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Abstract: For the dynamic collision avoidance problem of an unmanned surface vehicle (USV), a
dynamic collision avoidance control method based on an improved cuckoo search algorithm is
proposed. The collision avoidance model for a USV and obstacles is established on the basis of
the principle of the velocity obstacle method. Simultaneously, the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGS) is incorporated in the collision avoidance
process. For the improvement of the cuckoo algorithm, the adaptive variable step-size factor is
designed to realize the adaptive adjustment of flight step-size, and a mutation and crossover strategy
is introduced to enhance the population diversity and improve the global optimization ability. The
improved cuckoo search algorithm is applied to the collision avoidance model to obtain an optimal
collision avoidance strategy. According to the collision avoidance strategy, the desired evasion
trajectory is obtained, and the tracking controller based on PID is used for the Lanxin USV. The
experimental results show the feasibility and effectiveness of the proposed collision avoidance
method, which provides a solution for the autonomous dynamic collision avoidance of USVs.

Keywords: unmanned surface vehicle; dynamic collision avoidance; improved cuckoo search;
tracking controller

1. Introduction

An unmanned surface vehicle (USV) is an autonomous surface vehicle capable of
conducting port patrols and performing special maritime tasks, and has been intensively
researched by various countries in recent years [1,2]. A USV is required to perform
autonomous avoidance of obstacles on the sea during its maritime tasks, so autonomous
collision avoidance control technology has been one of the key technologies for USV
research [3].

Recently, some researchers have performed more research on the technology of USV
collision avoidance. A motion collision avoidance algorithm for a USV in a dynamic and
complex environment has been proposed, which is realized based on the velocity obstacle
method and combined with the rules of collision avoidance at sea, so as to complete
the autonomous collision avoidance of the USV [4]. In [5], the angular velocity and
linear velocity of a USV in the collision avoidance process are calculated, and the angular
velocity buffer model is introduced, so as to ensure stable output and realize the avoidance
of local static obstacles. A layered collision avoidance method is designed in [6]. The
velocity obstacle method and the improved artificial potential field method are used to
solve the collision avoidance problem for a USV under normal and emergency conditions,
respectively. Xiong et al. [7] present elite group-based evolutionary algorithms based on
the simulated annealing algorithm and particle swarm optimization for path planning
using multiple USVs. Sun et al. [8] use the fast marching method combined with a model
predictive control algorithm to design an autonomous navigation control system. Ref. [9]
proposes a fast collision avoidance method based on velocity resolution to realize a fast
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response for a USV in an unknown complex marine environment. For the path navigation
method of a USV, a chaotic and sharing-learning particle swarm optimization algorithm
is developed to solve the extended traveling salesman problem and the nonlinear multi-
objective model in [10]. These collision avoidance algorithms for USVs include the velocity
obstacle method [11], field theory [12–15], the finite state machine [16], A star [17,18], the
LROABRA (local reactive obstacle avoidance based on region analysis) method [15], the
VFH+ method [15], the fast marching method [19], and so on. Most of the above literature
focuses on the generation of a collision avoidance strategy, but there is not much research
on the combination of a collision avoidance strategy and a controller.

In the research for USV collision avoidance strategies, the optimization algorithm is
often used to obtain the optimal collision avoidance strategy [20,21]. Song et al. introduced
a two-level collision avoidance algorithm and improved the calculation efficiency and
accuracy through the particle swarm optimization (PSO) algorithm [6]. For this solution
space of the collision avoidance strategy, the objective function is solved by the PSO
algorithm in [22]. Guo et al. designed an extended chaos and shared learning PSO (CSPSO)
algorithm to solve the traveling salesman problem (TSP) and nonlinear multi-objective
model in a collision avoidance algorithm [10]. Xia et al. proposed a modified quantum
PSO (MQPSO) method to obtain the optimal velocity variation of a USV to avoid collision
and reduce energy consumption [23]. Lazarowska proposed a path-planning method in
a dynamic environment based on ant colony optimization (ACO) [24]. Subsequently, the
method was applied in a ship control system [25]. Wang et al. proposed an improved
ACO algorithm to solve the problem of insufficient search ability in a collision avoidance
planning algorithm for a USV [26]. The improved pseudo-random proportion rule was used
to select the ant state transition, and the wolf colony allocation principle and the maximum
minimum ant system were used to update the global pheromone to avoid the search falling
into the local optimum. In optimization algorithms, the cuckoo search (CS) algorithm is one
of the well-known evolutionary strategies in global optimization [27,28]. In [29], based on
the CS algorithm, the path-planning problem of a mobile robot in a dynamic environment
was solved, and the autonomous movement of a robot in different environments was
realized. Mohanty [30] presents the implementation of the smart cuckoo search algorithm
with a fitness function to generate a collision-free optimal route for the mobile robots. In
this paper, the cuckoo search algorithm is applied to USV dynamic collision avoidance,
and the autonomous collision avoidance problem for a USV is further studied.

The paper proposes a dynamic collision avoidance control method based on an im-
proved CS algorithm for a USV. Due to the different aspect ratios of the obstacles en-
countered in the voyage process of the USV, circular and elliptical obstacles are used to
represent the obstacles, and collision avoidance models for circular and elliptical obsta-
cles are established based on the principle of the velocity obstacle [31]. The International
Regulations for Preventing Collisions at Sea (COLREGS) are integrated into the collision
avoidance process. In view of the shortcomings of the cuckoo search algorithm, such as
slow convergence speed and low optimization accuracy, the adaptive adjustment of its step
size control factor and the introduction of a mutation and crossover strategy are adopted to
improve the algorithm, so as to enhance its optimization ability. It can obtain the optimal
solution easily and reliably when the improved CS algorithm is applied to the collision
avoidance problem.

To verify the rationality of the method proposed in this paper, the Lanxin USV of
Dalian Maritime University was used as the research object, and a virtual scenery simula-
tion platform was built to conduct dynamic collision avoidance simulation experiments.
The experimental results verify the feasibility and effectiveness of the collision avoidance
control method based on the improved cuckoo search algorithm. This paper is organized
as follows. Section 2 describes the problem. The establishment of the collision avoidance
model and dynamic collision avoidance based on the improved CS algorithm are described
in Sections 3 and 4. Section 5 designs a collision avoidance tracking controller based on a
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collision avoidance strategy. Section 6 provides the simulation to illustrate the proposed
method. Finally, Section 7 concludes this paper.

2. Problem Description
2.1. Collision Avoidance of Lanxin USV

The Lanxin USV is a multi-functional intelligent unmanned vessel experimental
platform with full autonomous and semi-autonomous control, which was independently
developed by Dalian Maritime University [32,33], as shown in Figure 1.

Figure 1. The Lanxin USV at sea.

The Lanxin USV is 7.02 m in length with a 2.6 m beam, with a payload of 1000 kg,
a maximum speed of 35 kn and a maximum endurance of 180 n mile. Its main engine is
a 260 hp propeller. During the autonomous voyage process of the Lanxin USV, a variety
of shipborne sensing detection equipment can be used to establish a complex marine
environment model in the voyage area through environmental information fusion. By
obtaining the position, velocity and contours of dynamic and static obstacles, the decision-
making information can be provided for the autonomous collision avoidance control of
the USV.

2.2. Cuckoo Search Algorithm

Cuckoo search (CS) is a heuristic swarm intelligence search algorithm proposed
by British scholars Yang and Deb in 2009 by studying cuckoo oviposition behavior [34].
Cuckoos breed by laying eggs in other birds’ nests. At the same time, birds occupying
nests will have countermeasures. Therefore, in order to improve the survival rate of its
eggs, the cuckoo needs to find the nest with the best location, which can evolve into the
process of finding the optimal solution.

Compared with other swarm intelligence search algorithms, the CS algorithm has
significant comprehensive advantages and has been widely used in many fields due to its
few adjusting parameters, insensitive convergence speed to parameter changes, difficulty in
falling into local optimization and easy coupling with other algorithms [35]. However, the
convergence speed and optimization ability of the CS algorithm in the search process still
needs to be improved. This paper improves the CS algorithm to enhance its convergence
speed and accuracy in order to make it more suitable for engineering applications.

3. Collision Avoidance Model
3.1. Circular Collision Avoidance Model

In the process of collision avoidance, to facilitate the calculation, it is necessary to
expand the obstacles and establish the motion collision avoidance model of the USV and
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obstacles in the coordinate system [36,37], as shown in Figure 2. The velocity of the USV
is vU and Obs represents an obstacle with velocity vO. The relative velocity between the
USV and the obstacle is vUO. α=∠(X, vU) is the course of the USV, β=∠(X, vO) is the
movement direction angle of the obstacle, and ϕ=∠(vUO, vU) is the angle between the
course of the USV and the direction angle vUO. The relative position vector between
the USV and obstacle is LUO with the direction angle θ =∠(X, LUO), γ=∠(LUO, vUO)
is the angle between the direction vUO and the direction LUO. The collision risk area is
determined according to LUO and the tangent line Lt from the USV to the obstacle circle.
The angle of the collision risk area is µ=∠(Lt, LUO). All angles in Figure 2 are positive in
the anticlockwise direction.

Figure 2. Circular collision avoidance model.

When the direction of relative velocity vUO is within (θ − µ, θ + µ), it is considered
that the USV will collide with the obstacles if it continues to sail. At this time, it is important
to adjust the course and velocity of the USV in order to increase the value of γ, so as to
make the USV escape from the collision domain. In the collision avoidance process of
the USV, vUO is decomposed into vO

UO pointing to the obstacle and vU
UO perpendicular to

vO
UO. vO

UO causes the USV to drive to the obstacle; vU
UO causes the USV to escape from the

collision domain. From Figure 2, it can be obtained that{
vU

UO = vU sin(α− θ)− vO sin(β− θ)
vO

UO = vU cos(α− θ)− vO cos(β− θ)
, (1)

and

γ = arctan
vU sin(α− θ)− vO sin(β− θ)

vU cos(α− θ)− vO cos(β− θ)
. (2)

In Equation (1), vU cos(α− θ) and vO cos(β− θ) are the components of vU and vO
in the direction pointing to the obstacle, respectively. vU sin(α− θ) and vO sin(β− θ) are
the components of vU and vO in the direction perpendicular to the direction pointing to
the obstacle.
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By deriving γ, we can obtain

dγ = d
{

arctan
(

vU sin(α− θ)− vO sin(β− θ)

vU cos(α− θ)− vO cos(β− θ)

)}
= d{arctan f (vU , α, vO, β, θ)} = 1

1 + f 2 d f
, (3)

with f = vU sin(α−θ)−vO sin(β−θ)
vU cos(α−θ)−vO cos(β−θ)

.
The solution of (3) can be obtained as

1
1 + f 2 =

1

1 +
(

vU sin(α−θ)−vO sin(β−θ)
vU cos(α−θ)−vO cos(β−θ)

)2

=
(vU cos(α− θ)− vO cos(β− θ))2

v2
U + v2

O − 2vUvO cos(α− β)

, (4)

d f =
∂ f

∂vU
dvU +

∂ f
∂α

dα +
∂ f

∂vO
dvO +

∂ f
∂β

dβ. (5)

Assuming that the moving state of the obstacle remains stable, the change in its
velocity and course in instantaneous time can be ignored, so that dvO and dβ are equal to
0, and

∂ f
∂vU

dvU =
vO sin(β− α)

(vU cos(α− θ)− vO cos(β− θ))2 dvU (6)

∂ f
∂α

dα =
v2

U − vUvO cos(α− β)

(vU cos(α− θ)− vO cos(β− θ))2 dα (7)

Equation (3) can be expressed as

dγ =
vO sin(β− α)

v2
U + v2

O − 2vUvO cos(α− β)
dvU

+
v2

U − vUvO cos(α− β)

v2
U + v2

O − 2vUvO cos(α− β)
dα

, (8)

that is

∆γ =
vO sin(β− α)

v2
U + v2

O − 2vUvO cos(α− β)
∆vU

+
v2

U − vUvO cos(α− β)

v2
U + v2

O − 2vUvO cos(α− β)
∆α

. (9)

In Figure 2, vU , vO and vUO have the following relationship as
vO sin(β− α)=vUO sin ϕ
vU − vO cos(α− β)=vUO cos ϕ
v2

U + v2
O − 2vUvO cos(α− β)=vUO

2
. (10)

Substituting (10) into (9) can be obtained as

∆γ =
sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α. (11)
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It can be seen from (11) that ∆γ can be changed by adjusting the velocity variation ∆vU
and course variation ∆α of the USV. In order to ensure that the relative velocity direction is
outside the collision domain (θ − µ, θ + µ), the value of ∆γ should satisfy

∆γ =
sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≥ µ− γ γ ≥ 0

∆γ =
sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≤ −µ− γ γ < 0

. (12)

3.2. Ellipse Collision Avoidance Model

When the USV encounters obstacles with a large aspect ratio, the obstacles can be
represented as ellipses, which is more in line with their contour characteristics, the redun-
dant expansion area can be reduced, and the available sailing route can be increased. As
shown in Figure 3, the motion collision avoidance model is the same as that of the circular
collision avoidance model. In order to obtain the collision domain of the ellipse model, the
tangent vectors between the ellipse model and the USV are calculated, so as to obtain the
collision domain µ1 and µ2.

Figure 3. Ellipse obstacle avoidance model.

To facilitate the calculation of tangent vectors, an elliptical coordinate system XOO′YO
is established with the center point of the obstacle as the origin O′, and with YO parallel to
the velocity direction of the obstacle vessel. The coordinates of the USV are transformed
from the global coordinate system to the elliptic coordinate system [38], as shown in
Figure 4.

In Figure 4, T1 and T2 are the two tangent points of the obstacle relative to the USV
in the global coordinate system. TObs

1 and TObs
2 are the two tangent points in the elliptic

coordinate system. The position of the USV is converted from the global coordinate system
to the elliptic coordinate system using

USVObs = RO(USVC −ObsC), (13)
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where USVObs = [xUO, yUO]
T and USVC represent the positions of the USV in the elliptic

coordinate system and global coordinate system respectively, ObsC is the position of the
obstacle in the global coordinate system, and RO is the transformation matrix as

RO =

[
cos θLOsinθLO
− sin θLOcosθLO

]
(14)

Figure 4. Tangents of ellipse obstacle.

The standard elliptic equation and tangent equation are
x2

T
a2 +

y2
T

b2 = 1

xTxUO
a2 +

yTyUO
b2 = 1

, (15)

where the a and b are the lengths of the semiminor axis and semimajor axis of the ellipse,
respectively. The tangent point coordinate TObs = (xT , yT) of the ellipse obstacle relative to
the USV in the elliptic coordinate system can be obtained by (15), and it can be transformed
into the global coordinate system by

T = RO
−1TObs+ObsC. (16)

The tangent vector can be obtained by the tangent point, and µ1 and µ2 can be obtained
from the tangent vectors of the USV to the elliptical obstacle. Therefore, when the USV
escapes from the collision domain, the following equation should be satisfied:

sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≥ µ1 − γ γ ≥ 0

sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≤ −µ2 − γ γ < 0

. (17)

The USV will detect whether there are obstacles entering its safety range in real time.
When the obstacles enter the safe range, the USV and its relative velocity direction are in
the collision domain, and the USV needs to start to take evasive action. According to ∆vU
and ∆α, the evasion trajectory Γd(xd, yd) can be obtained and used as the desired trajectory
to make the USV avoid obstacles.
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3.3. Constraints of Collision Avoidance Process

When the USV is sailing in the sea, it is usually necessary to follow certain rules to
avoid the collision risk between the USV and obstacles. In the International Regulations
for Preventing Collisions at Sea (COLREGs) formulated by the International Maritime
Organization (IMO), the rules for avoiding collisions are given in the case of head-on,
crossing and overtaking. Figure 5 is the schematic diagram of the three encounter situations.

(a) (b)

(c) (d)

Figure 5. Rule diagram of collision avoidance. (a) Overtaking situation; (b) Head-on situation; (c) Crossing situation on the
starboard side of USV; (d) Crossing situation on the port side of USV.

In Figure 5, the USV sails from the starting point to the terminal point, and the blue
vessel is the obstacle vessel encountered, in which the vessel shape with a solid edge
represents the current position of the obstacle vessel, and the vessel shape with a dashed
edge represents the position of the obstacle vessel at the last moment, from which the
sailing trend of the obstacle vessel can be seen. The course of the USV is the sailing direction,
and the course difference between the USV and the obstacle vessel starts from the USV
course. The rules are described as follows:

(a) Overtaking situation: when the course difference between the USV and the obstacle
vessel is within [0◦, 45◦] and [315◦, 360◦], if the velocity of the USV is higher than that
of the encountering vessel, then the USV turns left to pass the obstacle vessel.

(b) Head-on situation: if the course difference is within [165◦, 195◦], the USV turns right
to avoid the obstacle vessel.

(c) Crossing situation: if the course difference is within [45◦, 165◦], the obstacle vessel
crosses on the starboard side of the USV, then the USV turns right; if the course
difference is within [195◦, 315◦], the obstacle vessel crosses on the port side of the
USV, then the USV turns left.

4. The Dynamic Collision Avoidance Algorithm for the USV
4.1. Cuckoo Search Algorithm

In the cuckoo search algorithm, population updating is used to find the optimal nest
location for oviposition behavior. There are two methods to generate new solutions: one is
to update the nest position based on Levy flight; the another is to randomly search for a
new location after the host bird abandons the nest after finding foreign eggs based on a
certain probability [39].
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In the cuckoo search (CS) algorithm, after the initial position is generated randomly,
the current generation of a bird’s nest position is updated through Levy flight, and its
formula is as follows:

xt+1,i = xt,i + αc ⊕ L(λ) · (xt,i − xt,best) (18)

where xt,i is the i-nest in the t-generation population, xt,best is the optimal nest location in
the population, and αc is the step-size control factor, which is determined by the scale of
the problem to be solved. L(λ) follows the Levy probability distribution L(λ) ∼ u−λ. Next,
some of the nest positions are eliminated according to the discovery probability Pa, and a
new location is generated by using the preferred random walk method with

xt+1,i = xt,i + r(xt,j − xt,k), (19)

where r is a random number evenly distributed between [0, 1], and xt,j and xt,k are two
different random positions from the population.

4.2. Improved Cuckoo Search Algorithm
4.2.1. Adaptive Step-Size

In the CS algorithm, due to the strong randomness of Levy flight and the control factor
of control flight step-size being a fixed value, it is easy to fly over the optimal solution in
the optimization process and affect the convergence performance of the algorithm [40]. In
this paper, through the analysis of the update strategy, the adaptive step-size adjustment
mode is adopted by

αc =

(
αc max − αc min

1 + exp(3 · γ · t
T − γ)

+ αc min

)
(20)

where ac max and ac min are the maximum and minimum of the step size, γ can be used
to adjust the decreasing rate, and t and T are the current iteration number and the total
iteration number, respectively. Through (20), the flight step-size is larger in the early stage
of iteration, which can fully search the solution space and determine the area where the
optimal solution is located as soon as possible. With the increase in the iteration number,
αc gradually decreases, and local exploration can be carried out to improve the search
accuracy and speed up the convergence.

4.2.2. Mutation and Crossover Operation

In the process of updating the CS algorithm, the diversity of individuals will be
reduced and the global search ability will be poor. At this time, it is easy to fall into
the local optimum and affect the convergence performance of the algorithm. Therefore,
mutation and crossover operations are introduced in this paper. By randomly selecting
three nests in the current nest population, the individual differences are used to generate a
new intermediate nest position, and then the intermediate nest is crossed with the target
nest to be replaced with a certain probability. The dimension variables are combined to
generate a new nest position. The variation equation is as follows:

yt,i = xt,r1 + K · (xt,r2 − xt,r3) (21)

where the subscripts r1, r2 and r3 are three random numbers randomly selected within the
population, which are not equal to each other and not equal to the i value of the current
operator, and K is the scaling factor, which is between [0, 1]. The intermediate position
yt,i is generated by three randomly selected bird’s nests, so that yt,i and current target
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position xt,i are crossed according to the crossing probability to generate a new bird’s nest
individual ui,j. The crossover operation equation is as follows:

ui,j =

{
yi,j rand < PCR or j = jrand
xi,j other

(22)

where rand is the random number between [0, 1], PCR is the crossover probability, jrand is
the random index value in [1, D] and D is the dimension number. The better dimension
variables of two individuals can be retained in a new individual by cross-recombination
between the intermediate individual and the target individual, so that the updated nest
location is better.

By introducing mutation and crossover strategies, the algorithm can use the large
differences between individuals to generate bird’s nest individuals with strong diversity
in the early stage of iteration, so as to avoid falling into the local optimal situation, and
strengthen the global search ability. In the process of convergence to the global optimum,
these strategies enhance the local search ability.

4.2.3. Steps of the Improved Algorithm

The steps of the improved cuckoo search (ICS) algorithm are as follows:

• Step 1: The number T of iterations, population number N and discovery probability
Pa, scaling factor K and crossover probability PCR are set and the positions of N nests
are initialized randomly at the same time;

• Step 2: The population is updated using (18) with the adaptive step strategy, the
individuals before and after updating are compared and the better solution is selected
for retention;

• Step 3: According to the discovery probability Pa, some nests are eliminated, and the
same number of new nests are generated by random walk according to (19);

• Step 4: According to (21) and (22), the nest position is mutated and crossed, and the
better new individuals are reserved for the next iteration;

• Step 5: The position of the optimal solution in the population is selected, and whether
the algorithm satisfies the termination condition is detected. If it is satisfied, the
optimal solution will be output. If not, it will jump to Step 2.

4.3. Fitness Function Based on Collision Avoidance Model

Based on the collision avoidance model, the fitness function of the CS algorithm can be
determined. According to (12), the USV can escape from the collision domain by changing
course and velocity, so its fitness function can be expressed as

f (∆vU , ∆α) = k1|∆vU |+ k2|∆α| (23)

where f (∆vU , ∆α) represents the sum of course variation ∆α and velocity variation ∆vU in
the optimization process, and the variation constraint conditions are shown in

sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≥ µ1 − γ γ ≥ 0

sin ϕ

vUO
∆vU +

vU cos ϕ

vUO
∆α ≤ −µ2 − γ γ < 0

. (24)

In the process of collision avoidance, under the condition that the USV can escape
from the collision domain and meet the constraints of the collision avoidance rules, the
USV sails in pursuit of a smaller attitude change and smooth motion, then the change in
course and velocity should be as small as possible when seeking a collision avoidance
strategy. In other words, the smaller value of fitness in the optimization process indicates
the better position of the individual. The weight coefficients k1 and k2 are used to give
priority to the adjustment of ∆α and ∆vU . If the value of k1 makes the value of k1|∆vU |
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larger when adjusting the velocity, the course should be adjusted first. If k2 makes k2|∆α|
larger when adjusting the course, the velocity should be adjusted first. Since it is more
effective to adjust the course for collision avoidance, the adjustment of the course will be
given priority in this paper.

4.4. Parameter Selection of Improved Algorithm

Considering that the CS algorithm needs to find the optimal solutions of ∆α and ∆vU ,
the search space dimension is set to 2. The parameters of the ICS algorithm proposed
in this paper include population number N, crossover probability PCR, scaling factor K
and detection probability Pa. The detection probability Pa of the CS algorithm is generally
0.25 [34]. The population number N has a direct impact on the diversity of the nest position.
If N is small, the algorithm converges quickly, but the probability of the algorithm falling
into local optimization will also increase. Conversely, if N is set too large, the diversity of
the nest position will increase, but it will increase the amount of calculation and reduce
the convergence speed. For the crossover probability PCR, it also has a great impact on the
diversity of the population. When its value is large, it is easy to guarantee the diversity
of the population, and the algorithm can easily find the optimal solution. Conversely, the
change in the nest position is less, which is conducive to the stable search of the algorithm,
but it is possible to fall into local optimization. The scaling factor K reflects the influence
on the nest position offset. A larger K makes the nest position offset larger, which is
convenient for the algorithm to find the potential solution in a large range. Conversely, the
convergence speed can be improved, but this also makes the algorithm easily fall into local
optimization. According to the above description, the N, PCR and K need to be properly
selected according to the solution problem.

5. Collision Avoidance Trajectory Tracking Control
5.1. Structure of Collision Avoidance Controller

Figure 6 illustrates the principle of the collision avoidance controller, which combines
the collision avoidance algorithm with the tracking controller. The sensor collects the
environment and USV status information and then transmits it to the collision avoidance
algorithm. The evasion trajectory is generated by the collision avoidance algorithm and
used as the tracking trajectory of the tracking controller. Finally, the collision avoidance
control of the USV is realized.

Figure 6. The collision avoidance controller.

It is difficult for the tracking controller to accurately track the desired trajectory in the
control cycle, so the collision avoidance algorithm needs to re-plan the trajectory according
to the USV state and environmental information, as shown in Figure 7. As can be seen
from Figure 7, the USV starts to sail from the point of A and plans the evasion trajectory of
AB0. However, due to the tracking error of the tracking controller, it only reaches the B
position; that is, the actual trajectory is AB. The evasion trajectory BC0 is planned again to
compensate for the tracking error. The red solid line is the actual trajectory.
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Figure 7. The actual and desired trajectories for collision avoidance.

5.2. USV Model

The USV model is described as follows [41,42]:

ẋ = u cos ψ− v sin ψ
ẏ = u sin ψ + v cos ψ
ψ̇ = r
u̇ = m22

m11
vr− d11

m11
u + 1

m11
τu

v̇ = −m11
m22

ur− d22
m22

v
ṙ = m11−m22

m33
uv− d33

m33
r + 1

m33
τr

, (25)

where (x, y, ψ) denotes the surge displacement, sway displacement and yaw angle. (u, v, r)
denotes the velocities of surge, sway and yaw directions. The control inputs are surge force τu
and yaw moment τr. mii and dii are the vessel inertia coefficients and damping coefficients.

5.3. Tracking Controller Design

The position tracking error is {
xe = x− xd

ye = y− yd
. (26)

The derivation of time t on both sides of (26) can be obtained[
ẋe
ẏe

]
=R(ψ)

[
u
v

]
−
[

ẋd
ẏd

]
, (27)

with

R(ψ)=
[

cos ψ − sin ψ
sin ψ cos ψ

]
.

For u and v, the virtual control laws αu and αv with Λ =
√

x2
e + y2

e +∇ are[
αu
αv

]
=R(ψ)−1

[
ẋd − κxe/Λ
ẏd − κye/Λ

]
, (28)
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where κ > 0 and ∇ > 0. When ueg = u− αu,veg = v− αv, then[
ẋe
ẏe

]
=R(ψ)

[
ueg
veg

]
−
[

κxe/Λ
κye/Λ

]
. (29)

When ueg → 0, veg → 0, (29) is updated to[
ẋe
ẏe

]
=−

[
κxe/Λ
κye/Λ

]
. (30)

Consider the following candidate Lyapunov function as

V0=
1
2

x2
e+

1
2

y2
e . (31)

Deriving from (31) we can obtain

V̇0=xe ẋe+yeẏe = −κ
(

x2
e + y2

e

)
/Λ. (32)

According to (32) and (30), when lim
t→∞

V̇0 ≤ 0, the position error converges to zero gradually.

The PID controller is introduced as the tracking controller, and its control law is
as follows

u = KpΓ(t) + Ki

∫ t

0
Γ(t)dt + KdΓ̇(t), (33)

where Γ =
[
ueg, veg

]T , and the proportional coefficient, integral coefficient and differential
coefficient of the PID controller are Kp = diag

(
Kpu, Kpv

)
, Ki = diag(Kiu, Kiv) and

Kd = diag(Kdu, Kdv), respectively.

6. Simulation of Dynamic Collision Avoidance Algorithm

On a computer with a CPU of 2.93 HZ, Matlab 2014a was used for algorithm simulation
to test the feasibility of the designed autonomous collision avoidance control algorithm
based on the improved CS algorithm.

6.1. Simulation Verification of Improved CS Algorithm

In order to verify the effectiveness of the improved CS (ICS) algorithm, four sets
of test functions were used to test the convergence speed and optimization accuracy of
the algorithm. Among them, the f1 function is a unimodal function used to verify the
convergence speed of the algorithm; f2, f3 and f4 are multimodal functions with many
local extremum points, which are used to verify the optimization accuracy of the algorithm.
The ICS algorithm was compared with the standard CS algorithm and particle swarm
optimization (PSO). Parameters were set as follows: population number N = 30, search
space dimension was 2, PCR = 0.2, K = 0.55 was in the improved CS algorithm, detection
probability Pa = 0.25 was in the CS algorithm, c1 = c2 = 2 was in the PSO algorithm and
inertia weight w decreased linearly from 0.9 to 0.4 [43]. Test functions are shown in Table 1.

To verify the algorithm by numerical simulation, the test functions were used. Their
fitness curve and simulation results are shown in Figure 8 and Table 2.
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Table 1. Test functions.

Function Name Function Equation Search Scope Optimal Value

Sphere f1 =
D
∑

i=1
x2

i [−5.12, 5.12] 0

Ackley
f2 = −20 exp(−0.2

√
D
∑

i=1

x2
i

D )−

exp(
D
∑

i=1
cos(2πxi/D)) + 20 + e

[−32, 32] 0

Girewank f3 = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos( xi√
i
) + 1 [−600, 600] 0

Schaffer f4 = 0.5 + (sin
√

x2
1+x2

2)
2
−0.5

(1+0.001(x2
1+x2

2))
2 [−10, 10] 0

(a) (b)

(c) (d)

Figure 8. Fitness curves of test functions. (a) Sphere function; (b) Ackle function; (c) Girewank
function; (d) Schaffer function.

Through the verification of test functions and the results in Figure 8 and Table 2, it can
be seen that the ICS algorithm improves the convergence speed and accuracy by adjusting
the flight step-size adaptively. Mutation and crossover operations were introduced to
avoid the population falling into local optima and enhance the ability of global optimiza-
tion. Compared with the standard CS and PSO algorithms, the ICS algorithm performs
better in convergence speed, accuracy and global optimization ability, and can meet the
calculation requirements of the collision avoidance strategy when applied to USV dynamic
collision avoidance.



Appl. Sci. 2021, 11, 9741 15 of 19

Table 2. Simulation results of test functions.

Function Algorithm Optimal Solution Worst Solution Average Value

Sphere
PSO 1.1812 × 10−8 8.6634 × 10−7 2.1987 × 10−7

CS 1.1803 × 10−6 1.3057 × 10−5 5.0170 × 10−6

ICS 1.7019 × 10−19 2.8024 × 10−18 1.1439 × 10−18

Ackley
PSO 8.9423 × 10−7 5.4106 × 10−5 2.0311 × 10−5

CS 2.2135 × 10−8 2.6034 × 10−6 4.1700 × 10−7

ICS 8.8818 × 10−16 2.2204 × 10−14 8.7041 × 10−15

Girewank
PSO 9.6883 × 10−4 0.0494 0.0198
CS 0.0020 0.0272 0.0115
ICS 0 8.1406 × 10−12 8.6685 × 10−13

Schaffer
PSO 2.4826 × 10−9 0.0097 0.0058
CS 8.4831 × 10−8 0.0097 0.0051
ICS 5.7732 × 10−15 1.6292 × 10−6 3.2832 × 10−7

6.2. Simulation Verification for Collision Avoidance

In order to verify the collision avoidance ability of the USV in a multi-obstacle scene,
the real electronic chart in Figure 9 was taken as the simulation scene. Table 3 shows
the motion information of the USV and obstacles, with the coordinate unit m and ve-
locity unit kn. The numerical simulation was carried out on the Lanxin USV of Dalian
Maritime University, for which principal parameters can be found in [33]. The initial
conditions of the USV were {x, y, ψ, u, v, r}(0) = {0 m, 280 m, 0 rad, 0 m/s, 0 m/s, 0 rad/s}.
The control parameters were selected as κ = 1,∇ = 1, Kp = diag

(
1.0× 103, 1.0× 103

)
,

Ki = diag
(

0.3× 103, 0.3× 103
)

and Kd = diag(20, 20).

Figure 9. Chart scene.

Table 3. Data for multiple dynamic obstacle avoidance.

Starting Point Target Point Direction Velocity

USV (0, 280) (900, 800) 90◦ 30

Obstacle 1 (590, 120) 270◦ (−17, 0)

Obstacle 2 (500, −80) 0◦ (0, 10)

Obstacle 3 (1100, 520) 270◦ (−12, 0)

Obstacle 4 (760, 1050) 180◦ (0, −10)
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The collision avoidance simulation for the USV in a multi-obstacle scene is shown in
Figure 10, in which the blue trajectory is the collision avoidance route of the USV, and the
other trajectories are those of dynamic obstacles.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Multiple dynamic obstacle avoidance. (a) Encounter obstacle 1; (b) Encounter obstacle 2;
(c) Encounter obstacle 3; (d) Encounter obstacle 4; (e) Leave obstacle 4; (f) Achieve the goal.

In Figure 10, the USV detects whether there is an obstacle at any time during its
voyage. In Figure 10a, the USV detects that it meets obstacle 1 and completes the obstacle
avoidance by maintaining course−39◦. In Figure 10b, the USV detects the crossing obstacle
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2, and the USV turns to the course 31◦ to complete the obstacle avoidance with a velocity of
6 m/s and a single calculation time of 0.078 s. In Figure 10c, crossing obstacle 3 is detected,
the USV turns to the course 16.49◦, and the velocity is 7 m/s to complete the obstacle
avoidance with a single calculation time of 0.076 s. In Figure 10d, the USV crosses with
obstacle 4, and the USV turns to the course 84.61◦ to complete the collision avoidance
for obstacle 4 with a single calculation time of 0.077 s. The collision avoidance behavior
in the above process follows the collision avoidance rules. In Figure 10e,f, after the USV
completes the collision avoidance for obstacle 4, it adjusts the course and velocity and sails
to the target point.

Figure 11a shows the input of the controller. Under the control inputs, the final
control output of the USV is shown in Figure 11b. It can be seen that the controller
can better follow the velocity and course guidance instructions output with the collision
avoidance algorithm.

(a) (b)

Figure 11. Input and output results for the controller. (a) The input of the controller; (b) The final control output of USV.

According to the expected course and velocity calculated by the collision avoidance
algorithm, the USV will adjust to the expected motion attitude according to its own motion
performance constraints, and calculate the expected attitude change at the next moment in
real time according to the adjusted motion state parameters and position information, so
as to realize real-time collision avoidance. From the above simulation, it can be seen that
the collision avoidance algorithm designed in this paper can make the USV complete the
obstacle avoidance safely and quickly.

7. Conclusions

Aiming at the autonomous dynamic collision avoidance problem for a USV, a collision
avoidance control method based on an improved CS algorithm was proposed. Firstly,
according to the different aspect ratios of obstacle contours, these are represented by circle
and ellipse collision avoidance models. In the process of collision avoidance, the constraints
of collision avoidance rules are integrated to ensure the safety of the USV during a voyage.
Secondly, the CS algorithm was improved by using the adaptive step-size control factor, so
as to dynamically adjust the flight step-size and improve the search ability; by introducing
a mutation and crossover strategy, the diversity of the population and local optimization
ability were strengthened. The improved CS algorithm, standard CS algorithm and PSO
algorithm were simulated and verified. By comparison, the improved CS algorithm
shows great improvement in the convergence speed and optimization accuracy, and it
can quickly solve the collision avoidance strategy in the process of collision avoidance.
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Through experiments for electronic chart scene simulation, it was verified that the algorithm
designed can make the USV complete autonomous dynamic collision avoidance safely
and quickly in multi-dynamic obstacle scenes, which provides a feasible and effective
engineering application method for autonomous dynamic collision avoidance of a USV. In
future research, it will be necessary to further combine the relevant contents of COLREGs
with a collision avoidance controller to ensure the sailing safety of the USV.
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