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Abstract: The deep learning technique has turned into a mature technique. In addition, many re-
searchers have applied deep learning methods to classify products into defective categories. However,
due to the limitations of the devices, the images from factories cannot be trained and inferenced
in real-time. As a result, the AI technology could not be widely implemented in actual factory
inspections. In this study, the proposed smart sorting screw system combines the internet of things
technique and an anomaly network for detecting the defective region of the screw product. The
proposed system has three prominent characteristics. First, the spiral screw images are stitched into a
panoramic image to comprehensively detect the defective region that appears on the screw surface.
Second, the anomaly network comprising of convolutional autoencoder (CAE) and adversarial
autoencoder (AAE) networks is utilized to automatically recognize the defective areas in the absence
of a defective-free image for model training. Third, the IoT technique is employed to upload the
screw image to the cloud platform for model training and inference, in order to determine if the
defective screw product is a pass or fail on the production line. The experimental results show that
the image stitching method can precisely merge the spiral screw image to the panoramic image.
Among these two anomaly models, the AAE network obtained the best maximum IOU of 0.41 and a
maximum dice coefficient score of 0.59. The proposed system has the ability to automatically detect a
defective screw image, which is helpful in reducing the flow of the defective products in order to
enhance product quality.

Keywords: internet of things (IoT); screw image; template matching; image stitching; anomaly detection

1. Introduction

Although the IoT technique has been proposed for a period time, it has not yet been
widely adapted in the manufacturing industry. Integrating AI and internet of things (IoT)
techniques into automated factories has turned into a trend in recent times [1,2]. The appar-
ent difference between the smart factory and the traditional automated factory is whether
IoT technology has been introduced or not. IoT systems are comprised of intelligent ter-
minal equipment, wireless networks, cloud, and big data management. Considering the
limitation of the devices, the IoT technology transfers big data from cameras or mechan-
ical devices embedded with the sensors and software to the cloud platform through the
network [3]. Therefore, data clustering is utilized to handle big data. Factories can access
big data that are stored in the cloud efficiently and quickly. Recently, several studies have
introduced the IoT technique to improve the industrial problem, such as fault diagnosis [4],
insulator string defect detection [5], and LCD display defect detection [6]. A smart factory
using IoT techniques can manage automation equipment and automated defect detection
devices with more intelligence than automated factories, which can significantly improve
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product quality and production efficiency. The current screw factory manufacturing pro-
cess mainly includes screw production, defect detection, and product packaging. A major
concern for the screw factory is how to minimize defects and prevent the flow of defective
products. The screw is designed to be fastened into position within a hole by means of the
thread surrounding the flank surface, which is beneficial for fasteners since they cannot
fall out and damage the machinery. Screws must comply with a strict quality and safety
requirements. Critical applications with regard to high precision, stability, and safety are
other important elements for selecting screws. Therefore, the task of detecting defective
screws plays an important role in the process of producing screws.

Although the automated optical inspection (AOI) technique is broadly applied using
a sorting machine to inspect for defective screws, the detection of defective screws with a
high degree of precision is still a challenging issue. At present, the texture analysis carried
out by a computer vision algorithm of Fourier-based restoration is widely used to identify
defective screw surfaces [7]. The idea of Fourier transformation method transfers the
thread image into a frequency domain. Then, the notch-rejected filter is used to eliminate
the high-energy frequency of thread pattern and transform it back to the spatial domain,
for the defective internal thread to be detected. However, the limitation of the Fourier
transformation method is that the thread pattern with different densities has a distinct
frequency, leading to the tedious work of adjusting the parameters of the algorithm. Owing
to the mutual restraint of the complex algorithm parameters, the parameter variables are
highly dependent on the production environment, such as inhomogeneous illumination,
low contrast, and blurry contour, resulting in the instability of detection results. If different
parameters are set, the results may be overkill (potential good units being killed) or under-
kill (potential bad units escaping) of defective images. Moreover, the parameter setting
of these complex algorithms requires well-trained professional operators to constantly
adjust the parameters, which is a time-consuming and tiresome task. The AI technology
can automatically learn the features of the defects. Consequently, adapting AI technology
to detect screw surface defects can greatly improve traditional methods. Combining AI
and IoT techniques is the latest development trend [8]. Images can be uploaded to a cloud
platform for centralized management by the IoT technology, and the AI model can be
trained in a more professional manner. The detection results of the screw products can
be sent to the cloud for data aggregation and statistics collection, which can monitor the
operation status of the entire inspection system, enabling the screw factory to operate
more efficiently.

With the rapid development of technology, artificial intelligence techniques have
achieved impressive success and turned into a hot topic in image processing research.
Utilizing deep learning techniques to solve the defect detection issue can alleviate the
need for complicated manual feature extraction. Deep learning techniques can automati-
cally learn and extract meaningful features from raw images more comprehensively than
previously possible [9]. Although deep learning technology can automatically extract
features in a better way than the traditional manual methods of feature selection, this kind
of supervised learning based on deep learning networks needs a large amount of labeled
data for model training [10]. It is difficult to acquire abnormal images in actual situations
where defect detection is currently being conducted, resulting in limitations in developing
supervised deep learning networks. Moreover, supervised learning needs to consider the
data imbalance problem during the training process. Furthermore, deep learning models
fail to generalize well on small-scale datasets. Unsupervised learning of anomaly detection
has been a hot technique in the defect detection field, which can solve the problem of
supervised learning with a large number of defective images and data imbalances for
model training. The goal of the unsupervised learning method is to learn the represented
features of the normal image and reconstruct the input image. The anomaly features that
deviate from the normal features can be detected through the residual error between the
reconstructed and original images. Moreover, the state-of-the-art unsupervised learning
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network can be trained without labeled data [11–14]. The comparison between supervised
learning and unsupervised learning is shown in Table 1.

Table 1. The comparison between supervised learning and unsupervised learning.

Approach Method Strengths Weaknesses

Supervised-based
classifier

Classification network: CNN Fast training and inference
1. Requires numerous abnormal

and normal images for training
2. Hard to collect abnormal

images in practical situations
3. Tedious manual

annotation work

Semantic network: U-Net, FCN
Fast training and inference;

high performance of
defect localization

Object detection network:
YOLO, Faster R-CNN

Identify the defect with the
bounding boxes

Unsupervised-based
classifier

Convolutional Autoencoder;
Adversarial Autoencoder

Model training without
annotation; requires only

positive datasets for
model training

1. Imprecise defect localization
with poor reconstruction

2. A large amount of clean normal
data are needed to obtain
useful results

Famous unsupervised models such as convolutional autoencoder, adversarial autoen-
coders [15], denoising adversarial autoencoders [16], etc., have been successfully applied
to anomaly detection. For example, J. Yu et al. [17] proposed a two-dimensional principal
component analysis-based convolutional autoencoder network for detecting defects on
wafer maps. J. K. Chow et al. [18] utilized a convolutional autoencoder network for detect-
ing the defect on concrete structure. Compared with the other segmentation models, the
convolutional autoencoder network was adaptable for detecting the defect with a wide
range of scale. G. Kang et al. [19] proposed a detection system, which combined the faster
R-CNN and deep denoising autoencoder models to analyze the defect on the insulator
surface. The experiment results showed that the defect state can be determined by the
score of classification and anomaly network. S. Mei et al. [20] proposed the convolutional
denoising autoencoder networks to detect and localize the defects at the same time. The
experimental results showed that the proposed approach can effectively detect the defect
on homogeneous and non-regular textured surface. The above researches have shown
that anomaly detection models could be applied to industrial defect detection applications
without having a defect dataset for model training, which provides more convenience and
effectiveness for analyzing defective images. Most of the reconstruction models are based
on the encoding-decoding structure, where the CAE network is one of the most well-known
reconstruction models. The CAE model can extract features from the normal image in
the compression and decompression processes. Moreover, the AAE network is a type of
generative adversarial network (GAN) based on the encoding-decoding architecture. The
main idea of the AAE model is to generate fake images that are similar to the original
input image through the process of minimizing the differences between the input and
output image, in order to detect the defective region. Although numerous anomaly deep
learning networks have achieved remarkable success, the existing studies mainly focus
on the performance of deep learning networks in relation to defect detection applications.
Yet, seldom research has considered the application of anomaly network algorithms in
defective screw systems. Therefore, the proposed smart sorting screw system employs
anomaly deep learning networks of two classical models and IoT technology to detect the
defective screws. The research contribution can be summarized as follows:

(1) A template matching algorithm is utilized to expand the curved screw surface images
into panoramic images, which can comprehensively and automatically detect the
defective surface of the spiral screw.

(2) A novel anomaly detection method running on convolutional autoencoder and adver-
sarial autoencoder networks is utilized to automatically recognize the defective areas
without the benefit of defective images for model training.
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(3) To improve the process of deep learning training, the IoT technology is introduced to
the defective screw detection system, which can upload images to a cloud platform
for more efficient model training.

The remainder of this research is organized as follows. The proposed method is
presented in Section 2, which contains the structure of the proposed system, an image
stitching technique, and two anomaly detection techniques. The experiment and discussion
in this study are illustrated in detail in Section 3. Finally, the conclusions drawn from of
this study are provided in Section 4.

2. The Proposed Method

This article focuses on combining the image stitching technique for image prepro-
cessing. Here, two anomaly networks, the convolutional autoencoder and adversarial
autoencoder network, are applied to recognize the defective region of screw image. More-
over, the IoT technique is utilized to upload the dataset to the cloud platform for analysis.
Further details of the proposed method in this study are provided as follows.

2.1. The Architecture of the Proposed System

An effective method for applying deep neural networks and IoT techniques is a helpful
tool to increase recognition accuracy and reduce the tiresome operation for the defective
screw system operators. The proposed system mainly consists of three items, which are
IIOT, sensing device, and a cloud platform. The pipeline of the framework is shown in
Figure 1, in which the sensing device is coupled with a memory device and transmission
interface. First, each screw product is captured by the CCD camera sensing device, and
then the screw images are saved into the memory device. Moreover, the sensing device
could perform the task of image preprocessing by deciding whether to offload the screw
images to the cloud platform. The process of the DL model can be divided into two stages:
(1) Training and (2) inference. In the case of detecting a defective screw, the screw images
collected from the sensing device will be offloaded to the DL model on the cloud platform
for model training through the wireless interface. Thereafter, the trained model is stored
on the cloud platform. The inference process performs the prediction of the input images
based on a well-trained DL model. Subsequently, the predicted results of the screw image
are sent back to the sensing device, and converted into control information in order to
decide whether the screw product is a Go or No Go on the production line.
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2.2. Image Preprocessing of Images Stitching Technique

Template matching [21,22] is the commonly used approach for image stitching to
blend the multiple images into a panoramic image, which identifies the common feature of
the template image from the inspected source image. The process of template matching
mainly consists of two steps. First, selecting the initial image of the spiral screw image as
the template image is an important step before performing the matching process, which
influences whether the defective feature is obvious after the image stitching. The next
step involves finding the common characteristics of the patch for both the template and
inspected images by horizontal pixel-by-pixel scanning. The maximum value of the
normalized cross-correlation (NCC) is calculated to find the highest similarity of the
overlapping region between the template image and inspected image. The NCC is defined
as Equation (1).

(x, y) =
∑m/2

i=−m/2 ∑n/2
j=−n/2[I(x + i, y + i) ∗ T(i, j)]−m ∗ n ∗ µI ∗ µT√

(∑m/2
i=−m/2 ∑n/2

j=−n/2 I2(x + i, y + j)−m ∗ n ∗ µ2
I ) ∗

(
∑m/2

i=−m/2 ∑n/2
j=−n/2 T2(i, j)−m ∗ n ∗ µ2

T

) (1)

where r(x, y) is the NCC value at coordinates (i, j); I(i, j) and T(i, j) are the inspected
image and the template image on coordinate (i, j); m ∗ n is the figure size; µI is the average
gray value of the inspected image; and µT is the average gray value of the template image.
The average gray value of the inspected and template images are separated and given as
Equations (2) and (3).

µI =
1

m ∗ n

m/2

∑
i=−m/2

n/2

∑
j=−n/2

I(x + i, y + j) (2)

µT =
1

m ∗ n

m/2

∑
i=−m/2

n/2

∑
j=−n/2

T(i, j) (3)

2.3. Anomaly Detection Techniques

The defective screw feature is treated as an anomaly detection issue in this article.
Two anomaly detection models, the convolutional autoencoder (CAE) and the adversarial
autoencoder (AAE) are applied to detect the defective screw products. Both of these
two algorithms are based on unsupervised neural network models, which do not require
defective images for model training. Since it is an important part of detecting defective
screw products, the details of the two anomaly detection algorithms are described below.

2.3.1. Convolutional Autoencoder (CAE)

A convolutional autoencoder model has the ability to learn the hidden features from
the input images without labeled ground truth. The architecture of the CAE model mainly
consists of encoding and decoding. The main purpose of the encoder is not only to extract
the potential features from the original input datasets, but at the same time, to reduce their
dimensions. The output of the encoder is represented as a compression correlated to the
input data. The decoder reconstructs the original image that is generated by the encoder.
Both the encoder and decoder are trained together at the same time to attain meaningful
represented features, and to be capable of restoring the original image without losing a
large amount of feature information. In the CAE model, the encoder is integrated with a
convolutional and pooling layer, while the decoder is coupled with deconvolutional and
upsampling layers. The architecture of the CAE model is shown in Figure 2.
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The definition of the encoder and decoder can be expressed as in Equations (4) and (5).
The loss function of the CAE model can be obtained from the mean square error, which
minimizes the error resulting from the reconstruction of the image from the original, which
can be expressed as Equation (6).

ϕ : I → F (4)

ρ : F → I′ (5)

min
(

L
(

I, I′
))

= min

(
n

∑
i=1

(
I − I′

)2
)

(6)

where ϕ and ρ are the encoder and decoder, respectively; I and I′ are the input image of
CAE encoder and the output of CAE decoder, respectively; and F is the latent feature of the
CAE model. The processing of the encoder and decoder is shown in Equations (7) and (8).

H = ae(I ∗We + be) (7)

I′ = ad(H ∗Wd + bd) (8)

where ae and ad are the activation functions of the encoder and decoder, respectively; We
and Wd are the weighing of the encoder and decoder, respectively; and be and bd are the
network biases of the encoder and decoder, respectively.

2.3.2. Adversarial Autoencoder (AAE)

The AAE model is a kind of model variant, as introduced by Makhzani et al. [15], that
combines the concept of autoencoder structure into the generative adversarial network
(GAN) framework. The architecture of the AAE model is illustrated in Figure 3, which
consists of two components, namely, the generator and discriminator. The autoencoder
replaces the generator part of the AAE model, which contains the encoder and decoder
elements to minimize the error between the reconstruction and input images. The generator
is trained to fool the discriminator with the generated images. The discriminator is trained
to correctly distinguish whether a latent feature of the encoder output is “normal” or a
“defective” image. With an increase in training, the generated images turn out to be more
realistic, whereas the discriminator could not judge the difference between the normal
and defective images. Meanwhile, the discriminator is continuously trained to adapt the
improved capabilities of the generator, thereby enhancing the generator and allowing it to
produce more authentic normal images. The loss function of the AAE network is closed
off to the AE network, which uses the Jensen-Shannon divergence (JS divergence) on an
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aggregated posterior distribution of latent features [23]. The loss function of the AAE
network can be expressed as Equation (9).

LAAE = JS(q∅(z)
∣∣∣∣∣∣pθ(z))− Eq∅(z,x)[logpθ(x

∣∣∣z)] (9)

where the parameter x is denoted as the input image, and z is the latent vector of the AE
network. The process by which the generator converts z to x is defined as θ; the encoder
that converts x to z is defined as ∅. pθ(z) is an arbitrary number appearing prior to the
target distribution, and q∅(z) is the aggregated posterior.
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Figure 3. The architecture of the autoencoder model.

3. Experiment and Discussion

To evaluate the performance of the proposed methods, template matching combined
with anomaly models of CAE and AAE networks are investigated in this section. Initially,
the datasets utilized in this work are described in detail. Then, three experiment parts
are presented. Moreover, the template matching method is evaluated first to view the
effectiveness of the merged images. Thereafter, the comprehensive results of the two
anomaly networks, namely CAE and AAE, are discussed and compared to explore the
detection performance. Finally, specific descriptions are provided.

3.1. Dataset Descriptions and Experiment Setup

In this study, the dataset of screw images is captured from the sensing device of the
developed optical instrument. The developed system of the optical instrument provides
more details, as shown in Figure 4. In order to comprehensively capture the spiral screw,
the developed optical instrument is designed to place the screw on the rotating plate, which
is perpendicular to the lens. In addition, the stepper motor can drive the rotating plate
to rotate in 360 degrees. For each screw product, about 200 images of screw images can
be captured in 5 s. Moreover, the image quality is an essential factor, which will affect
the result of the subsequent analysis in this study. The screw images are captured on the
Hikvision camera coupled with the MORITEX lens, which can generate the high quality
of the screw images. To capture the defective region on the screw more clearly, the front
light of the light bars are placed on two sides of the object to create strong reflections on
the screw surface. The experimental images of the spiral screw are shown in Figure 5,
where the defective region on the spiral screw is indicated with the red arrow, and each
image has the same scale with 762 × 920 pixels. The image resolution is approximately
0.03 mm/pixel.
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Figure 5. The experimental images of the spiral screw (unit: 0.03 mm/pixel). (a) Normal image;
(b) defective image.

Moreover, the convolutional and adversarial autoencoders are used as the core AI
models for detecting the defective region on the screw image. In this experiment, both of
these two networks are implemented on the cloud platform of NVIDIA GTX 1080 GPU
with the TensorFlow framework. The hyper parameters of CAE were set as 8500 epochs,
0.05 learning rate, mean squared error of loss function, and Adam optimizer. The AAE
model parameters were set as 10,000 epochs, 0.0002 learning rate, mean squared error and
binary cross-entropy of loss function, and Adam optimizer.

3.2. Template Matching of Expanding the Spiral Screw

A characteristic of the screw product is the curved surface that must be turned around
the screw product for detecting the defective region on the surface. The limitation of
detecting the spiral screw product is selecting a specific angle to capture the defective
screw region. The different capturing positions have different appearance results of the
defective region. In order to address this issue, the template matching method is utilized
to stitch several slices of the curved surface into a panoramic image. It is an important
image preprocessing method before detecting the defective region of the screw images. The
aim of the template matching approach is to find the best matched template image, which
is drawn from the inspected images. The template matching process slices the template
image over all the possible positions of the source image and finds the best similarity score
pixel-by-pixel between the template image and the covered image. In this way, multiple
slices of spiral screw images can be merged into a larger image. A schematic diagram
of the template matching approach is shown in Figure 6. The template image represents
the region we expected to find across the source image. The template image is compared
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to the source image and the highest value of correlation based on the normalized cross-
correlation is calculated. The red boundary box in Figure 6c represents the region with
the highest similarity to the source image. To acquire a comprehensive panoramic image,
the template image will replace the overlapped region of the source image by finding the
highest similarity score. The process of template matching by merging multiple sliced screw
images into a panoramic image is illustrated in Figure 7. The 360 degrees of spiral screw
product is captured into slice images per 1 degree in this study. In total, approximately
300 images are captured for each screw product, and seven spiral screw products are
used in this study analysis. The extended panoramic image with different angles for four
screw products is given in Figure 8, where the image resolution of the panoramic image
is 2130 × 960 pixels. According to Figure 8, the results show that the template image can
be precisely matched to the source image and successfully expanded into a panoramic
image. In addition, the location of the defective screw can be clearly shown by looking at
the panoramic screw image. The defective regions of the panoramic image are marked
with red and indicated in Figure 8. Compared with the unstitched the screw image, the
merged panoramic screw image illustrates the defective region more efficiently.
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3.3. Performance of the CAE and AAE Models
3.3.1. The Patch Images Used for Study Analysis

Preparing the training and testing datasets is an important process before conducting
the model training and testing. The two factors will affect the training results, which are
the scale of the patch image and the total number of training dataset. According to these
two factors, the following description provides more details for the experiment dataset.
The scale of the patch image needs to be defined at first. If the patch images are either too
large or too small, this would have an effect on the model training results. For the texture
of the screw image, the features in the patch image need to contain the screw stripe. If
the patch images are sliced too large, the details of the features cannot be learned well. In
contrast, if the patch images are sliced too small, the network cannot learn the characteristic
features over the whole image. Therefore, the dimension of the patch image is selected
as 128 × 128 pixels for the best scale in the experiment. On the other hand, the number
of the training dataset is another factor influencing the performance of the network. In
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order to have better performance on the training dataset, the screw panoramic images are
sliced into multiple patch images in this study, which can create a large amount of positive
datasets for model training as well as learn the normal features more effectively. In our
experiments, a normal panoramic screw image is selected as the training dataset. Then, the
whole panoramic screw image is sliced by the sliding window method, which is depicted
in Figure 9. The patch images are acquired with the sliding window of 128 × 128 pixels.
In addition, 16 pixel strides move along the rows and columns. Therefore, the training
dataset can be obtained by approximately 284 patch images. In the testing phase, the
remaining panoramic screw images can be sliced into 25 image patches with the same scale
of 128 × 128 pixels, which contains the normal and abnormal datasets. The slice patches of
the panoramic screw image are shown in Figure 10, where the resolution of the panoramic
screw image for the testing phase is 384 × 768 pixels. Moreover, the data augmentation
method of rotation and horizontal flipping is utilized to create more datasets in this article,
which can prevent overfitting during the training process. The training dataset can be
increased to 10,000 patch images for network training by the data augmentation method.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

Figure 8. The extended panoramic image with different angles of four screw products (unit: 0.03 mm/pixel). 

3.3. Performance of the CAE and AAE Models 

3.3.1. The Patch Images Used for Study Analysis 

Preparing the training and testing datasets is an important process before conduct-

ing the model training and testing. The two factors will affect the training results, which 

are the scale of the patch image and the total number of training dataset. According to 

these two factors, the following description provides more details for the experiment 

dataset. The scale of the patch image needs to be defined at first. If the patch images are 

either too large or too small, this would have an effect on the model training results. For 

the texture of the screw image, the features in the patch image need to contain the screw 

stripe. If the patch images are sliced too large, the details of the features cannot be 

learned well. In contrast, if the patch images are sliced too small, the network cannot 

learn the characteristic features over the whole image. Therefore, the dimension of the 

patch image is selected as 128 × 128 pixels for the best scale in the experiment. On the 

other hand, the number of the training dataset is another factor influencing the perfor-

mance of the network. In order to have better performance on the training dataset, the 

screw panoramic images are sliced into multiple patch images in this study, which can 

create a large amount of positive datasets for model training as well as learn the normal 

features more effectively. In our experiments, a normal panoramic screw image is se-

lected as the training dataset. Then, the whole panoramic screw image is sliced by the 

sliding window method, which is depicted in Figure 9. The patch images are acquired 

with the sliding window of 128 × 128 pixels. In addition, 16 pixel strides move along the 

rows and columns. Therefore, the training dataset can be obtained by approximately 284 

patch images. In the testing phase, the remaining panoramic screw images can be sliced 

Figure 8. The extended panoramic image with different angles of four screw products (unit: 0.03 mm/pixel).



Appl. Sci. 2021, 11, 9751 11 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17 
 

into 25 image patches with the same scale of 128 × 128 pixels, which contains the normal 

and abnormal datasets. The slice patches of the panoramic screw image are shown in 

Figure 10, where the resolution of the panoramic screw image for the testing phase is 384 

× 768 pixels. Moreover, the data augmentation method of rotation and horizontal flip-

ping is utilized to create more datasets in this article, which can prevent overfitting dur-

ing the training process. The training dataset can be increased to 10,000 patch images for 

network training by the data augmentation method. 

 

Figure 9. The slice patches of the panoramic screw image for the training phase (unit: 0.03 

mm/pixel). 

 

Figure 10. The slice patches of the panoramic screw image for the testing phase (unit: 0.03 

mm/pixel). 

3.3.2. The Meaning of Patch Image for CAE and AAE Networks 

Both the CAE and AAE networks learn the normal texture of the screw dataset in 

the training stage. In addition, abnormal datasets are utilized during the testing stage to 

evaluate the model performance. Prior to comparing the results produced by the two 

networks, the functioning of normal and abnormal images on the network is illustrated 

as follows. Normal images can be utilized to examine the reconstruction ability of the 

network. If the reconstruction ability is great, the reconstructed image can be restored as 

the original image. The residual image showing the difference between the original im-

age and the reconstructed image would not appear in the anomaly region, which would 

be shown as a back graph. It represents the effectiveness of the network in extracting 

features from the source images during the process of encoding and decoding. Further-

more, for the abnormal images, the network could restore the defective region that ap-

pears in the images to the normal reconstructed image. The residual figure can be in-

spected to examine the difference between the original image and reconstructed image 

for detecting the features of the defective texture. The meaning of the normal patch im-

ages for two networks is shown in Figure 11, where (a) is the original image of normal 

dataset trained by the network; (b) is the reconstructed image derived from the normal 

dataset extracted by the network; (c) is the residual image taken from the normal da-

taset, which shows the difference between the original image and reconstructed image; 

1
2
8

128

Stride: 16 pixel

S
trid

e:1
6
 p

ix
el

Figure 9. The slice patches of the panoramic screw image for the training phase (unit: 0.03 mm/pixel).
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Figure 10. The slice patches of the panoramic screw image for the testing phase (unit: 0.03 mm/pixel).

3.3.2. The Meaning of Patch Image for CAE and AAE Networks

Both the CAE and AAE networks learn the normal texture of the screw dataset in
the training stage. In addition, abnormal datasets are utilized during the testing stage
to evaluate the model performance. Prior to comparing the results produced by the two
networks, the functioning of normal and abnormal images on the network is illustrated
as follows. Normal images can be utilized to examine the reconstruction ability of the
network. If the reconstruction ability is great, the reconstructed image can be restored as
the original image. The residual image showing the difference between the original image
and the reconstructed image would not appear in the anomaly region, which would be
shown as a back graph. It represents the effectiveness of the network in extracting features
from the source images during the process of encoding and decoding. Furthermore, for the
abnormal images, the network could restore the defective region that appears in the images
to the normal reconstructed image. The residual figure can be inspected to examine the
difference between the original image and reconstructed image for detecting the features of
the defective texture. The meaning of the normal patch images for two networks is shown in
Figure 11, where Figure 11a is the original image of normal dataset trained by the network;
Figure 11b is the reconstructed image derived from the normal dataset extracted by the
network; Figure 11c is the residual image taken from the normal dataset, which shows
the difference between the original image and reconstructed image; and Figure 11d is a
superimposed image, which combines the original and residual images taken from a normal
dataset. The meaning of the abnormal patch for two networks is shown in Figure 12, where
Figure 12a is the original image taken from an abnormal dataset tested by the network;
Figure 12b is the reconstructed image derived from an abnormal dataset detected by the
network; Figure 12c is the residual image taken from an abnormal dataset, which is the
difference between the original image and reconstructed image; and Figure 12d is the
superimposed image, which combines the original and residual images from the abnormal
dataset. The resolution of each patch is 128 × 128 pixels in Figures 11 and 12.
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3.3.3. Comparison between CAE and AAE Networks

To compare the performance of the AAE and CAE networks, this study partially
selects the normal and abnormal patch images of the four screw images for discussion. A
comparison illustrating the detection of the screw patch images with 128× 128 pixels taken
from normal and abnormal images of the model testing are shown in Table 2. Examining the
two anomaly detection networks, it can be observed that the AAE model can successfully
restore the reconstructed image to the original normal image using both normal and
abnormal datasets. Moreover, the AAE network has the ability to effectively recognize the
defective region of the slice patch dataset.

3.3.4. Evaluation Criteria of CAE and AAE Networks

It is necessary to evaluate the predictive performance after the model training process.
In this study, three evaluation criteria, the intersection over union (IoU), dice coefficient
(DC), and frames per second (FPS) [24] were used to quantify the experiment results of
the two anomaly networks. IoU is known to be a popular metric to calculate the overlap
percentage of the common pixels between the predicted region and ground truth. The
range of the IoU is from 0 to 1, where an IoU of 0 represents no overlap between the
predicted region and ground truth. An IoU of 1 indicates that the predicted region and
ground truth perfectly overlap. Moreover, the dice coefficient is another widely used
indicator, which is similar to the IoU. The dice coefficient is used to evaluate the similarity
of the predicted region and ground truth. Both of these indicators were compared with the
ground truth (GT), which were provided in Equations (10) and (11).

IoU =
Predict ∩ GT
Predict ∪ GT

(10)

Dice Coefficient = 2 ∗ |Predict ∩ GT|
|Predict|+ |GT| (11)

Seven screw datasets were employed to test the two networks under the same cir-
cumstances of the model parameters, such as the epoch and learning rate. The experiment
results of AAE and CAE are shown in Table 3. The quantitative detection of the two
networks is given in Table 4. According to the results, the average IoU of CAE and AAE
are 0.31 and 0.34, respectively and the average DC of CAE and AAE are 0.45 and 0.51,
respectively. It can be found that a predictive result of the AAE is similar to the ground
truth. The AAE network exhibits a higher performance than the CAE network in detecting
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the defective region of the screw image. Moreover, the frame per second (FPS) number is
another indicator to figure out the real-time detection on the AAE and CAE networks. The
different structures of the networks have different depths, which affect the recognition rate
of the network. The results show that with more complexity layers of the CAE network,
the detection speed is slower.

Table 2. The screw patches of dataset 1 tested for CAE and AAE networks (unit: 0.03 mm/pixel).

Index Original CAE AAE

Reconstruct Residual Superimposed Reconstruct Residual Superimposed

1
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Table 3. The experiment results of AAE and CAE networks.

Networks Dice IoU
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Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

detecting the defective region of the screw image. Moreover, the frame per second (FPS) 

number is another indicator to figure out the real-time detection on the AAE and CAE 

networks. The different structures of the networks have different depths, which affect 

the recognition rate of the network. The results show that with more complexity layers 

of the CAE network, the detection speed is slower. 

Table 3. The experiment results of AAE and CAE networks. 

Networks Dice IoU 

CAE 

  

AAE 

  

Table 4. The quantitative detection of two networks. 

Model 
Dice 

Min/Mean/Max 

IoU 

Min/Mean/Max 
FPS 

CAE 0.35/0.45/0.53 0.2/0.31/0.39 0.72 

AAE 0.41/0.51/0.59 0.23/0.34/0.41 3.2 

3.3.5. Synthetization of the Patch Images 

As previously stated, the CAE and AAE networks are used to train and test the slice 

patch images, which are generated from the original images. In order to examine the 

defective texture that appeared in the original screw image more clearly, this study syn-

thesized the patch residual images to the original panoramic image. The patch images 

synthesized to the original panoramic image of CAE and AAE networks are shown in 

Figure 13. From left to right, the images include the original synthesized image, the CAE 

synthesized image, and the AAE synthesized image, where the CAE synthesized image 

is the detection result of the CAE network, and the AAE synthesized image is the detec-

tion result of the AAE network. The resolution of the synthesized image is 387 × 768 pix-

els in Figure 13. From an overview of these three images, it can be seen that the AAE 

network can comprehensively detect the defective region found in the panoramic screw 

image. Moreover, it indicates that the AAE network has an ability to generate a normal 

image more efficiently, with the result that the residual images of defective regions can 

be recognized with more precision. 

  

Max = 0.53, Average = 0.45, Min = 0.35 Max = 0.39, Average = 0.31, Min = 0.20

Max = 0.59, Average = 0.51, Min = 0.41 Max = 0.41, Average = 0.34, Min = 0.23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

detecting the defective region of the screw image. Moreover, the frame per second (FPS) 

number is another indicator to figure out the real-time detection on the AAE and CAE 

networks. The different structures of the networks have different depths, which affect 

the recognition rate of the network. The results show that with more complexity layers 

of the CAE network, the detection speed is slower. 

Table 3. The experiment results of AAE and CAE networks. 

Networks Dice IoU 

CAE 

  

AAE 

  

Table 4. The quantitative detection of two networks. 

Model 
Dice 

Min/Mean/Max 

IoU 

Min/Mean/Max 
FPS 

CAE 0.35/0.45/0.53 0.2/0.31/0.39 0.72 

AAE 0.41/0.51/0.59 0.23/0.34/0.41 3.2 

3.3.5. Synthetization of the Patch Images 

As previously stated, the CAE and AAE networks are used to train and test the slice 

patch images, which are generated from the original images. In order to examine the 

defective texture that appeared in the original screw image more clearly, this study syn-

thesized the patch residual images to the original panoramic image. The patch images 

synthesized to the original panoramic image of CAE and AAE networks are shown in 

Figure 13. From left to right, the images include the original synthesized image, the CAE 

synthesized image, and the AAE synthesized image, where the CAE synthesized image 

is the detection result of the CAE network, and the AAE synthesized image is the detec-

tion result of the AAE network. The resolution of the synthesized image is 387 × 768 pix-

els in Figure 13. From an overview of these three images, it can be seen that the AAE 

network can comprehensively detect the defective region found in the panoramic screw 

image. Moreover, it indicates that the AAE network has an ability to generate a normal 

image more efficiently, with the result that the residual images of defective regions can 

be recognized with more precision. 

  

Max = 0.53, Average = 0.45, Min = 0.35 Max = 0.39, Average = 0.31, Min = 0.20

Max = 0.59, Average = 0.51, Min = 0.41 Max = 0.41, Average = 0.34, Min = 0.23

AAE

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

detecting the defective region of the screw image. Moreover, the frame per second (FPS) 

number is another indicator to figure out the real-time detection on the AAE and CAE 

networks. The different structures of the networks have different depths, which affect 

the recognition rate of the network. The results show that with more complexity layers 

of the CAE network, the detection speed is slower. 

Table 3. The experiment results of AAE and CAE networks. 

Networks Dice IoU 

CAE 

  

AAE 

  

Table 4. The quantitative detection of two networks. 

Model 
Dice 

Min/Mean/Max 

IoU 

Min/Mean/Max 
FPS 

CAE 0.35/0.45/0.53 0.2/0.31/0.39 0.72 

AAE 0.41/0.51/0.59 0.23/0.34/0.41 3.2 

3.3.5. Synthetization of the Patch Images 

As previously stated, the CAE and AAE networks are used to train and test the slice 

patch images, which are generated from the original images. In order to examine the 

defective texture that appeared in the original screw image more clearly, this study syn-

thesized the patch residual images to the original panoramic image. The patch images 

synthesized to the original panoramic image of CAE and AAE networks are shown in 

Figure 13. From left to right, the images include the original synthesized image, the CAE 

synthesized image, and the AAE synthesized image, where the CAE synthesized image 

is the detection result of the CAE network, and the AAE synthesized image is the detec-

tion result of the AAE network. The resolution of the synthesized image is 387 × 768 pix-

els in Figure 13. From an overview of these three images, it can be seen that the AAE 

network can comprehensively detect the defective region found in the panoramic screw 

image. Moreover, it indicates that the AAE network has an ability to generate a normal 

image more efficiently, with the result that the residual images of defective regions can 

be recognized with more precision. 

  

Max = 0.53, Average = 0.45, Min = 0.35 Max = 0.39, Average = 0.31, Min = 0.20

Max = 0.59, Average = 0.51, Min = 0.41 Max = 0.41, Average = 0.34, Min = 0.23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

detecting the defective region of the screw image. Moreover, the frame per second (FPS) 

number is another indicator to figure out the real-time detection on the AAE and CAE 

networks. The different structures of the networks have different depths, which affect 

the recognition rate of the network. The results show that with more complexity layers 

of the CAE network, the detection speed is slower. 

Table 3. The experiment results of AAE and CAE networks. 

Networks Dice IoU 

CAE 

  

AAE 

  

Table 4. The quantitative detection of two networks. 

Model 
Dice 

Min/Mean/Max 

IoU 

Min/Mean/Max 
FPS 

CAE 0.35/0.45/0.53 0.2/0.31/0.39 0.72 

AAE 0.41/0.51/0.59 0.23/0.34/0.41 3.2 

3.3.5. Synthetization of the Patch Images 

As previously stated, the CAE and AAE networks are used to train and test the slice 

patch images, which are generated from the original images. In order to examine the 

defective texture that appeared in the original screw image more clearly, this study syn-

thesized the patch residual images to the original panoramic image. The patch images 

synthesized to the original panoramic image of CAE and AAE networks are shown in 

Figure 13. From left to right, the images include the original synthesized image, the CAE 

synthesized image, and the AAE synthesized image, where the CAE synthesized image 

is the detection result of the CAE network, and the AAE synthesized image is the detec-

tion result of the AAE network. The resolution of the synthesized image is 387 × 768 pix-

els in Figure 13. From an overview of these three images, it can be seen that the AAE 

network can comprehensively detect the defective region found in the panoramic screw 

image. Moreover, it indicates that the AAE network has an ability to generate a normal 

image more efficiently, with the result that the residual images of defective regions can 

be recognized with more precision. 

  

Max = 0.53, Average = 0.45, Min = 0.35 Max = 0.39, Average = 0.31, Min = 0.20

Max = 0.59, Average = 0.51, Min = 0.41 Max = 0.41, Average = 0.34, Min = 0.23

Table 4. The quantitative detection of two networks.

Model Dice
Min/Mean/Max

IoU
Min/Mean/Max FPS

CAE 0.35/0.45/0.53 0.2/0.31/0.39 0.72

AAE 0.41/0.51/0.59 0.23/0.34/0.41 3.2

3.3.5. Synthetization of the Patch Images

As previously stated, the CAE and AAE networks are used to train and test the
slice patch images, which are generated from the original images. In order to examine
the defective texture that appeared in the original screw image more clearly, this study
synthesized the patch residual images to the original panoramic image. The patch images
synthesized to the original panoramic image of CAE and AAE networks are shown in
Figure 13. From left to right, the images include the original synthesized image, the CAE
synthesized image, and the AAE synthesized image, where the CAE synthesized image is
the detection result of the CAE network, and the AAE synthesized image is the detection
result of the AAE network. The resolution of the synthesized image is 387 × 768 pixels in
Figure 13. From an overview of these three images, it can be seen that the AAE network
can comprehensively detect the defective region found in the panoramic screw image.
Moreover, it indicates that the AAE network has an ability to generate a normal image more
efficiently, with the result that the residual images of defective regions can be recognized
with more precision.
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4. Results and Discussion

The proposed smart sorting screw system integrates the image stitching technique,
anomaly deep learning networks, and IoT technology to comprehensively and automati-
cally identify the defective spiral screw products. According to the results of image stitching
technique, the template matching method can merge the sliced screw image into panoramic
images, which improves the effectiveness for analyzing defective images. Moreover, any
rotation product problems can be detected using the template matching technique through
the proposed system. The experimental results show that the AAE model can restore the
abnormal region to a normal region in a better way than the CAE model. Although the
quantitative results achieve a slightly lower accuracy in detecting the defective screw image,
the proposed methods are more meaningful in a practical application, as it dramatically
improves the traditional image processing techniques of adjusting the parameter setting.
Moreover, the unsupervised learning method of learning image reconstruction overcomes
the supervised learning strategy of requiring an extensive amount of normal and abnormal
images for model training, which provides a breakthrough in practical industrial applica-
tions. In addition, the main challenge of anomaly detection model is the poor quality of
the reconstruction image, which leads to imprecise defect localization. In future work, this
study will mainly make an effort to enhance the quality of reconstruction image by adding
more features or noises to the training stage, making the anomaly detection models more
robust and precise.

5. Conclusions

It is important to detect the defective region that appears in a screw image during
the process of quality sorting screw products. The spiral screw is characterized by a
curved surface, making the process of detecting the defective region more difficult. In
order to comprehensively detect the defective region of the spiral screw, a smart sorting
screw system is proposed in this article. The template matching method is employed to
stitch several phases of curved images into a panoramic image. Then, a panoramic screw
image can be used to train and test anomaly networks more efficiently than with the other
methods. The state-of-the-art unsupervised learning network of CAE and AAE models
can be trained with a normal image, which can solve the issue of difficulty in obtaining the
defective images taken from actual situations. Moreover, the IoT technique is utilized to
upload the screw image to a cloud platform through the Wi-Fi or 4G network for training
and inference. The experimental results showed that the AAE network achieves the best
IoU and dice coefficient score by recognizing the defective region of the spiral screw image.
Furthermore, it can reveal that the AAE network can learn the normal images well, and
the characteristics of defects can be effectively identified through the residual map. The
proposed smart sorting screw system based on the IoT technique can automatically detect
a defective screw image as well as monitor the detection status of the entire inspection
system to enhance the efficiency and performance during the detection process.
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