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Abstract: In this research work, the machinability of turning Hastelloy X with a PVD Ti-Al-N coated
insert tool in dry, wet, and cryogenic machining environments is investigated. The machinability
indices namely cutting force (CF), surface roughness (SR), and cutting temperature (CT) are studied
for the different set of input process parameters such as cutting speed, feed rate, and machining
environment, through the experiments conducted as per L27 orthogonal array. Minitab 17 is used
to create quadratic Multiple Linear Regression Models (MLRM) based on the association between
turning parameters and machineability indices. The Moth-Flame Optimization (MFO) algorithm is
proposed in this work to identify the optimal set of turning parameters through the MLRM models,
in view of minimizing the machinability indices. Three case studies by considering individual
machinability indices, a combination of dual indices, and a combination of all three indices, are
performed. The suggested MFO algorithm’s effectiveness is evaluated in comparison to the findings
of Genetic, Grass-Hooper, Grey-Wolf, and Particle Swarm Optimization algorithms. From the
results, it is identified that the MFO algorithm outperformed the others. In addition, a confirmation
experiment is conducted to verify the results of the MFO algorithm’s optimal combination of turning
parameters.

Keywords: Hastelloy X; turning; cutting force; surface roughness; liquid nitrogen; grass-hooper
optimization algorithm; moth-flame optimization algorithm

1. Introduction

Nickel-based (Ni) alloys attract more researchers nowadays for their broader applica-
tions in the fields like aerospace, automobile, biomedical, and allied industries. Hastelloy
is one of the Ni-based alloys, and it holds few unique characteristics like good strength-to-
weight ratio, resistance to corrosion, higher melting temperature, good toughness, etc. [1].
Mainly, Hastelloy X is used to fabricate the combustion chamber of an aircraft engine
because of its high heat-resisting property. However, the holding of all the above-said
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properties by Hastelloy X, resulting in very poor machinability. In this sense, the man-
ufacturing industries face a difficult task in improving Hastelloy X machinability using
traditional machining methods. [2]. Furthermore, the reduction of cutting forces (CF),
surface roughness (SR), and cutting temperature (CT) during Hastelloy X machining adds
to the difficulty of achieving good machinability. As a result, several researchers have
worked on various research projects over time to increase the machinability of Hastelloy.
Furthermore, they performed these tests under dry, wet, and cryogenic cooling condi-
tions in order to demonstrate an increase in machinability. Therefore, these literatures are
critically reviewed, and the extracted information is given here for ready reference to the
readers.

Kadirgama et al. [3] studied the impact on cutting force by the parameters, namely
axial depth, cutting speed, and feed rate while milling Hastelloy C-22HS. The models using
Response Surface Methodology were developed using experimentation and Finite Element
Analysis to predict the optimized cutting force. Kadirgama et al. [4] investigated the tool
behavior such as tool wear and tool life during machining of Hastelloy C-22HS under wet
conditions. PVD and CVD multilayer coated carbide tools were used for machining. The
tool life was decreased in all the cases while increasing the cutting parameters, namely
cutting speed (vc), feed rate (f ), and axial depth (ap). Altin [2] studied the machinability of
Ni-based (Hastelloy X) alloy under dry cutting conditions. The CF and SR were analyzed
against the multilayer coated insert and various vc. The experimentation results showed
that the abrasiveness of the carbide particles on the tool and the mechanical loading
had a growing influence on the CF. Sofuoğlu et al. [5] studied the impact of the vc, tool
extended length, and novel methods, namely Conventional Turning (CT), Ultrasonic
Assisted Turning (UAT) and Hot-Ultrasonic Assisted Turning (HUAT) on the SR, ap, and
CT while machining Hastelloy X. The reduction in SR and increment in regular ap and
CT were attained in UAT and HUAT compared to CT. Dhananchezian [6] conducted the
machinability study on Hastelloy C-276 under dry and cryogenic liquid nitrogen (LN2)
cooling conditions using turning operation. The output responses such as CT, CF, SR, chip
morphology, and tool wear under dry turning were compared with LN2 cooling-based
turning. A considerable reduction in all the output responses was noted under liquid
nitrogen cooling-based turning.

Kesavan et al. [7] conducted the CNC turning of Hastelloy C276 by varying vc and
the fixed values of f, ap. The experimentation was executed under dry and LN2 conditions.
Further, Deform 3D analytical tool was used to create the simulation model based on the
experimental design to identify the optimal cutting conditions. From the experimentation
and simulated model results, it was evident that the cutting temperate and machining forces
have been significantly reduced while machining under cryogenic cooling conditions rather
than dry conditions. Dhananchezian and Rajkumar [8] examined the SR and Tool Wear
characteristics of Nimonic 90 alloy and Hastelloy C-276 dry turning. During the turning
process, various cutting inserts were used. In both cases, the roughness and tool wear
metrics were observed to be larger as the turning length was increased. Dhananchezian
and Rajkumar [8] made a comparative analysis on the tool wear rate and SR during the
turning of Hastelloy C-22 underneath dry and LN2 cooling conditions. A substantial drop
in the SR was found in the turning of Hastelloy under LN2 cooling rather than dry turning.

Oschelski et al. [9] used the Box-Behnken method to design the experiments by
considering the ranges of parameters, namely vc, ap, lubricating conditions, constant f,
and (wet, dry, and reduced quantity lubrication) for finish turning the Hastelloy X. The
experimental results showed that the vc, ap, and interactions were the most significant
factors affecting the SR. Next, Venkatesan et al. [10] reported the machinability study
on Hastelloy X with PVD and CVD coated tools in comparison with dry and Minimum
Quantity Lubrication (MQL) conditions. A mixture of coconut oil with Hexagonal Boron
Nitride (HBN) nanoparticles was used as nanofluid for lubrication. Significant reductions
in CF, SR, and tool wear were observed in MQL-PVD combination than MQL-CVD and
dry-PVD. Finally, Sivalingam et al. [11] investigated the influence of whisker-reinforced
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ceramic tools on tool wear, SR, and tool chattering under dry and Atomization-based
Cutting Fluid (ACF) cooling conditions when turning Inconel 718 material. Investigation
results stated that the flank wear and SR of the tool were significantly reduced under ACF
cooling conditions due to limited notching and fracture of the tool edge at the tool-chip
interface.

Zhao et al. [12] investigated the characteristics of chip formation when machining
NiTi shape memory alloys under different vc with constant f, ap. The shape of the chip and
microstructure were examined to expose the chip flow behavior. The martensitic phase
transformation seemed to have a noticeable effect on the material flow behavior and indeed
on the chip formation. [11] investigated the possibility of improving the machinability of
Inconel 718 alloy under a dry and atomized spray cutting fluid system. The turning of
Inconel 718 alloy with ceramic inserts was carried out by varying the cutting parameters.
The output responses such as tool wear, power consumption, surface topography, machine
vibrations, chip morphology, and machining cost were analyzed against the experimental
design of input parameters. It was observed that the atomized spray cutting fluid technique
yielded better results than dry machining.

The effect of LN2 cooling in improving the machinability of Hastelloy X is discussed
in the following literature. Chetan et al. [13] investigated the turning of Nimonic 90 alloy
using uncoated tungsten carbide inserts under the modes like dry, MQL, and cryogenic
cutting. At lower vc, the cutting performance of the cryogenically treated tool was good
than the untreated tool. But, the performance of the tool under MQL and LN2 was
good in terms of minimum tool wear at a higher cutting speed. Further, a good SR was
obtained under dry and MQL modes than LN2 cooling mode at all levels of cutting speed.
Iturbe et al. [14] compared the effects of liquid nitrogen and MQL based cryogenic cooling
with conventional cooling. For short machining times, the cryogenic cum MQL cooling
outperformed conventional cooling.

Sivaiah and Chakradhar [15] compared the results of LN2 machining like tool wear,
feed force, CF and CT, chip characteristics, and SR with the wet condition during ma-
chining of heat-treated 17-4 Precipitation Hardenable Stainless Steel. The LN2 machining
outperformed even at high f to reduce all the above-said parameters compared with wet
machining. Tebaldo et al. [16] studied the machinability of Inconel 718 under different
machining conditions and lubricating systems. The highest wear resistance was obtained
while using the CVD-coated tools under conventional lubricated conditions. But, the MQL
system provided good lubrication than cooling with lesser cost and low environmental
impact. Shokrani et al. [17] investigated the impact of using different cooling systems,
namely MQL, cryogenic and hybrid of cryogenic and MQL, during the CNC milling of
Inconel 718 alloy material. Comparatively, the hybrid cooling system yielded better results
in terms of good machinability, less SR, and greater tool life. Mehta et al. [18] studied
the parameters such as SR, CF, and tool wear during machining of Inconel 718 material.
During machining, various sustainable environments, namely dry state, MQL, LN2 cooling,
hybridization of cold air and MQL, and hybridization of MQL and LN2, were used. The
input parameters such as ap, f, and vc were kept constant during machining under all the
above-said environments. Better surface finish and minimum cutting force were observed
during the cold air and MQL environment. Alternatively, the very least tool wear was
observed under MQL and LN2 hybrid cutting environment than the dry environment.

Further, the researchers had used different optimization tools to identify the suitable
process parameter values for minimizing the manufacturer’s objectives. A few of them are
discussed here. Khalilpourazari and Khalilpourazary [19] proposed an algorithm, namely
Robust Grey Wolf Optimizer (RGWO), to minimize total production time by identifying
the optimal input parameters multi-pass milling process. The parameter tuning during
optimization was carried out using the Taguchi method. Further, an efficient constraint
handling approach was implemented to handle the complex constraints of the problem.
The results concluded that the RGWO outperformed the meta-heuristic algorithms such
as the multi-verse optimizer and dragonfly algorithm and the other solution methods
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in the literature. Khalilpourazari and Khalilpourazary [20] developed the lexicographic
weighted Tchebycheff method to obtain the optimal decision parameters of the grinding
process for maximizing the quality of the surface and production rate and minimizing the
machining time and cost. GAMS software was used for this purpose. Khalilpourazari
and Khalilpourazary [21] used a novel strategy, namely Robust Stochastic Novel Search,
to identify the optimal values of the grinding process parameters to minimize process
cost and to maximize the rate of production and surface quality. The proposed method
outperformed previously proposed methodologies and novel algorithms, including Multi-
Population Ensemble Differential Evolution and Heterogeneous Comprehensive Learning
Particle Swarm Optimization.

Rao et al. [22] optimized the abrasive water-jet machining parameters to minimize the
kerf and surface roughness using the Jaya algorithm and the multi-objective Jaya algorithm.
Better results were obtained through the used algorithms than the simulated annealing, par-
ticle swarm optimization, firefly algorithm, cuckoo search algorithm, blackhole algorithm,
and biogeography-based optimization algorithms. Further, the PROMETHEE method
was used to handpick a specific solution among the possible Pareto-optimal solutions
obtained through the proposed algorithms based on the given requirements. Rao et al. [23]
obtained the optimal set of process parameters of focused ion beam micro-milling, laser
cutting, wire-electric discharge machining, and electrochemical machining processes. The
maximization of material removal rate and minimization of SR were considered as the
objectives in all the processes. The multi-objective Jaya algorithm was implemented to
find the optimal solutions in all the cases. The test results showed that the implemented
algorithms produced good results compared to other algorithms such as Genetic Algorithm,
Non-dominated Sorting Genetic Algorithm, iterative search, and biogeography-based opti-
mization algorithm, Khalilpourazari and Khalilpourazary [24] carried out the optimization
of grinding process parameters to improve the SR and reduce production cost and time.
A multi-objective dragonfly algorithm was employed for optimizing the process param-
eters. Results revealed that the proposed algorithm outperformed the Non-dominated
Sorting Genetic Algorithm-II. Khalilpourazari and Khalilpourazary [25] proposed a novel
hybrid algorithm, Sine–Cosine Whale Optimization Algorithm, to optimize the process
parameters of the multi-pass milling process by minimizing the total production time.
Almeida et al. [26] optimized the variable-angle composite cylinders via filament winding
manufacturing process using GA. Similarly, Wang et al. [27] proposed a reliability-based
design optimization technique to improve the buckling load of winding cylinders subjected
to radial compression. The moving search windows in the Kriging metamodel are used
to accelerate its convergence and reduce the number of training iterations. The results
of this study demonstrated the advantages of adopting a variable stiffness design for
achieving a maximum load capacity. Almeida et al. [28] proposed a genetic algorithm
(GA) to enhance the strength of a cylindrical shell under internal pressure by optimizing
the stacking sequence. The results offered asymmetric and non-conventional angles for
internally pressured composite tubes, as opposed to the well-known ± 55◦ winding angle
advice (for first ply failure approach).

In this research work, turning experiments are conducted on the Hastelloy X material
using the PVD TiAlN carbide insert tool under dry, wet, and LN2 environments. The
vc, f, ap, and machining environment are considered input turning process parameters,
and CF, SR, and CT are considered machinability indices. The evolutionary algorithms
namely grasshopper optimization (GHO) [29–31], genetic algorithm (GA) [32–34], parti-
cle swarm optimization (PSO) [35,36], moth flame (MFO) [37,38], grey wolf optimization
(GWO) [39–41] algorithms are used to identify the optimal set of turning process parame-
ters (MATLAB R2020b version). A clear picture of the experimentation and subsequent
processes are detailed in Figure 1.
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Figure 1. Flow chart of experimental part and metaheuristic algorithm.
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2. Experimentation Details

The Hastelloy X bar having 20 mm diameter and 300 mm length is used for conducting
the turning experiments on a C6140H turning machine. VNMG160408-SM1105 PVD TiAlN
cutting tool inserts are used to do the turning operation. The impact of tool wear on the
machinability indices is completely eliminated by using new inserts every time. The CF
(Tangential Force, Fz) is calculated with a 9257B Kistler dynamometer, and the value is
manipulated with dynoware software. The workpiece surface roughness (Ra) is measured
using a contact-type surface roughness tester (TR200), a cutoff length of 0.8 mm, and a
traverse length of 4 mm. For measuring the CT, a FORTIC 226 infrared imaging sensor
is used. Cryogenic equipment consists of a self-pressurized pump, cryogenic dewar tank
capacity of 50 L. At a pressure of 0.3 bar, LN2 was sprayed onto the work-tool interface
using a copper nozzle diameter of 3 mm. Figure 2 depicts a schematic representation of the
experimental setup. The detailed experimental conditions are shown in Table 1.

Figure 2. (a) Schematic View, Experimental Setup (b) Dry (c) Wet (d) Cryogenic Machining.

Table 1. Experimental Conditions.

Items Descriptions

Workpiece Hastealloy × (Ø20 × 300 mm)

Material Properties

Chemical Composition (%): Ni:50, Cr:21, Mo:17, Fe:2,
Co:1,W:1, Mn:0.80, Al:0.05, Si:0.08, C:0.01, B:0.01

Physical Properties: Tensile strength:1370 MPa, Yield
Strength: 1170 Mpa, Hardness:388 HB

Insert Specification VNMG160408-SM1105, PVD TiAlN coated carbide
insert, Sandvick

Nose radius 0.8 mm
Rake and relief angle 7◦, 6◦

Depth of cut (ap) 0.1 mm
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Table 1. Cont.

Items Descriptions

Length of cut (Loc) 60 mm
Environment Dry, Wet and Cryogenic machining
Cutting Fluid Vegetable-based oil
Cutting force Kistler 9257B dynamometer Cutting

Cutting temperature FORTIC 226 infrared radiation imaging sensor

Surface Roughness TR200 portable surface roughness tester
Evaluation and sampling Lengths are 4 and 0.8 mm

In this work, turning experiments were performed using L3
27 full factorial experimen-

tal design using Minitab 17. three factors are considered for this experiment: vc, f, and
environment; each factor has three different levels, as shown in Table 2.

Table 2. L3
27 full factorial experimental design.

Factors Unit Symbol Level 1 Level 2 Level 3

Cutting
speed (vc) m/min A 33 87 124

Feed rate (f ) mm/rev B 0.05 0.1 0.15

Environment C 1
(Dry)

2
(Wet)

3
(Cryogenic)

The experimental design and the corresponding measurement of machinability indices
are presented in Table 3.

Table 3. Experimental design values.

S.no Cutting
Speed

Feed
Rate Environment Cuting

Force
Surface

Roughness
Cutting

Temperature

m/min mm/rev Fz (N) Ra (µm) ◦C

1 33 0.05 Dry 256 3.42 380

2 87 0.05 Dry 192 3.01 416

3 124 0.05 Dry 165 2.98 472

4 33 0.1 Dry 339 2.96 435

5 87 0.1 Dry 281 2.83 477

6 124 0.1 Dry 220 2.72 515

7 33 0.15 Dry 430 2.75 510

8 87 0.15 Dry 385 2.62 550

9 124 0.15 Dry 322 2.53 596

10 33 0.05 Wet 245 3.25 250

11 87 0.05 Wet 186 2.86 313

12 124 0.05 Wet 156 2.80 347

13 33 0.1 Wet 302 2.87 386

14 87 0.1 Wet 276 2.74 414

15 124 0.1 Wet 208 2.68 472

16 33 0.15 Wet 412 2.69 491
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Table 3. Cont.

S.no Cutting
Speed

Feed
Rate Environment Cuting

Force
Surface

Roughness
Cutting

Temperature

m/min mm/rev Fz (N) Ra (µm) ◦C

17 87 0.15 Wet 368 2.53 515

18 124 0.15 Wet 308 2.43 565

19 33 0.05 Cryogeic 228 2.65 50

20 87 0.05 Cryogeic 168 2.48 95

21 124 0.05 Cryogeic 132 2.29 110

22 33 0.1 Cryogeic 275 2.2 90

23 87 0.1 Cryogeic 249 2.01 135

24 124 0.1 Cryogeic 168 1.96 140

25 33 0.15 Cryogeic 367 1.92 110

26 87 0.15 Cryogeic 320 1.84 130

27 124 0.15 Cryogeic 279 1.76 165

3. Results and Discussion

This section is divided into three case studies. Case study 1: Minimization of machin-
ability indices individually; Case study 2: Simultaneous minimization of dual machinability
indices by considering three combinations; Case study 3: Simultaneous minimization of
all three indices. The quadratic Multiple Linear Regression Models (MLRM) are formu-
lated for evaluating the minimum values of machinability indices in all the cases. The
Moth-Flame Optimization (MFO) algorithm is proposed to identify the optimal set of
turning process parameters in view of minimizing the objectives. The effectiveness of the
proposed algorithm is tested against the results of other optimization algorithms such as
Genetic Algorithm, Grass-Hooper Optimization (GHO), Grey-Wolf Optimization (GWO),
and Particle Swarm Optimization (PSO). Pseudocode for optimization algorithms is shown
in the Figure 3. The general parameters used in algorithms are the maximum population
size: 50, and the maximum no. of iterations: 100 (MATLAB R2020b). Twenty-seven runs
are executed for each algorithm in all the cases. The evaluated results from the case studies
are discussed below.

3.1. Case Study 1

Cutting force analysis and its minimization plays a crucial role in machining operation
and understanding the cutting phenomena of the work material in different environments
(dry, wet, and LN2 machining). Moreover, after machining, the work material must be
superior in surface quality [33]. On the other hand, minimizing the machining zone’s
temperature is necessary to retain the cutting temperature as low as possible. In this
case study, the MLRM for minimizing all the machinability indices is developed using
Minitab 17. The developed MLRM are given in Equations (1)–(3).

Objective functions 1.

Minimize Cutting = 212.7 − 0.244A + 703B + 20C
Force − 0.00571A2 + 6289B2 − 8.11C2

−0.60AB + 0.053AC − 143BC
R2 = 0.98, Adj R2 = 0.98

(1)
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Objective functions 2.

Minimize Sur f ace = 3.56 − 0.008A − 9.65B + 0.73C
Roughness + 0.000015A2 + 19.3B2 − 0.265C2

+0.023AB + 0.00028AC − 0.65BC
R2 = 0.98, Adj R2 = 0.97

(2)

Objective functions 3.

Minimize Cutting = −0.083 + 0.076A + 2521B + 341.21C
Temperature + 0.0033A2 − 1400B2 − 118C2

−1.42AB − 0.16AC − 396.67BC
R2 = 0.97, Adj R2 = 0.96

(3)

Three responses were considered in this section R1, R2 and R3, CF, SR and CT, respec-
tively, as shown in Table 4.

Table 4. Minimization of machinability indices using evolutionary algorithms for Case study 1.

Algorithms Cutting Speed
(m/min)

Feed Rate
(mm/rev) Environment Machinability

Index Value Iteration No.

Cutting force

MFO 124 0.05 3 127.10 N 2
GA 119.61 0.05 3 139.16 N 3

GHO 124 0.06 3 135.27 N 61
GWO 121.65 0.05 3 132.85 N 78
PSO 123.32 0.05 3 132.77 N 10

Surface roughness

MFO 124 0.05 3 1.78 µm 1
GA 86.23 0.147 3 1.88 µm 3

GHO 124 0.129 3 1.85 µm 39
GWO 134.17 0.15 3 1.81 µm 79
PSO 126.32 0.052 3 2.33 µm 10

Cutting temperature

MFO 34.04 0.05 3 33.19 ◦C 22
GA 80.77 0.05 3 78.98 ◦C 67

GHO 36 0.05 3 32.33 ◦C 65
GWO 39.57 0.06 3 48.44 ◦C 43
PSO 33.6 0.05 3 34.11 ◦C 26

Figure 4a present the convergence plot for cutting force using the evolutionary al-
gorithms. It is observed that the response is converged in iteration no. 2 using the MFO
algorithm. Provided the same response value is converged in iteration no. 3, 10, 61, and
78 based on GA, PSO, GHO, and GWO algorithms, respectively. Further, the response
value is very minimum in the MFO algorithm and maximum in GA. The simplicity of the
MFO algorithm along with the speed in searching is the prime reason for obtaining the
best results in the present work. It is additionally inferred that the CF is very minimum
in the LN2 environment compared to the dry and wet machining environments. The LN2
nozzle spray droplet acts as cushioning effect of the machining zone and, thus, minimizes
the vc [42].
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Figure 3. Pseudocode for optimization algorithms (a) MFO (b) GHO (c) GA (d) GWO (e) PSO.
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Figure 4. Convergence plot for case study 1 (a) Cutting Force (b) Surface Roughness (c) Cutting
Temperature.
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Similarly, the convergence plots for the other two machinability indices are given in
Figure 4b,c, respectively. The order of preferences of algorithms based on their performance
in obtaining the minimum response values is MFO-GWO-GHO-GA-PSO for SR and MFO-
GHO-PSO-GWO-GA for CT. Chattered vibrations are generally existing in the machining
process, and this is significantly affecting the SR. The SR values are lower in the cryogenic
machining than the dry and wet machining from the experimental value and predicted
data.

Further, the cutting temperature is directly related to CF and SR. CT increases with an
increase in vc. The flow of cryogenic LN2 (−196 ◦C) between tool and workpiece interface
greatly reduces the CT in the machining zone compared with dry and wet machining [42].

3.2. Case Study 2

In this study, the simultaneous minimization of dual machinability indices with three
different combinations using evolutionary algorithms is considered. The Pareto front
analyses of all the algorithms with respect to CF vs. SR, CT vs. CF, and CT vs. SR are
given in Figure 5a–c, respectively. Further, the TOPSIS method is used to convert the dual
machinability indices into a single objective. Hence, the global minimum value of the
machinability indices is obtained using TOPSIS results (Figure 5d–f) for all the evolutionary
algorithms. In addition to that, the performance of evolutionary algorithms is validated
using the hypervolume indicator. From these Figure 5, it is inferred that the MFO algorithm
outperformed others in all three cases. The results are presented in Table 5.

Table 5. Minimization of machinability indices based on pareto front analysis and TOPSIS method for Case study 2.
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GWO 46.90 0.050 3 211.12 N 39.03 ◦C 0.657

GHO
SR
&

TE

34.32 0.052 3 2.60 µm 36.16 ◦C 0.391
GA 34.32 0.062 3 2.60 µm 36.16 ◦C 0.415
PSO 49.38 0.058 3 2.52 µm 43.72 ◦C 0.416
MFO 50.00 0.053 3 2.52 µm 34.06 ◦C 0.443
GWO 52.00 0.056 3 2.52 µm 44.06 ◦C 0.441

The general observations are when CF increases, and SR worsens after machining;
When CF increases, TE increases significantly and affects the tool life; and when TE
increases, then SR decreases. Further, the LN2 environment minimizes the CF, CT, and SR
due to a fine droplet of LN2 acting as a film barrier in the tool and workpiece interface,
thus reducing chatter vibration and built-up edge formation. This is used to improve the
tool life too.
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Figure 5. Pareto optimality (a–c) Multi-objective for single run (d–f) Multi-Objective for 27 runs.

3.3. Case Study 3

In this case study, the simultaneous minimization of all three machinability indices is
carried out using evolutionary algorithms. As in case study 2, the TOPSIS method is used to
convert all three machinability indices to a single objective. Further, the quality indicators,
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namely Diversity (DIV), Inverted Generational Distance (IGD), and Hyper Volume (HV),
are used to opt out the best evolutionary algorithm which provides minimum values of
machinability indices along with the corresponding set of turning process parameters.
The algorithm, which has a higher DIV and HV value and a lower IGD value, is to be
considered as the best algorithm among others. The DIV and IGD values are calculated
using Equations (4) and (5), respectively. The hypervolume is calculated based on the
Pareto analysis. The calculated values of quality indicators for all the algorithms are
presented in Table 6.

DIV =
√

∑k
j=1 ( f max

j − f min
j )2 (4)

IGD =

√
n
∑

i=1
d2

i

n
(5)

di =

√√√√ no

∑
j=1

(oij − obj)
2 (6)

where,

Oij—ith run jth objective value;
Obj—Best jth objective value;
di—Euclidean distance.

Table 6. Minimization of machinability indices based on IGD, DIV and HV for Case study 3.
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GHO 7.98 233.85 0.273 71.00 0.051 3 193.36 2.44 85.25
GA 9.81 279.61 0.267 72.00 0.051 3 194.36 2.48 86.25
PSO 5.79 264.68 0.265 94.62 0.052 3 173.13 2.45 73.28
MFO 5.10 286.72 0.286 92.62 0.052 3 171.13 2.35 72.28
GWO 6.70 267.48 0.269 96.62 0.052 3 174.13 2.55 74.28

Further the statistical analyses of the quality indicators are carried out using Minitab
software to study the performance and consistency of the algorithms. The normal proba-
bility plots for the quality indicators IGD, DIV, and HV are given in Figure 6a–c, respec-
tively, and the summary reports of the same are given in Figure 6d–f, respectively. From
Figure 6d–f and as well as the findings (higher values of DIV and HV and Lower value of
IGD) from Table 5, it is concluded that the MFO algorithm outperformed others.

The reasons for the better performance of MFO compared with other algorithms are
explained here. The GA became gradually a dominant optimization technique compared to
deterministic approaches mainly due to the higher probability of local solutions avoidance.
However, the main drawback of GA was the stochastic nature of this algorithm which
resulted in finding different solutions in every run. Despite the relatively high convergence
rate of PSO, it has the drawback of premature convergence to local optimal and ineffec-
tiveness in exploring the whole search space. Similarly, the original version of the GWO
algorithm has the drawbacks of low solving accuracy, bad local searching ability, and slow
convergence rate. Similarly, the disadvantage of GHO was being easy to fall into the local
optimum which prevented the search process from finding a better solution. On the other
hand, MFO is able to locate the local and global optimal solutions accurately with less
computational time [43].
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Figure 6. (a–c) Normal Probability plot (d–f) summary report.

4. Conclusions

The purpose of this study was to minimize machinability indices CF, SR, and CT while
performing the turning of Hastelloy X. Three levels of turning process parameters namely
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cutting speed (vc), feed rate f, and machining environment were considered for performing
the experiments under L27 orthogonal array basis. Further, the MFO algorithm was used
to identify the optimal set of turning process parameters to minimize the machinability
indices individually and simultaneously. Three case studies were carried out for this
purpose. The conclusion drawn from these case studies is given below.

1. From the case study 1 (minimization of machinability indices individually), as com-
pared to other algorithms such as GHO, GA, PSO, and GWO, the MFO algorithm
yielded the minimum values of CF = 127.1 N, SR = 1.78 µm, and CT = 33.19 ◦C for the
optimal set of turning process parameters such as vc = 124 m/min, f = 0.05 mm/rev,
and cryogenic environment. The range of reduction in CF, SR, and CT values based
on the MFO algorithm was 4–8 %, 1–23%, and 3–57%, respectively, compared with
other algorithms.

2. The simultaneous minimization of dual machinability indices with three combinations
were performed using the MFO algorithm in case study 2. The results were compared
with the results obtained from other algorithms. Based on the hypervolume indicator
identified from the Pareto analyses, again the MFO outperformed others, and the
corresponding optimal set of input parameters were identified.

3. In case study 3, the simultaneous minimization of all three machinability indices
was carried out using the MFO algorithm. The performance of MFO algorithm
was compared with other algorithms using the quality indicators namely Diversity,
Inverted Generational Distance, and Hyper Volume. From the analyses, the best
results were obtained as CF = 171.13 N, SR = 2.35 µm and CT = 72.28 ºC form the
MFO algorithm for the inputs of vc = 93 m/min, f = 0.05 mm/rev and cryogenic
environment.

Based on the results of all three case studies, the MFO algorithm effectively predicted
the optimal set of turning process parameters in view of minimizing the machinability
indices individually and simultaneously when compared with other algorithms. Further,
the other machinability indices such as tool life and machining cost will also be considered
in addition to the existing indices as the future work.

Author Contributions: Conceptualization, V.S.; Methodology, V.S., J.S. and Y.N.; Experimental
design, V.S. and J.S.; Experimental setup, V.S.; Measurements, V.S., S.K.M. and Y.N.; Investigation,
L.N., S.K.M. and Y.N.; Resources, L.N., S.K.M. and Y.N.; Visualization, V.S., L.N., S.K.M. and S.S.;
Writing—Original Draft Preparation, V.S., J.S., L.N., S.K.M., Y.N., S.S., E.A.N., J.P.D. and H.M.A.M.H.;
Writing—Review & Editing, V.S., J.S., L.N., S.K.M., Y.N. and S.S.; Supervision, J.S. and V.S.; Project
administration, V.S. and J.S.; Funding acquisition, J.S. and S.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has received funding from King Saud University through Researchers
Supporting Project number (RSP-2021/164), King Saud University, Riyadh, Saudi Arabia. Moreover,
this is part of the project was financially supported by Fundamental Research Fund of Shandong
University under the funding code No. 2019HW040. the Future for Young Scholars of Shandong
University, China under the funding code No. 31360082064026.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to King Saud University for funding this
work through Researchers Supporting Project number (RSP-2021/164), King Saud University, Riyadh,
Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 9725 17 of 18

References
1. Sivalingam, V.; Zhuoliang, Z.; Jie, S.; Baskaran, S.; Yuvaraj, N.; Gupta, M.K.; Aqib, M.K. Use of Atomized Spray Cutting Fluid

Technique for the Turning of a Nickel Base Superalloy. Mater. Manuf. Process. 2021, 36, 373–380. [CrossRef]
2. METODO. Optimization of the turning parameters for the cutting forces in the Hastelloy X superalloy based on the Taguchi

method. Mater. Tehnol. 2014, 48, 249–254.
3. Kadirgama, K.; Abou-El-Hossein, K.A.; Mohammad, B.; Al-Ani, H.; Noor, M. Cutting force prediction model by FEA and RSM

when machining Hastelloy C-22HS with 90 holder. J. Sci. Ind. Res. 2008, 67, 421–427.
4. Kadirgama, K.; Abou-El-Hossein, K.; Noor, M.; Sharma, K.; Mohammad, B. Tool life and wear mechanism when machining

Hastelloy C-22HS. Wear 2011, 270, 258–268. [CrossRef]
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