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Abstract: This paper presents a Pareto-based multi-objective optimization for operating CO:
sequestration with a multi-well system under geological uncertainty; the optimal well allocation,
i.e., the optimal allocation of CO: rates at injection wells, is obtained when there is minimum
operation pressure as well as maximum sequestration efficiency. The distance-based generalized
sensitivity analysis evaluates the influence of geological uncertainty on the amount of CO2
sequestration through four injection wells at 3D heterogeneous saline aquifers. The spatial
properties significantly influencing the trapping volume, in descending order of influence, are mean
sandstone porosity, mean sandstone permeability, shale volume ratio, and the Dykstra—Parsons
coefficient of permeability. This confirms the importance of storable capacity and heterogeneity in
quantitatively analyzing the trapping mechanisms. Multi-objective optimization involves the use of
two aquifer models relevant to heterogeneity; one is highly heterogeneous and the other is less so.
The optimal well allocations converge to non-dominated solutions and result in a large injection
through one specific well, which generates the wide spread of a highly mobile CO: plume. As the
aquifer becomes heterogeneous with a large shale volume and a high Dykstra—Parsons coefficient,
the trapping performances of the combined structural and residual sequestration plateau relatively
early. The results discuss the effects of spatial heterogeneity on achieving CO: geological storage,
and they provide an operation strategy including multi-objective optimization.

Keywords: multi-objective optimization; geological uncertainty; COz sequestration; well allocation;
sensitivity analysis; saline aquifer

1. Introduction

A challenging problem in engineering analytics has been the existence of many
objectives. Multi-objective optimization attempts to find the optimal trade-offs that are
most acceptable to the decision maker among all objective functions [1-3]. The Pareto
front, i.e., a set of Pareto solutions, illustrates the trade-offs for which algorithms should
secure solution diversity as well as make comparative evaluations among the potential
solutions [4-8]. Evolutionary multi-objective optimization (EMO) algorithms, e.g., the
non-dominated sorting genetic algorithm (NSGA; NSGA-II; NSGA-III), strength Pareto
evolutionary algorithm (SPEA; SPEA-II), Pareto envelope-based selection algorithm
(PESA; PESA-II), and multi-objective evolutionary algorithm based on decomposition
(MOEA/D), have continuously improved fitness assignment and diversity control [1-10].
NSGA is a well-known scheme designed to preserve non-dominated points in objective
space that also has a wide solution-searching capability with a genetic algorithm. Its
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strength is that it can provide non-dominated trade-offs in the comparison of objective
functions, while its weaknesses are the fact that it requires a large amount of computing
power and its decreasing convergence with an increasing number of objective functions,
i.e,, ‘the curse of dimensionality’ [5-10].

Geological uncertainty limits quantitative analyses of subsurface flow [11-14]. The
input uncertainties in geo-modeling are non-linearly interacted; some are heterogeneous
(e.g., porosity, permeability, and lithology) while others are functional (e.g., relative
permeability, solubility, and capillary pressure) or scenario-based (e.g., the depositional
system) [13-17]. The flow responses are spatiotemporal. Sensitivity measures the
relationship between the inputs and the responses and, thus, denotes some influential
parameters that significantly affect the responses. The stochastic features between the
inputs and the responses do not result in the emergence of a certain parameter as a
significant factor but instead require multi-way parameter interactions. The distance-
based generalized sensitivity analysis (DGSA) has been successfully used to evaluate the
significance of scale-variant properties in heterogeneous geo-models [10,15-19]. Fenwick
et al. [15] quantified the interaction of asymmetric parameters such as residual oil
saturation, maximum water relative permeability, and training images. Park et al. [16]
analyzed spatial uncertainty using kernel principal components and self-organizing
maps.

CO:z sequestration into deep saline aquifers, e.g., around 1 km below ground level, is
known to have enormous storage potential, but little is known about its geological
characterization and project experiences compared to those of depleted oil or gas
reservoirs. The significant uncertainties can be categorized into capacity, injectivity, and
containment: the capacity determines the storable amount, the injectivity estimates the
possible injection rates, and the containment evaluates the risks of leakage [20-24]. Bachu
[20] explained the importance of the hydrodynamic and buoyancy forces needed for the
CO2 plume to propagate into the homogeneous saline formation. Kumar et al. [21]
discussed the key factors related to the rock and fluid properties, reservoir conditions, and
injection strategy as storage mechanisms (structural, residual, solubility, and mineral
trapping) in saline aquifers; these include reservoir heterogeneity, depth, permeability,
pressure, and temperature. Along with these geological properties, the injection pressure
is one of the crucial operating parameters depending on the containment and the security.
One reason for this is the well injectivity —defined as the CO: injection mass rate per unit
pressure differential —which determines the total CO2 amount injected into the geological
formation. On the other hand, the safety constraint is that the injection pressure (the
bottom hole pressure; BHP) should be lower than the formation fracture pressure so as to
prevent CO: leakage or fast movement without trapping [25-30]. When CO: is injected
into a porous medium using multi-injectors, the well allocation, i.e., the allocation of CO:
amount at each injector, worsens the problem; the well allocation at the heterogeneous
aquifers would involve a lot of scenarios, so the optimization process could be subject to
the issue of convergence [31-42].

This study intends to search for trade-offs between cost and containment efficiency
as a multi-objective problem for CO:z sequestration into heterogeneous saline aquifers; the
cost is related to the CO: injection pressure used to operate the facilities, while the
containment efficiency involves storing as much CO: as possible while considering the
amount of CO: injected. Well allocation constructs variable spaces, while two objective
functions (the injection pressure and the sequestration efficiency) constitute the posterior
domain. The uncertainty assessment of spatial properties should be made prior to multi-
objective optimization because the subsurface aquifers are heterogeneous in nature and
their properties are uncertain.
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2. Materials and Methods
2.1. 3D Heterogeneous Aquifer Models and Simulation Conditions

A total of 1024 heterogeneous aquifers are constructed geostatistically under spatial
uncertainty of permeability and porosity. The spatial distribution of these properties is
modeled using Petrel (Schlumberger, Houston, TX, USA). Three dimensional
unstructured grid systems are generated to demonstrate both the upward CO> movement
and the horizontal flow. Total number of unstructured grids is 22,230 (= 38 x 45 x 13). The
saline aquifer size is (x, y, z) = (6310 m, 7076 m, 250 m). It is assumed that the impermeable
cap rock is located at 840 m true vertical depth. Dykstra—Parsons coefficients (vpp)
measure permeability heterogeneity between 0 and 1 (Equation (1)).

kos — k
vpp = 0.5 - 50.84—1 (1)
0.

In Equation (1), kg5 is the mean value and kgg4; is the value placed at one standard
deviation plus the mean [43,44]. = 0 means that the medium is homogeneous. The
higher the Dykstra—Parsons coefficient is, the more heterogeneous the medium is. The
ratio of vertical to horizontal permeability is 0.1 and the permeabilities are isotropic
horizontally (x and y directions).

Table 1 summarizes the input ranges of the spatial properties for constructing 3D
heterogeneous aquifers. The stochastic realizations, i.e., geostatistical property modeling,
are carried out with the inputs randomly selected (Table 1). The heterogeneous geo-models
are made with massive sandstone intercalated with almost impermeable shale (Figure 1).
Shale is placed at the bottom of aquifer and interbedded in sandstone; the former is to
prevent leakage at the early time and the latter is to demonstrate the realistic heterogeneous
aquifers. The shale volume ratio is defined as the ratio of shale volume to the rock volume
and represents the effects of shale layers; this is selected between 2 and 20%. The shale
porosities (ranging from 0.1 and 0.15) are smaller than those of sandstone. The shale
permeabilities (ranging from 0.05 and 0.5 millidarcy) represent almost impermeable barriers
The standard deviations of shale permeability and porosity are negligible compared to
sandstone. The end point of relative permeability at the irreducible water saturation (= 0.1)
is 0.85, while that at the irreducible CO: saturation (= 0.2) sets as 0.2.

Table 1. Spatial properties to construct the heterogeneous aquifer models.

Property Abbreviation  Value Range
1Mean permeability of sandstone 2 (millidarcy) PermSand 300~450
Mean porosity of sandstone (unitless) PoroSand 0.22~0.28
35td of permeability (sandstone; millidarcy) StdPerm 12.5~50
Std of porosity (sandstone; unitless) StdPoro 0.005~0.02
Shale volume ratio (%) SVR 2~20
Dykstra—Parsons coefficient (unitless) vDP 0.1896~0.9185

1 The horizontal permeabilities for each geo-model are arithmetic averaged; 21 millidarcy = 9.869 x
1071 m2; 3 ‘Std’ stands for the standard deviation.

Figure 1 illustrates an example of heterogeneous aquifer models with four injectors
(namely, I1, 12, I3 and I4). Figure 1a depicts the spatial distribution of permeability and
Figure 1b describes that of porosity. The injection wells are installed to evenly divide the
entire aquifer; (x, y) grid positions are as follows, I1 = (10, 12), 12 = (28, 12), I3 = (10, 34),
and 14 = (28, 34). The perforation zone in z direction is from 1032.3 m to 1051.53 m, the
lower part of the aquifer. The wells are partially perforated, over the less permeable
basement rock (the shale layer), to demonstrate the upward movement of COz plume.
MRST (MATLAB Reservoir Simulation Toolbox) is used to simulate CO: sequestration in
saline aquifers [44,45]. It provides various trapping volumes: a volume of combined
structural and residual trapping, a volume of residual trapping, a volume of residual
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trapping with plume, a volume of structural trapping, and a volume of movable plume,
respectively. COz properties are assessed using CO2 Lab module in MRST [44]. The

reference pore-pressure is 120 bar and the temperature is 45 degrees Celsius at the top of

the aquifer (840 m depth) where the formation fracture pressure is 150 bar. CO: viscosity
is set as 0.051 centipoise (1 centipoise = 10 Pa-s) and its density is 675.324 kg/m? at the

given reference pressure and temperature. Brine density is 975.86 kg/m3.

Permeability (millidarcy)

Porosity (unitless)

\.
%
&.

X

00
\

8%; the mean porosity (including sandstone and shale)

Figure 1. An example of heterogeneous aquifer models with four injection wells. The distributed

properties are (a) absolute permeability (horizontal permeability) and (b) porosity. Dykstra—Parsons

coefficient = 0.752; shale volume ratio

301 millidarcy.

0.226; the mean permeability (including sandstone and shale)

2.2. DGSA for Evaluating the Significance of Spatial Properties

DGSA, based on regionalized sensitivity analysis, defines the cumulative density
functions (CDF) distance [15,16]. The distance reflects variational properties of the

responses or the dimensionality-reduced responses [16]. After classifying of the output
response with a clustering scheme, the class can generate CDF and the distance can be

defined as L1 norm between two CDFs (Equation (2)).
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de; =dp, (5(Pi):6(Pi|C)),C =12,,Ci=12,m (2

In Equation (2), dc,i is the CDF distance (L1 norm distance, d;;) between the input
CDF for parameter p; and the CDF of the parameter in the class, c. G(p;) is an empirical
distribution function from sampling. G(p;|c) is a class-conditioned empirical distribution
function after classification. C is the number of class that the modeler pre-assigned and m
is the number of parameters. The measure of sensitivity is standardized by the resampling
quantile of the distance. DGSA introduced multidimensional scaling, characterized the
population and the clusters using CDF, and tested the asymmetric interactions of
spatiotemporal parameters using the distance between CDFs (L1 norm) [15-19].

2.3. NSGA-II for Multi-Objective Optimization Calibrating Well Allocations

Pareto optimality, i.e., the trade-off solutions, is the non-domination where no
solution can be improved with respect to any objective without worsening at least another
objective [4,5,8]. Multi-objective evolutionary algorithm searches the trade-offs that
would give a vector of decision variables for all the objective functions under any given
constraints (Equation (3)).

&) = [A0O, LX), -+, (X1 ®)

In Equation (3), f(X) is an objective function with the vector (X) of decision
variables, e.g., well allocation in this study, and the subscript # is the number of objective
functions. NSGA-II algorithm consists of competing individuals with a genetic algorithm,
non-dominated sorting, and crowding distance [5,7-10]. The genetic algorithm-based
operations, e.g., crossover and mutation, form the offspring and then the individuals in
the mixture of parent and offspring population are competing with non-dominated
sorting and the crowding distance. The non-dominated sorting strategy of NSGA-II
proceeds by comparing each individual one by one, and when a non-dominated front is
found, it is temporarily stored, and then the next non-dominated front is searched. This
non-dominated sorting continues until all individuals are ranked [1,5] (Figure 2). The
solutions can evolve to the direction of the real Pareto optimization set, as a larger
probability is assigned to the individuals in the lowest dominant level in order to select
the superior individuals into the next generation of the population.

f, ® non-dominated
O  dominated

_________

f,

Figure 2. A conceptual diagram to explain non-dominated relationship and crowding distance.
When assuming a minimizing problem with two objective functions, the open circles have lower
rank than the blue circles. As searching for the lowest rank, NSGA-II operation to reach Pareto
optimality with non-domination.

To maintain the solution diversity, the crowding distance calculates the congestion
degree of each individual and other individuals [7-9] (Figure 2). Equation (4) defines the
k—th individual’s crowding distance (&y,).
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In Equation (4), f;(k +1) and f;(k — 1) indicate i-th objective function values for
(k + 1)-thand (k — 1)-thindividual, respectively. fi"** isthe maximum value, and f™™"
is the minimum for i-th objective function. By selecting the individuals with lower
crowding distance value in the same dominant level, the evenness and diversity of the
evolutional population can be guaranteed [9,10]. Pareto optimality can be obtained by
reaching convergence conditions, or by repeating the process up to the maximum number
of evolutions, and, thus, multi-objective optimization is costly because of enormous
computational simulations.

3. Results and Discussion
3.1. Spatial Properties Influencing CO: Trapping

DGSA parameters are assigned as follows: k-medoid clustering, with six clusters,
classifies 1024 aquifer models and the resampling quantile of distance is 0.95. A response
for DGSA is the trapping volume of combined structural and residual trapping,
representing relatively permanent and safe sequestration. The trapping amount is a
cumulative volume during 200 years from the first injection. Six uncertain parameters (C
= 6 in Equation (2)) are mean sandstone porosity, mean sandstone permeability, standard
deviation of sandstone porosity, standard deviation of sandstone permeability, shale
volume ratio, and Dykstra—Parsons coefficient, respectively (i = 6 in Equation (2); Table
1). To remove the effects of well allocation, a constant injection rate, 4000 m?/day for each
injector is assumed. Total injection rate per day is 16,000 m3/day because four injectors are
placed (Figure 1a). CO: is injected continuously for 30 years and the trapping trend is
monitored for 200 years, i.e., an additional 170 years from the end of CO: injection.

Figure 3 depicts the result of DGSA with spatial parameters; the sensitive parameters
are the mean porosity of sandstone (PoroSand), mean permeability of sandstone
(PermSand), shale volume ratio (SVR), and Dykstra—Parsons coefficient (VDP) in each
row. The vertical line (the standardized sensitivity = 1; the significant level) indicates
whether the parameter influences the response. The larger standardized sensitivity means
more influence. The sensitive parameters support the importance of heterogeneity and
aquifer properties on CO: trapping: PoroSand determines the capacity size, PermSand
affects CO2 mobility, SVR and VDP represent the effects of the shale barrier on storage
and transport, respectively. The trapping amounts significantly depend on the pore
volume of sandstone. The other parameters over the significant level are closely related to
CO:2 flow. With increasing SVR and VDP, shale is likely to obstruct CO: flow. However,
this would be a subject of discussion as to whether the large amount of shale always has
a positive effect on the trapping volume. The asymmetric parameter interactions can make
this debate more complicated as a parameter can simultaneously influence the different
responses. If the operating conditions are included, deriving a reasonable conclusion
would become a conundrum.
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Figure 3. DGSA result. The abbreviations of spatial parameters are in Table 1. PoroSand, PermSand,
SVR, VDP, StdPoro, and StdPerm represent the mean porosity of sandstone, the mean permeability
of sandstone, shale volume ratio, Dykstra—Parsons coefficient, the standard deviation of sandstone
porosity, and the standard deviation of sandstone permeability, respectively. The Pareto bars are
colored according to the percentile values. The horizontal black line represents confidence interval
within a parameter that is still accepted as influencing. The vertical line means the significant level
(if the standardized sensitivity is greater than 1, it means that the parameter is sensitive to the
response).

3.2. Multi-Objective Optimization with Well Allocations

Multi-objective optimization requires a lot of simulation runs and, thereby, this work
selects two different aquifers based on the DGDA result (Table 2; Figure 4); one is the less
heterogeneous (L aquifer; less heterogeneous relevant to the small value of Dykstra—-Parsons
coefficient) and the other is highly heterogeneous (H aquifer; the high heterogeneity). Figure
4 demonstrates spatial distributions of the key properties influencing the trapping amount:
Figure 4a,b show permeability and porosity of L aquifer, while Figure 4c,d illustrate those
of H aquifer. Upon comparison of the two aquifers, L aquifer is capable of storing more CO
and induces slow fluid transport through sandstones (because L aquifer has the smaller
sandstone permeability and the larger sandstone porosity; refer to Table 2).

On the other hand, H aquifer is more ambiguous in terms of fluid transport. It has a
large portion of shale formations (negative to the continuity of fluid flow) but more
permeable sandstones (favorable to a transporting velocity). The former, i.e., shale beds,
would be advantageous for long-term CO: geological storage, while a drawback would
be having to maintain the lower injection pressure since shale can increase the operating
cost to inject CO:2 continuously. The more permeable sandstone has double-sidedness as
well; the higher transmissivity contributes towards the spread of supercritical CO2 widely,
to occupy additional pore spaces, but can increase the risk of leakage. Therefore, this paper
selects H aquifer with overall mean permeability including both sandstone and shale
similar to L aquifer model, notwithstanding that H aquifer is more heterogeneous; the
entire mean permeability of L aquifer is 227 millidarcy and it is 256 millidarcy for H
aquifer, which occupies less permeable shales and reduces the difference in PermSand
from 147.2 millidarcy (= 448.7-301.5) to 29 millidarcy (= 256-227). Shales distribute
sparsely, are intercalated with the massive sandstone, and cannot sequestrate COz plumes
completely but delay CO> movement. In short, the H aquifer model has more shale, higher
PermSand, and smaller pore volume than the L aquifer model. The H aquifer model is
more heterogeneous with a higher Dykstra—Parsons coefficient.
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H Aquifer
0.220
448.7

20
0.9169
0.012
30.7

L Aquifer
0.274
301.5
0.3488
0.012

14.0

Property (Abbreviation) !
PoroSand
PermSand
SVR
VDP
StdPoro
StdPerm
! Table 1 defines the abbreviations.

Table 2. Two heterogeneous aquifers for multi-objective problem with well allocation.
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The multi-objective problem is set to minimize two objectives (Equation (5)): one (f;)
is to minimize the sum of maximum BHPs (that is, injection pressure at the well bottom)
assigned at each injector, and the other (f3) is related to the trapping volume observed
sequestration. Because the Vr,,, would be large, f, is defined as the minus value of the
trapping volume divided by the total injection amount. To make a minimizing problem,
the minus sign is added. Injecting more CO: requires the higher BHP at the facilities and

negatively affects the trapping efficiency, f,(X), because the injection amount (Vi) is

volume of combined structural and residual trapping, to evaluate the actual value of safe
located at the denominator. Thus, the two objective functions are dependent.

after 200 years. The trapping volume (Vr.,,) is the same as the response of DGSA, i.e., the

Figure 4. Heterogeneous aquifer models to carry out multi-objective optimization with well allocation: (a) permeability

distribution of L aquifer model with relatively low heterogeneity; (b) porosity distribution of L aquifer model (the large

pore volume); (c) permeability distribution of H aquifer model with high heterogeneity; (d) porosity distribution of H
aquifer model. (a,b) are for L aquifer model. (c,d) are for H aquifer model. The distributed permeability is absolute

permeability to x direction.
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Sum of Max. BHPs (bar)

7,00 =) argmax(p,)
F(X) = argminl Virap ®)
[ LX) = - Vimi
nj

In Equation (5), B, means BHPs observed ata well, w (Yw =11, 12,13, I4), which has
been monitored for 200 years. argmax(P,,) means the maximum £, that should be kept
smaller than the formation fracture pressure (=150 bar assumed at the reference depth,
840 m). If argmax(P,) is greater than the fracture pressure, this scenario is excluded at the
optimization process. X consists of daily CO:z injection rate assigned at each injector; x,, €
X, x,, is the CO:2 injection rate (m3/day) at w-th well. The parameters in the genetic
algorithm are as follows; crossover is 0.7, mutation rate is 0.02, and the maximum iteration
is 50. The daily CO: injection rate is fixed as 16,000 m?/day and four vertical wells (I1, 12,
I3, and I4) split this value; the injection rates, less than 4000 m3/day for each well, are
assigned randomly to three wells (12, 13, and I4) and the remaining value is set at I1. This
study sets the constraint that the rate allocated at the well should be kept until 30 years.
The total volume of COz injected over 30 years (V},; total volume of COz injection) is 175.2
million cubic meters (= 16,000 m3/day x 365 days x 30 years).

Figure 5 depicts the Pareto solutions with the lowest rank and non-domination:
Figure 5a presents Pareto solutions for L aquifer and Figure 5b for H aquifer. In terms of
f1, two cases are chosen for each aquifer: L-1 means the lowest f; and L-2 is located at the
opposite side. H-1 and H-2 are selected at the boundaries of f; for H aquifer in the same
way. The distribution of Pareto solutions show that the L aquifer model can store more
CO: with smaller BHP compared to the highly heterogeneous H aquifer. The maximum
trappable volume of L aquifer (the mechanism of combined structural and residual
trapping) is 754,304 m3, while H aquifer remains at 582,005 m®. The sum of maximum
BHPs of L aquifer is 505.37 bar, but that of H aquifer is 506.5 bar (Table 3). The maximum
BHP is assigned at I1 well: 132.55 bar for L aquifer and 134.35 bar for H aquifer. To sum
up, these results show that a less heterogeneous aquifer with large pore volume would be
positive for the trapping and cost-effective operation.

L aquifer-model H aquifer-model
505.5 __506.51
. S
] QQ% §
] 7)
] % & 506.50 = Oog
] 800 o © 00 o m Mg o
505.0 @ [ | 5
] ©
] Z 506.49 _
i Pareto solutions o O Pareto solutions
] L-1 g H HA1 [ ]
] L-2 »n ® H-2
504.5 . . , x103 506.48 + | 107
-4.34 -4.33 -4.32 -4.31 -4.30 -3.323 -3.322 -3.321 -3.320
Trap efficiency (unitless) Trap efficiency (unitless)
(a) (b)

Figure 5. Pareto solutions with non-domination: (a) L aquifer model; (b) H aquifer model. For each aquifer model, two
cases are selected such as L-1 and L-2 for L aquifer model, and H-1 and H-2 for H aquifer model. L-1 satisfies the lowest
pressure while L-2 is located the opposite side (the highest injection pressure) of L aquifer model.
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Table 3. Summary of multi-objective optimization for COz sequestration with well allocation.

L1 L2 H-1 H-2
11 well 14,874 14,068 14,925 14,831
. 12 well 371 360 302 300
Well allocation (m*/day) 15 ) 389 463 108 108
14 well 366 1109 665 761
11 well 132.55 132.13 134.35 134.29
12 well 125.88 125.90 125.72 125.72
Maximum BHP ! (bar) I3 well 123.06 123.15 122.81 122.82
14 well 123.51 124.18 123.61 123.68
Subtotal  505.00 505.37 506.49 506.50
Trapping ((rjn?)z volume ? 754304 759,058 581,682 582,005

! BHP means the bottom hole pressure; 2 the trapping volume is the volume of combined
structural and residual trapping during 200 years from the first COz injection.

Table 3 summarizes the results of the optimal well allocations, the maximum BHP at
an injection well across 200 years, and the trapping volume. The optimal well allocations
suggest the large amount of CO: injection through I1 well with a high BHP. CO2 plumes
can move from the I1 well area to the others. As the injection progresses, the pore pressure
increases from 120 bar (assigned before the sequestrating operation). The small difference
between the BHP and the pore pressure is able to obstruct CO: injection at the late period.
Severe inter-well interference might occur, disturbing the facility operation. Under the
constraint of maintaining the allocated rate, this strategy of well allocation reasonably
supports the maximization of the permanent trapping but also the minimization of the
sum of the operating pressures.

The CO2 volume injected into the aquifer is divided in the order of movable plume,
residual trapping with plume, residual trapping, structural trapping, and the combined
structural and residual trapping in a row. The form of movable plume accounts for 60 to
70% of the total injection. The simulation results are in agreement with a typical feature
of supercritical CO2 plume movement; supercritical CO2 is much more mobile than the
formation water and, thereby, moves faster to the aquifer top than brine flows downward
[44]. Figure 6 depicts the height of the CO:z column over time. At 30 years, the column is
highest near I1 well where most of the CO: is injected. As time passes, many of the mobile
CO2 plumes move upward and spread horizontally when they reach the impermeable cap
rock. Eventually, most of the COz is present near the top of the aquifer. The column near
I1 well gradually decreases and the distributed area expands below the cap rock. Figures
7 and 8 show the spatial distributions of CO2 saturation at the cross sections (A and B line
in the x— plane) for L-1 (Figure 7) and H-1 (Figure 8). CO: saturation is observed at 200
years. COz saturation near the injection wells increases similar to the cone shape, but the
area where CO: is occupied is limited at the upper zones of the aquifer (Figure 7b). The
high mobility of supercritical CO: generates an upward flow mainly, even though the
vertical permeability is 0.1 of the horizontal permeability. The horizontal spreading
phenomenon is possible when CO: accumulates below the impermeable cap rock.
Notwithstanding that this result explains the characteristics of high-mobile CO: flow, it
requires the detailed description of heterogeneity along a vertical direction.
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A notable result related to the heterogeneity is found at the decrement trend of the
movable CO: plume (Figure 9); the percentage of movable plume means the volume ratio
of movable plume to total injection. It accounts for most of the CO: sequestration, e.g.,
73% for L aquifer (estimated at 30 years). The plume has possibilities to turn into the trap,
to maintain itself, or to leak out of the boundaries. Thus, the large amount of movable
plume is negative on sequestration. From 30 years to 200 years, the percentage at L aquifer
decreases from 73% to 64%, while that of H aquifer is reduced from 68% to 61%. Thus
estimates that the heterogeneity degree (Dykstra—Parsons coefficient) contributes to make
these differences; the highly heterogeneous H aquifer has more obstruction for plume
movement so that the shale beds would be positive in reducing the leakage risk. Figure
10 plots the trends of the combined structural and residual trapping of both aquifers. The
less heterogeneous L aquifer increases the combined trapping until 200 years, while the
increment in trapping volume of the highly heterogeneous H aquifer stops at around 80
years. This result recommends that if a decision maker wants to sequestrate a small
volume within a relatively short time, the high heterogeneous aquifer would be favorable
with a large amount of shale layers in the sandstone. However, an increment in the
operating cost would be needed to maintain the high injection pressure.

The results can be used to identify the properties significantly influencing both
operation condition and trapping efficiency. Pareto optimality is obtained with non-
domination among the solutions, and it provides a well allocation strategy that satisfies
the aforementioned multi-objectives. This method is limited in its ability to search for non-
dominated solutions; this study does not assume any tolerance or constraints of objective
functions, so, while the small differences in objective values can be used to distinguish
between the solutions, the differences are not significant. One solution to this limitation
would involve the use of constraint scenarios, e.g., setting the two values as the same
value if the difference in BHPs is negligible from the operator’s view. The simulation
results confirm the typical characteristics of a highly mobile CO: plume in a brine-
saturated system; it moves upward in the early period, reaches the impermeable cap rock,
and then spreads horizontally. Thus, the geological features of the upper part of
heterogeneous aquifers govern the plume flow. The trapping amounts are mainly
influenced by the pore volume, while CO2 movement is significantly affected by the
aquifer heterogeneity. Assessing uncertainty is an important step in elucidating the
characteristics of COz sequestration in heterogeneous media. To achieve more realistic
applications, detailed descriptions of the geological as well as fluid properties—e.g.,
capillary trapping and hysteresis—are essential [30].

The challenges associated with this work are as follows. An individual well has been
constrained to an allocated fixed rate during the entire period of the CO2 injecting process.
While this does reduce the enormous number of potential cases, this constraint limits this
method to making rational decisions based on continuously updating dynamic data. The
objective functions in the optimization problems must be appropriately relevant to result
in trade-offs that satisfy the decision makers. The conflicting goals that may arise
represent a problem in the proper decision-making process. This paper focuses on the
sensitivity of spatial properties related to geological uncertainty. Further sensitivity
analyses that include the operating conditions would be able to evaluate whether or not
the objective functions have been reliably defined. In addition, this paper does not
consider facility cost, so future studies must extend upon this research by classifying
operating scenarios in terms of both the injection pressures and the facility cost. Although
the shut-in and out of well operations are frequent in field applications, this simulation
does not consider operational flexibility. It is crucial to determine the optimum amount of
CO: sequestration without leakage, but aquifer heterogeneity makes quantitative analyses
more difficult [25,26]. The optimal solutions determined in this way may not be the best
ones. Depending on the constraints, various strategies can be used to address this issue.
However, it is challenging to set the constraints in such a way that demonstrates realistic
operations [31]. Multi-objective optimization implements a non-dominated relationship
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to move the solution fronts to the lowest rank. If a small change occurs in the objective
values, then the non-domination is broken, thus leading to the return of unreasonable and
inefficient strategies. The local minima problem has been a representative limitation for
the optimization of multi-objective functions. To avoid local minima, it is important to
both conserve the solution diversity and improve the convergence to the global
optimality. The optimization problems must consider both the efficiency of on-site
operation and cost-effectiveness. To guarantee rationality in decision making, it is also
important to set a good indicator as the objective function. A future study could test the
use of efficient surrogate modeling as a replacement for time-consuming numerical
simulation to enhance the optimization processes. This paper shows that the spatial
heterogeneity affects the CO: sequestration performance. However, asymmetric
parameter interaction with scale-variant features represents another challenge in
analyzing multi-phase flow in heterogeneous media.
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Figure 7. Distribution of CO: saturation of the L-1 case after 200 years. The distribution of the L-2
case is similar to this distribution: (a) x—y plane at the top of the aquifer (z = 840 m depth); (b) cross
sections (A line and B line).
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Figure 8. Distribution of CO: saturation of the H-1 case after 200 years. The distribution of the H-2
case is similar to this distribution: (a) x— plane at the top of the aquifer (z = 840 m depth); (b) cross
sections (A line and B line).
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Figure 9. Comparison of movable plume (the ratio of CO2 volumes that are movable as the plume
forms to the total injection amount) between the L and H aquifer models. The total CO2 amount
injected is 1.752 million cubic meter for each aquifer. The difference made by the optimal conditions
at the given aquifer model, e.g., L-1 and L-2 or H-1 and H-2, is negligible.



Appl. Sci. 2021, 11, 9759

15 of 17

H aquifer-model

L aquifer-model 800

800 QOO 1] O;\
— o0 000200088869990000 [
E <>°<>OOOOO & 6007 ©0000000000000000000C00000D
2, 600 402360%° " o®°
- OOOOO ~ O
x 6930 2 400- o©°
[} O
2 400- 3
3 S
9 a. 200 o hi
o 200 45 o L1 =
S ¥ = = he
(= @ o L2 0 | T T

0-F T T T 0 50 100 150 200
0 50 100 150 200 Time (years)
Time (years)
(a) (b)

Figure 10. CO: trapping trends with time: (a) L aquifer model with L-1 and L-2 cases (less heterogeneous); (b) H aquifer
model with H-1 and H-2 cases (highly heterogeneous).

4. Conclusions

This paper discussed the multi-objective problem related to CO2 sequestration under
geological uncertainty. It searched for optimal well allocations to achieve both minimum
bottom hole pressures as well as maximum trapping efficiency. The distance-based
generalized sensitivity analysis confirmed the influence of the following spatial properties
on CO2 sequestration, in descending order of influence: mean sandstone porosity, mean
sandstone permeability, shale volume ratio, and the Dykstra-Parsons coefficient. The
optimal well allocation suggested a large amount of injection through one well, and it
induced a wide distribution of CO: plume while maintaining low injection pressures.
Numerical simulations reliably explained the transport of the highly mobile CO: plume
in brine-saturated media; the plume moved upward at the beginning of injection, reached
the impermeable cap rock, and then spread horizontally. Obtaining a detailed description
of the properties at a vertical section near an injector is an essential step toward achieving
quantitative analyses for CO:z sequestration. As the aquifer became heterogeneous, the
impermeable shale was able to reduce the plume mobility, while it was unable to maintain
the low injection pressure. The results demonstrate the importance of considering
geological uncertainty in analyzing the performance of CO: sequestration in a more
realistic manner. Asymmetric parameter interactions with spatiotemporal variables
remain a challenge for the analysis of quantitatively supercritical CO: flow under
geological uncertainty.
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