validation
sets, respectively. The training ratio was set as 0.70, while the testing and validation ratios
were set as equal, i.e., 0.15, respectively. The training set was utilized to compute the
associated weights matrix and the biases vector in Equation (2), and the testing set was
used to evaluate the performance of the ANN model. Furthermore, the validation set
was used to monitor ANN model overfitting. The error of validation data will increase
accordingly once overfitting occurs.

Finally, the number of neurons in the hidden layer varied from 1 to 12, and accordingly,
a total of 12 ANN models were trained. Figure 6 presents the computed MSE of the training,
testing, and validation sets for different numbers of neuron. It can be found that the case
of 6 neurons in the hidden layer results in the best performance. The obtained best ANN
architecture is schematically shown in Figure 7. It shows 6 neurons in the input layer,
6 neurons in the hidden layer and 1 neuron in the output layer.
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3. Results and Discussions
3.1. Performance of the Proposed ANN Model

Figure 8 shows the performance of the proposed ANN model. As can be seen in
the figure, the MSE for training, testing, and validation decreases rapidly as the number
of epochs increases. The minimum MSE is reached at the ninth epoch with a value of
4.6964 × 10−4, indicating that the performance of the proposed ANN model is good.
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Figure 9a compares the cantilever wall deflection derived from the proposed ANN
model with the actual numerical data in the training process. In general, there is a fairly
good agreement between the two datasets. Figure 9b shows the evolution of the error with
the change in the number of samples. The histogram of the error values with the mean
and standard deviation (StD) during the training is also shown in Figure 9c. It can be seen
that most of the errors during the training process are close to 0. A similar phenomenon
was also observed when comparing the results of the ANN model and the corresponding
numerical data for the testing and validation, as well as for all data (see Figures 10–12).
The above results confirm the effectiveness of the developed ANN model and show that it
is reliable in predicting the cantilever wall deflection in undrained clay.

Furthermore, the actual values of the cantilever wall deflection δ were compared
with the values predicted by the ANN model using the regression analysis, as shown in
Figure 13. It can be observed that the values of R2 for the training, testing, validation, and
all data are 0.9823, 0.9135, 0.9915, and 0.9811, respectively. They are all quite close to 1,
which again indicates the acceptable performance of the developed ANN model.
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Figure 9. The performance of training data: (a) Predicted versus actual data; (b) error; (c) the histogram of error values.
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Figure 10. The performance of testing data: (a) Predicted versus actual data; (b) error; (c) the histogram of error values.
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Figure 13. Regression of the developed ANN model: (a) training data; (b) testing data; (c) validation data; (d) and all data.

Two commonly used performance indicators, root mean square error (RMSE) and mean
absolute error (MAE), were selected to evaluate the network performance. The expression for
each indicator is given in Equations (5) and (6). The value of the MAE represents the absolute
differences between the predicted and actual values, while the RMSE represents the existing
deviation between the predicted and actual values. The results of two indicators for training,
testing, validation, and all data are shown in Figure 14. This again demonstrates that the
predicted cantilever wall deflection using the developed ANN model were quite similar to
the actual values. These results confirm that the developed ANN model performs well and
could be successfully used to coherently predict the cantilever wall deflection in undrained
clay. Equations (5) and (6) are calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(ei)
2 (5)

MAE =
∑N

i=1|ei |
N

(6)
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where N represents the input datasets number; ei is the difference between the predicted
and actual results.
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3.2. Parametric Study

A parametric study was further conducted to evaluate the influences of different input
parameters on the cantilever wall deflection. For this purpose, in the following analyses,
each input parameter was changed from the minimum to the maximum values according
to the database in Table 1, while the other parameters corresponded to the mean values.
However, it is noted that the influences of multiple variations of different input parameters
on the cantilever wall deflection were not studied in this section.

Figure 15a–f present the influence of six input parameters on the cantilever wall
deflection. It is obvious that the cantilever wall deflection is increased as the parameters
of the excavation width B, and the excavation depth Hc changed from the minimum and
the maximum values, as shown in Figure 15a,b. For the parameter of the at-rest lateral
earth pressure coefficient K0, the cantilever wall deflection was found to increase slightly
as K0 varied from the minimum and the mean values, while it was decreased significantly
as K0 increased from the mean to the maximum values. For the other three parameters
of the wall thickness t, the soil shear strength ratio at mid-depth of the wall su/σv

′ and
the soil stiffness ratio at mid-depth of the wall Eur/su, the cantilever wall deflection was
decreased as they increased from the minimum and the maximum values, as presented in
Figure 15c,e,f. The above observations highlighted that all the considered input parameters
had moderate effects on the cantilever wall deflection.

3.3. Sensitivity Analysis

Since the proposed ANN model in this study has only one hidden layer, the Garson
factor [34] can be used to evaluate the relative importance of various input parameters to the
output. The importance factor of each input parameter is computed using the following equation:

Uio =
∑L

h=1

(
wih

∑M
r=1 wrh

vho

)
∑E

i=1

(
∑L

h=1

(
wih

∑E
r=1 wrh

vho

)) (7)



Appl. Sci. 2021, 11, 9760 16 of 21

where
E
∑

r=1
wrh is the weights summation within the hidden neuron h and the input neuron

E; and vho is the connection weight for the hidden neuron h and the output neuron o.
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Figure 15. Influence of input parameters on the cantilever wall deflection. (a) influence of the
excavation width B; (b) influence of the excavation depth Hc; (c) influence of the wall thickness t;
(d) influence of the at-rest lateral earth pressure coefficient K0; (e) influence of the soil shear strength
ratio at mid-depth of the wall su/σv

′; (f) and influence of the soil stiffness ratio at mid-depth of the
wall Eur/su.

Figure 16 shows the relative importance of the different input parameters through
sensitivity analysis. In general, it can be seen that these input parameters all have a
significant effect on the cantilever wall deflection δ. In particular, the excavation depth Hc
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is the most important parameter, followed by the soil stiffness ratio at mid-depth of the
wall Eur/su, while the at-rest lateral earth pressure coefficient K0 has the least importance.
Obviously, the parameter of Hc is demonstrated to be the most sensitive parameter, which
means that it plays a key role in predicting the cantilever wall deflection.
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4. Practical Tool for Predicting the Cantilever Wall Deflection
4.1. ANN-Based Formulation

For the application of the developed ANN model to practical problems, the current
form of ANN can be converted into an explicit mathematical equation. Based on the
procedures discussed in the above sections, the formula for calculating the cantilever wall
deflection δ can be obtained directly from the proposed ANN model by utilizing its weights,
biases, activation functions, and normalization factors. The normalized cantilever wall
deflection δN is a function of six considered input parameters presented in Figure 7. The
above procedures are further illustrated in the Equations (8) and (9) as below:

δN= p0 +
T=6

∑
i=1

piGi (8)

Gi= LOGSIG(Ci0+Ci1X1+Ci2X2+Ci3X3+Ci4X4+Ci5X5+Ci6X6) (9)

where t = 6 is the number of the hidden neurons. Table 2 shows the other coefficients, i.e.,
p0 to pn and Ci0 to Ci6, for the formulation of the cantilever wall deflection.

Table 2. Coefficients for formulation of the cantilever wall deflection δN.

i Standard Deviation (StD) pi Ci0 Ci1 Ci2 Ci3 Ci4 Ci5 Ci6

0 0.0151 1.3064 - - - - - - -
1 - 4.4400 −0.6637 0.1058 −3.4106 0.6422 0.6699 2.9597 2.5766
2 - −1.1517 −0.0507 −0.4111 −3.1252 1.0541 4.4313 −2.8763 0.8767
3 - −0.7667 −0.0094 2.1242 −0.0013 1.2719 −1.5536 2.8314 0.5952
4 - 1.5632 0.0504 3.9952 −1.3110 −0.9595 4.8911 −3.0350 −2.5302
5 - 12.7459 −1.5609 0.0537 −7.9093 0.8502 −0.9578 7.5918 2.0398
6 - 3.6588 −0.0772 1.2851 −4.3867 3.1687 −1.4389 1.1998 −2.9990
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It is noted that the output in Equation (8) of the cantilever wall deflection δN is a
normalized value ranged between −1 and 1. Hence, it needs to be transformed into the
real value, and the cantilever wall deflection δ (m) can then be further calculated as:

δ = 4.48× 10−4 + (δN+1)×3.75× 10−1 (10)

where δN and δ stand for the normalized and real value of the cantilever wall deflection, respectively.

4.2. GUI Tool

In recent years, geotechnical engineers have paid more attention to the development
of user-friendly and practical software, because the complex mathematical equations are
usually challenging for practitioners. Therefore, a graphical user interface (GUI) tool was
established by MATLAB [31] to predict the cantilever wall deflection δ in undrained clay,
as shown in Figure 17. In accordance with the proposed ANN model, six considered
input parameters, i.e., from X1 to X6, are presented in this tool. People can input the
values for the excavation width B, the excavation depth Hc, the wall thickness t, the at-rest
lateral earth pressure coefficient K0, the soil shear strength ratio at mid-depth of the wall
su/σv

′, and the soil stiffness ratio at mid-depth of the wall Eur/su. After entering the input
parameters, the cantilever wall deflection δ is immediately displayed when you click on the
Start Predict button. In addition, it should be noted that the scope of the developed ANN
and this GUI tool is limited to the lower and upper bound of these six input parameters
because the ANN model is generally not accurate for extrapolation [25].
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5. Conclusions

In this study, an application of ANN to predict the cantilever wall deflection in
undrained clay based on a set of numerical data from verified finite element models was
presented. The proposed ANN model was well trained, tested, and validated, indicating
its reliable performance. In addition, a series of parametric studies were conducted to
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evaluate the influences of six input parameters on the cantilever wall deflection. Based on
the analysis, the following conclusions were drawn:

• The proposed ANN model can predict the cantilever wall deflection in undrained clay
with acceptable performance.

• The most influential parameter in determining the cantilever wall deflection in
undrained clay is the excavation depth, followed by the soil stiffness ratio at mid-
depth of the wall, while the at-rest lateral earth pressure coefficient presents least
influence among the considered parameters.

• An ANN model-based formula, which included all input parameters, was developed
to calculate the cantilever wall deflection.

• A new GUI was developed to easily predict the cantilever wall deflection in undrained
clay. The developed GUI tool is much simpler and more cost-efficient and can be
recommended for use in practical engineering in advance.

However, there are some limitations to the proposed ANN model. First, it should be
noted that the database in this study is generally small, and more high-quality datasets
urgently need to be generated for a future investigation. Second, commonly used K-fold
cross-validation methods can be used to improve the performance and robustness of the
proposed ANN model. Third, comparisons should be made between the proposed ANN
model and other mathematical models to verify the performance and reliability of the
proposed ANN model. Finally, to enhance the ability and robustness of the proposed
ANN model in more complicate problems, extra work on the use of other strong machine
learning algorithms, such as the modular neural network and radial basis function neural
network, could be performed.
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Abbreviations

ANN artificial neural network
ML machine learning
GUI graphical user interface
FEM finite element method
δ cantilever wall deflection
B excavation width
Hc excavation depth
t wall thickness
K0 at-rest lateral earth pressure coefficient
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su/σv
′ soil shear strength ratio at mid-depth of the wall

Eur/su soil stiffness ratio at mid-depth of the wall
MSE mean square error
StD standard deviation
RMSE root mean square error
MAE mean absolute error
δN normalized cantilever wall deflection
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