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Abstract: This paper proposes a cyclostationary based approach to power analysis carried out for
electric circuits under arbitrary periodic excitation. Instantaneous power is considered to be a
particular case of the two-dimensional cross correlation function (CCF) of the voltage across, and
current through, an element in the electric circuit. The cyclostationary notation is used for deriving
the frequency domain counterpart of CCF—voltage–current cross spectrum correlation function
(CSCF). Not only does the latter exhibit the complete representation of voltage–current interaction in
the element, but it can be systematically exploited for evaluating all commonly used power measures,
including instantaneous power, in the form of Fourier series expansion. Simulation examples, which
are given for the parallel resonant circuit excited by the periodic currents expressed as a finite sum of
sinusoids and periodic train of pulses with distorted edges, numerically illustrate the components
of voltage–current CSCF and the characteristics derived from it. In addition, the generalization
of Tellegen’s theorem, suggested in the paper, leads to the immediate formulation of the power
conservation law for each CSCF component separately.

Keywords: electric power analysis; cyclostationarity; Tellegen’s theorem; Fourier series; cross corre-
lation function; cross spectral correlation function; average power; apparent power; reactive power;
resonant circuit

1. Introduction

Modern hardware systems performing digital signal processing can easily reach high
complexity, since they typically consist of many specialized devices. In turns, the majority
of these devices are assembled from a variety of electronic components, in which electric
currents and voltages play the primary role in the description of phenomena at the physical
level. For instance, one of the typical issues solved in the electromagnetic compatibility
framework [1] is the detection of potential sources of interference, which may affect the
stable work of the entire device or even neighboring devices. A traditional and easy to
understand model describing the property of components can be built as an electric circuit
being assembled from lumped elements only or lumped elements properly combined with
parts of transmission lines.

The proper choice of an appropriate model is mainly based on two points. The first one
is the primary role of the component, i.e., whether it is intended to be an antenna, microstrip
line, connector, frequency selective filter, or the input port of an embedded integral circuit.
The second point is determined by a certain relation between the spectrum width of the
processed signals and the passband (or passbands) of the analyzed component. Thus, in
the case of digital signal processing, where the spectrum is considered to be concentrated
in a baseband with respect to the lowest resonant frequency range, the component’s electric
property can often be modelled as a simplified RC circuits [2]. However, if the resonance
behavior cannot be neglected, a more accurate model, exhibiting weak resonant properties,
may well be introduced by means of a generalized resonant circuit, either of parallel or
serial type, with relatively low Q factor, typically not exceeding the value of 2.
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In an ultrawideband case, where the signal spectrum spreads over a frequency band
covering several natural electromagnetic modes of the component, the appropriate model
has to be reconsidered. The simple approach to enhancing the lump-element model consists
in combining multiple resonant circuits [3]. However, this can be performed accurately
only if the component possesses sharp resonances; otherwise, such a model will be nothing
but an approximation technique, which can be developed further, to surrogate models [4].
An alternative approach proposes the extra inclusion of an idealized transmission line,
while the lumped element remains the resonant circuit [5]. Models of this type showed high
performance in cases where the natural resonances are rather smooth or the introduction
of transmission line can be proved with geometric or physical reasoning [6].

Although the normal operating mode of signal processing devices suggests periodi-
cally processing structured signals with random information components [7], deterministic
periodic signals will inevitably be present. Moreover, during the verification phase, a
device can be switched to a special mode, where the processed signals are to be changed to
satisfy predetermined sequences, forming patterns inheriting the true periodical structure.

At first glance, the accurate analysis of power in the elements of low Q circuits does
not seem to be difficult. However, this problem turns out to be challenging when it comes
to the excitation by electric currents or voltages described by arbitrary periodic waveforms.
Thus, in modern university level textbooks devoted to engineering circuit analysis, e.g.,
those authored by Hayt [8] or Irwin [9], the topic of power analysis in electric circuits is
generally taught in an ambivalent manner. In the beginning, instantaneous power tends
to be introduced as a time-varying function that is a product of the voltage across, and
current through, an element or extracted one port within the analyzed circuit. Next, the
average power evaluation is shown for a case in which the circuit is in a steady state
mode caused by constant or periodical excitation by its sources. However, in the case of
the sinusoidal waveform, an alternative concept of the power analysis is rather suddenly
offered, bringing to life such terms as effective values, reactive, apparent and complex
power, power factor and power triangle. Although this concept serves well for describing
a single frequency sinusoid, formidable obstacles emerge as soon as one attempts to apply
a coherent generalization to arbitrary periodic waveforms.

The law of instantaneous power conservation in an electric circuit, which is often
referred to as Tellegen’s theorem [10], is the electrical engineering adaptation of a more
fundamental energy conservation law. It was explained in [11] that a balancing equation,
due to Tellegen’s theorem, will remain valid after such transformations of the currents
and voltages in the entire circuit that do not violate Kirchhoff’s laws. The representation
of the varying power in the time domain, with an attempt at building a model with a
clear physical meaning, is presented in [12]. The direct implementation of balancing
instantaneous power is given in [13].

The second of the above mentioned power concepts is based on the theory proposed by
Budeanu [14], and its main points are thoroughly discussed in [15], where it is compared to
an alternative power decomposition suggested by Fryze [16]. Some additional arguments
in favor of the latter were also added in [17].

Budeanu’s methodology has been dominant for the past century due to its relative
simplicity, and has become extremely popular with electrical engineers dealing with
sinusoidal waveforms. In particular, those engineers who are working within power
delivery systems have developed a specific professional viewpoint on the topic, e.g., [18].
A possible way to generalize Budeanu’s theory consists in finding a proper definition of
reactive power. This definition must preserve the applicability of the concept to the case
of an arbitrary periodic waveform. Moreover, such a definition is expected to have some
physical meaning and, which is also important, obey some conditions, e.g., the power
conservation law.

The most prominent approaches being researched recently are based on functional
space decomposition used for extracting so called power components. Examples are
the vector space decomposition for reactive power presented in [19], the hyperspace
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decomposition in [20], and the more general geometric algebra approach proposed in [21].
All three show different ways of expressing partial power components. The third one
appears to be developed further, into the multivector representation [22]. An attempt at
power analysis using a basis different from a harmonic series was made in [23], in which
the Haar wavelet was considered as a possible candidate.

Among other possible approaches, there is the conservation power theory [24], which
is originally based on the decomposition carried out in the time domain [25]. Despite
the fact that this theory is gaining popularity, it was criticized in [26,27] for its lack of a
clear physical meaning and misguiding conceptualizations, such as energy taking on a
negative value.

The further development of Fryze’s ideas, which was carried out by Czarnecki [28],
has led to Currents’ physical components theory. The concept considers the current flowing
through a one port as a sum of three components: active, reactive and scattered. They are in
charge of instantaneous power distribution between three pairwise orthogonal components.
Some arguments in favor of this theory were also discussed in [29].

In contrast to other approaches developed so far, this paper offers an alternative
method for power analysis based on the theory of cyclostationarity (CS). The history
of the focused investigation of CS phenomena spans about 65 years, starting from the
pioneering works written by Bennett [30] and Gladyshev [31]; the latter called such random
processes periodically correlated. Having been originally introduced as a set of adhoc
models describing so called hidden periodicity, over the last decades, CS signal analysis
has matured into a selfsustaining branch of science, whose milestones and further trends
are described, respectively, in [32,33]. The recently published comprehensive monograph
by Napolitano [34] provides a contemporary, detailed explanation of the foundations and
state of the art developments in CS analysis. Some introductory CS examples, yet in
the analysis of mechanical systems, may be found in [35], where the vibration signals of
rotating machines were analyzed with advanced spectral techniques [36].

As it follows from many sources, cyclostanionarity seems to be firmly associated
with the concept of a second order harmonizable random process [37]. The ensemble
expectation taken on its lag product varies in time and, more importantly, can be expressed
as a periodic or almost periodic function [34]. Equivalent frequency representation can be
given via the expansion into Fourier series, whose coefficients are functions dependent on
the lag parameter. However, from a nonprobabilistic point of view, which is illuminated in
book [38] by Gardner, even deterministic periodic waveforms can be treated as first order
CS processes.

The goal of this paper is establishing the foundation of a novel method that aims
at performing accurate and detailed power analysis of the elements of electric circuits
under periodic excitation. The proposed method is based on complex Fourier series de-
composition rather than either sine–cosine decomposition or a phasor representation of
the harmonics constituting the periodic currents and voltages. Despite its formal com-
plexity, CS analysis seems to be an extremely effective approach, since it helps to reveal
elementary power components, obeying the conservation law. Such components can be
directly used to the noncontroversial derivation of all other quantities typically exploited
for power description.

This paper demonstrates how the standard collection of CS characteristics can be
adapted to build an effective tool for describing the power in the elements of an electric
circuit under the first order CS processes of voltages and currents. This collection includes
the cyclic correlation function and spectral correlation function, which are widely exploited
for coping with second order CS processes. The period of the processes is assumed to be
known. In the case of unknown period, as often happens in practice, one can take on an
appropriate period estimator prior to tuning the model parameters. Such a period estimator
can be implemented via either synchronous averaging [39] with CS detection [40,41] or
more promising techniques based on sample coherency analysis [42,43].
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The rest of the paper is organized as follows. The second section presents the theo-
retical model of voltage–current two-dimensional cross correlation function (CCF), which
appears to be a specific extension of instantaneous power. Next, the cross spectral corre-
lation density is derived in an explicit closed form, which allows redefining the common
quantities used in the power analysis directly from its components. The particular case
of linear time invariant elements is also briefly explained in Section 2. In Section 3, the
evaluation of the suggested characteristics is illustrated with numerical examples, where
a resonant parallel circuit is excited by different periodic waveforms. The discussion in
Section 4 considers the extension of the power conservation law that the components of the
spectral correlation functions obey. The paper ends with conclusions.

2. Theory and Models
2.1. Voltage, Current and Instantenious Power Definitions

The instantaneous power delivered to any element in a circuit is considered as a time-
varying signal given by the product of the instantaneous voltage v(t) across the element
and the instantaneous current i(t) through it:

p(t) = v(t)i(t). (1)

In this research, we focus on strictly periodic waveforms representing the voltage
and currents

v(t) = v(t + T), i(t) = i(t + T), (2)

which can be expressed as their Fourier series, written both in real or complex forms

v(t) = V0 +
+∞

∑
k=1

Vk cos
(

2π
k
T

t + ϕVk

)
=

+∞

∑
k=−∞

M(kF)
v exp(j2πkFt) (3)

and

i(t) = I0 +
+∞

∑
k=1

Ik cos
(

2π
k
T

t + ϕIk

)
=

+∞

∑
k=−∞

M(kF)
i exp(j2πkFt) (4)

where T is the period, which is the same for the voltage and current, F = 1/T is the frequency,
Vk and ϕVk are the voltage amplitude and phase, respectively, Ik and ϕIk are the current
amplitude and phase, respectively. M(kF)

V and M(kF)
I denote the complex valued Fourier

coefficients for the complex exponential of frequency, kF, which is written in parentheses in
the superscript, in the series of the voltage and current, respectively. These coefficients can
be evaluated directly as soon as the real form parameters are known

M(kF)
x =


Xk
2 exp(jϕXk), k > 0;

Xk, k = 0;
X−k

2 exp(−jϕX(−k)), k < 0,
(5)

where the term x takes one of the symbolic values, v or i, denoting either the voltage or
the current.

It is important to highlight that the right-hand sides of Equations (3) and (4) are written
as sums whose summands are related to frequencies; f = kF. These frequencies can take
both positive and negative values, since they are related to the integral Fourier transform:

X( f ) =
+∞∫
−∞

x(t) exp(−j2π f t)dt, (6)

where the complex exponentials exp(j2πf ) are involved.
In other words, each harmonic of nonzero physical frequency kF is represented by two

complex exponentials, exp(j2πf ), of frequencies ±kF, whose complex valued amplitude
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are defined using (5) as soon as physical amplitude and phase are defined. These complex
exponentials provide a reasonable mathematical model, which is often more convenient
than an amplitude–phase form for performing the vast majority of formal manipulation.

Strictly speaking, the Fourier transform (6) does not exist as an ordinary function of
frequency f if the signal x(t) is periodic. However, the complex form of the Fourier series,
written for the voltage (3) and current (4), can be Fourier transformed using (6), if one
treats the formal expression of their spectra as generalized functions, or distributions [44]
in frequency domain, assembled of Dirac delta functions only:

V( f ) =
+∞

∑
k=−∞

M(kF)
v δ( f − kF), (7)

I( f ) =
+∞

∑
k=−∞

M(kF)
i δ( f − kF). (8)

2.2. Second Order Characteristics

The normal, or nonconjugate, dyadic cross correlation function (DCCF) of a voltage
and current can be defined as a function of two time variables, t1 and t2:

Rvi(t1, t2) = E[v(t1)i∗(t2)], (9)

where E denotes expectation and the asterisk * in the superscript marks the complex
conjugation.

As long as the signals representing the voltage and current have been bounded to be
deterministic, this literally means that:

v(t) = E[v(t)], i(t) = E[i(t)], (10)

and their DCCF can be written with the expectation operator omitted:

Rvi(t1, t2) = v(t1)i∗(t2) = v(t1)i(t2). (11)

Besides, the second equal sign is possible, owing to the fact that both the voltage and
current are real valued functions.

Since both the voltage and current are periodic functions, their DCCF is also a periodic
function, sharing the same period, T, in both its argument:

∀(n1, n2) ∈ Z2 : Rvi(t1, t2) = Rvi(t1 + n1T, t2 + n2T). (12)

Having taken the two-dimensional Fourier transform over the pair of time variables,
(t1, t2), one obtains the function of the pair of frequency variables (f 1, f 2):

Svi( f1, f2) =

+∞∫
−∞

+∞∫
−∞

Rvi(t1, t2) exp[−j2π( f1t1 − f2t2)]dt1dt2. (13)

The substitution of (11) into (13) and further factorization of its exponential kernel
will lead to the spectral representation

Svi( f1, f2) = V( f1)I∗( f2), (14)

which is also referred to as Loève bifrequency cross spectrum. The frequency variables
(f 1, f 2) are the pairwise counterparts of the time variables (t1, t2).

Some formal difficulties may be pointed out: while the periodic functions v(t) and
i(t), jointly producing Rvi(t1, t2), are substituted into (13), since they do not belong to the
L1 space, integration is carried out over the whole R2. However, we consider that this
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operation can be carried out in a generalized sense, and described with rigor enough for
engineering applications. As long as (14) remains valid, the formal substitution of the
Fourier series (3) and (4) into it yields:

Svi( f1, f2) =
+∞

∑
k1=−∞

+∞

∑
k2=−∞

M(k1F)
v

[
M(k2F)

i

]∗
δ( f1 − k1F, f2 − k2F), (15)

where a two-dimensional Dirac delta function can be treated as a product of two one-
dimensional Dirac delta functions:

δ( f1, f2) = δ( f1)δ( f2), (16)

wherever it may be considered suitable for subsequent formal transformations [45].

2.3. Cyclostationary Description

The further analysis of cyclostationary characteristics based on second order two-
dimensional products can be performed more effectively if the pair of independent vari-
ables forming axes spanning the time domain (t1, t2) or frequency domain (f 1, f 2) are
changed for other pairs of variables. This comes after the concept of symmetric transfor-
mation, exploited by Gardner [38] and illustrated in [46] by example of a second order
CS process.

The substitution {
t1 = t + τ/2,
t2 = t− τ/2,

(17)

is aimed at transforming the DCCF into the symmetric form of the cross correlation
function (CCF)

Rvi(t, τ) = v(t + τ/2)i∗(t− τ/2), (18)

which is a function of two variables: the current time, t, and the lag, or time shift, τ.
Similarly, after applying the change in the frequency variables{

f1 = f + α/2,
f2 = f − α/2,

(19)

the bifrequency spectrum (14) will be transformed into the cross spectral correlation density
(CSCD)

Svi(α, f ) = V( f + α/2)I∗( f − α/2), (20)

where α is traditionally called a cyclic frequency, whereas f is considered as a frequency
exploited in the integral Fourier transform (6).

After substituting (19) into (14) and formally rearranging the summands, the analytical
expression of voltage–current CSCD can be expressed in the form of a double summation,
involving weighted and shifted two-dimensional Dirac delta functions δ(α, f ):

Svi(α, f ) =
+∞

∑
m=−∞

+∞

∑
k=−∞

S (m,k)
vi δ

(
α−mF, f −

(
k +

((m))2
2

)
F
)

, (21)

where ((m))2 denotes the modulo operation, or the remainder after m is divided by 2, and

complex scalars, S (m,k)
vi , being indexed by the pair of integers (m, k), are defined via the

coefficients put in the complex form of the Fourier series for the waveforms of the voltage
(3) and current (4):

S (m,k)
vi = M([k+ m+((m))2

2 ]F)
v conj

(
M([k+−m+((m))2

2 ]F)
i

)
, (22)
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where conj() marks the complex conjugation. Practically, the introduction of the modulo
operation in (21) and (22) has been performed to formally reflect the fact that the Dirac
delta functions at α = mF turn out to be shifted along the f -axis by the step F/2 for any odd
integer, m.

Since CSCD is a generalized function whose components are present at cyclic frequen-
cies in, at most, a countable set, A2 = {α|α = mF}, the application of the decomposition (16)
to the term δ(α, f ) will allow rewriting Expression (21) in the form:

Svi(α, f ) =
+∞

∑
m=−∞

SmF
vi ( f )δ(α−mF), (23)

where SmF
vi ( f ) represents spectral correlation function (SCF) at the cyclic frequency α = mF:

SmF
vi ( f ) =

+∞

∑
k=−∞

S (m,k)
vi δ

(
f −

(
k +

((m))2
2

)
F
)

. (24)

Cyclic cross-correlation function (CCCF), which is a function of lag parameter τ, taken at
cyclic frequency mF is introduced as

RmF
vi (τ) =

1
T

∫
T

Rvi(t, τ) exp
(
−j2π

m
T

t
)

dt, (25)

where the integration is carried out over any interval of a one period length, e.g., [0, T)
or [−T/2, T/2). Conversely, CCCF at a particular cyclic frequency can be treated as a
coefficient in the Fourier series expansion of CCF:

Rvi(t, τ) =
+∞

∑
m=−∞

RmF
vi (τ) exp

(
j2π

m
T

t
)

. (26)

At the same time, CCCF RmF
vi (τ) at cyclic frequency α = mF is the inverse Fourier

transform of CSCF SmF
vi ( f ) at the same cyclic frequency:

RmF
vi (τ) =

+∞∫
−∞

SmF
vi ( f ) exp(j2π f τ)dτ. (27)

The substitution of the explicit representation (24) into (27) leads to the representation
of CCCF in the form of the Fourier series:

RmF
vi (τ) =

+∞

∑
k=−∞

S (m,k)
vi exp

[
j2π

(
k +

((m))2
2

)
Fτ

]
. (28)

CCCF (28) is a periodic function of τ. However, the value of its period depends on
whether m is an even or odd integer. Thus, if m is even, the period is T = 1/F, but if m is
odd, the period gets the double value, which is 2T. The latter follows from the fact that the
greatest common divisor of the sequence Fk = [k + 1/2]F, k ∈ Z is F/2, whose reciprocal
determines the period of the Fourier series (28).

2.4. Instantenious Power Representation

The direct comparison of the formal expressions written for the instantaneous power
(1) and CCF of the voltage and current (18) gives an idea that the former can be considered
as a particular case of the latter, supposing the lag parameter τ has been chosen equal
to zero:

p(t) = Rvi(t, 0). (29)
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The Fourier series (26), possessing functional coefficients, in turn, reduces to the
Fourier series with scalar coefficients:

p(t) =
+∞

∑
m=−∞

RmF
vi (0) exp(j2πmFt) =

+∞

∑
m=−∞

P(mF) exp(j2πmFt), (30)

where P(mF) denotes the complex coefficients in the Fourier series, which can be evaluated
as long as τ in (28) is set to zero:

P(mF) = RmF
vi (0) =

+∞

∑
k=−∞

S (m,k)
vi . (31)

The Fourier series (30) highlights the fact that, in a general case, the period of instan-
taneous power T = 1/F is the same as the period of the voltage and current described by
arbitrary periodic waveforms.

2.4.1. Average Power

The coefficient at m = 0 in (30) is of particular interest due to the fact that P(0) represents
the constant, or DC component, of the power p(t), also referred to as average power Pav,
which can be evaluated by means of time averaging over one period:

Pav = P(0) = R0
vi(0) =

1
T

∫
T

p(t)dt. (32)

Active power is traditionally interpreted as the rate of energy exchange in the long run.
Provided the passive sign convention is assumed, an element of the circuit will be called a
load if Pav > 0. In contrast, if Pav < 0, the element is an energy source. The remaining case,
Pav = 0, means the element is neither an absorber nor a supplier in the long run. However,
it is important to notice that Pav = 0 does not imply p(t) = 0.

The average power expression via CSCD components is followed immediately from (31):

Pav = R0
vi(0) =

+∞

∑
k=−∞

S (0,k)
vi . (33)

Equation (22), remaining valid for any m, can be specialized to the particular case
where m = 0:

S (0,k)
vi = M(kF)

v

[
M(kF)

i

]∗
. (34)

As long as both the voltage and current remain real valued functions, the coefficients
in their expansions, (3) and (4), exhibit Hermitian symmetry:

M(−kF)
v =

[
M(kF)

v

]∗
, M(−kF)

i =
[

M(kF)
i

]∗
. (35)

This property also establishes the Hermitian symmetry of the weights of Dirac delta
functions at zero cyclic frequency:

S (0,−k)
vi =

[
S (0,k)

vi

]∗
. (36)

Using the well known identity held for any complex A: A + A∗ = 2<eA = 2<eA∗,
the average power can be rewritten as follows:

Pav = R0
vi(0) = S

(0,0)
vi + 2

+∞

∑
k=1
<eS (0,k)

vi =
+∞

∑
k=−∞

<eS (0,k)
vi , (37)
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where <e marks the real part of the complex number, as well as =m is marking the
imaginary part below.

2.4.2. Average Power Distribution

Each component, which can be denoted as P(kF)
r = <eS (0,k)

vi , is treated as a part of
the active power associated with frequency mF, as it appears to be contributing to the
total average power separately. The consideration lying behind this idea is the following.
Suppose one applied a band pass filter tuned so as to let only the nth harmonic in the
Fourier series, representing the voltage (3) or current (4), pass through it. Then, according
to (34), there will be only the pair made of S (0,n)

vi and S (0,−n)
vi remaining in the sum for the

average power (33). These components are firmly associated with frequency nF. Repeating
with the family of filters tuned to other frequencies, one may deduce that the contribution
brought to the average power by any harmonic does not depend on what other harmonics
put in.

Formally, the imaginary parts of the same components S (0,k)
vi can be also put under

investigation. They may be called imaginary (or reactive) powers P(kF)
q = =mS (0,k)

vi .
However, as the voltage and current are real valued and, therefore, symmetry (36) holds,
those components will inevitably satisfy the equation:

+∞

∑
k=1

P(kF)
q =

+∞

∑
k=−∞

=mS (0,k)
vi = 0. (38)

The distribution of the components contributing to the average power, or furthermore,
the extraction of their real (active) or imaginary (reactive) parts, among the discrete set of
frequencies A1 = {α|α = kF}, appears to be useful in the power analysis of the circuit, since
it helps identify the main frequency channels of the energy absorption taking place in the
circuit and measure their intensities.

2.5. Relation to Apparent Power

Apparent power is a quantity measured as a product of voltage and current effective
values:

Papp = Ve f f Ie f f . (39)

The effective value of the voltage is typically considered as its root mean square (RMS)
value, which can be expressed via the amplitudes or, alternatively, the coefficients of a
complex Fourier series (3):

Ve f f =

√√√√ 1
T

∫
T

v2(t)dt =

√√√√V2
0 +

1
2

+∞

∑
k=1

V2
k =

√√√√ +∞

∑
k=−∞

∣∣∣M(kF)
v

∣∣∣2. (40)

Similarly, the effective value of the current can be evaluated using the parameters of
its Fourier series (4), as:

Ie f f =

√√√√ 1
T

∫
T

i2(t)dt =

√√√√I2
0 +

1
2

+∞

∑
k=1

I2
k =

√√√√ +∞

∑
k=−∞

∣∣∣M(kF)
i

∣∣∣2. (41)

As soon as the substitution of (40) and (41) into (39) is made and rearranging the
pairwise summand in accordance with equation (22) is performed, the apparent power can
be expressed as:

Papp =

√√√√ +∞

∑
m=−∞

+∞

∑
k=−∞

∣∣∣S (m,k)
vi

∣∣∣2. (42)
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Then, the dimensionless power factor can be evaluated as the ratio:

PF =
Pav

Papp
. (43)

2.6. Relation to 1D Cross Correlation Function

The one-dimensional (conventional) cross correlation function (CCF1) can be obtained
as CCCF taken at zero cyclic frequency:

Rvi(τ) = R0
vi(τ) =

+∞

∑
k=−∞

S (0,k)
vi exp(j2πkFτ). (44)

The frequency domain counterpart of CCF1 is known to be cross spectral density
(CSD), which is, in turn, the CSCF at zero cyclic frequency:

Svi( f ) = S0
vi( f ) =

+∞

∑
k=−∞

S (0,k)
vi δ( f − kF) (45)

This consists of Dirac delta functions only since the voltage and current are periodic
waveforms.

In contrast to the one-dimensional autocorrelation function (ACF1), which could have
been constructed for the voltage waveform Rv(τ) itself, the CCF1 is not obliged to exhibit
the even symmetry as a function of lag shift τ. Similarly, CSD should not be thought of as
a real valued function, or possessing real valued coefficients at Dirac delta functions, in
the case of a generalized function, whereas power spectral densities (PSD) that could have
been derived for the voltage waveform Sv(f ) would be real valued. However, even–odd
decomposition is applicable to the real valued CCF1 and, according to the properties of the
Fourier transform, it relates to the real–imaginary decomposition made for CSD:

R0
vi(τ) = Ev

[
R0

vi(τ)
]
+ Odd

[
R0

vi(τ)
]
,

m m m
S0

vi( f ) = <eS0
vi( f ) + j=mS0

vi( f ),
(46)

where the vertical arrows designate the pairs “signal-spectrum,” interconnected by the
Fourier transform. The decomposition of the CSCF can be moved down to the weights of
Dirac delta functions in its representation:

S (0,k)
vi = <eS (0,k)

vi + j=mS (0,k)
vi . (47)

2.7. Linear Passive Elements and Causality

If an element of an electric circuit is linear, the interrelation between the voltage, v(t),
across it and the current, i(t), through it can be established using the model of the linear
time invariant (LTI) system. Such a system can be completely described in a time domain
by means of its impulse response (IR). Impedance impulse response, z(t), describes the LTI
system whose input is the current and output is the voltage:

v(t) = z(t) ∗ i(t) =
+∞∫
−∞

z(θ)i(t− θ)dθ, (48)

where ∗ denotes the convolution expanded after the second equals sign.
If the voltage is considered to be the system input and, consequently, the current is its

output, the LTI system models admittance with impulse response y(t):

i(t) = y(t) ∗ v(t). (49)
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If the LTI system under consideration belongs to the class of stable systems [47], it can
be equivalently described by frequency response (FR), which is the Fourier transform of
the system impulse response. Thus, the link between the voltage (3) and current (4) spectra
can be established in its multiplicative form as:

V( f ) = Z( f )I( f ), I( f ) = Y( f )V( f ), (50)

where Z(f ) and Y(f ) are the FR of the impedance and admittance, respectively.
The relation (50), together with the properties of multiplying a generalized function by

an ordinary one [44], gives the immediate relation between the coefficient of the complex
form Fourier series for the voltage (3) and current (4):

M(kF)
v = Z(kF)M(kF)

i , M(kF)
i = Y(kF)M(kF)

v , (51)

As soon as FRs are known, the link between CSCD (21) and the equivalent characteris-
tic of the voltage and current can be established in explicit form:

Svi(α, f ) = Z
(

f +
α

2

)
Si(α, f ) = Y∗

(
f − α

2

)
Sv(α, f ), (52)

where Sv(α, f ) and Si(α, f ) are the spectral correlation densities (SCD) of the voltage and
current, respectively.

Relation (52) allows writing the immediate representation of the CSCF at cyclic fre-
quency, α, via the SCF of a voltage and current, denoted, respectively, as S (α)v ( f ) and
S (α)i ( f ):

S (α)vi ( f ) = Z
(

f +
α

2

)
S (α)i ( f ) = Y∗

(
f − α

2

)
S (α)v ( f ). (53)

In turn, the components of CSCD, i.e., the weights of Dirac delta functions, can be
expressed in the closed form:

S (m,k)
vi = Z

([
k +

m + ((m))2
2

]
F
)
S (m,k)

i = Y∗
([

k− m− ((m))2
2

]
F
)
S (m,k)

v , (54)

where S (m,k)
v and S (m,k)

i can be evaluated in accordance with (22), assuming that both of
their multipliers are chosen from the same signal representation.

In particular, at zero cyclic frequency α = 0, (54) gets reduced to:

S (0,k)
vi = Z(kF)

∣∣∣M(kF)
i

∣∣∣2 =
∣∣∣M(kF)

v

∣∣∣2Y∗(kF). (55)

Furthermore, the average power components distributed over frequency are:

P(kF)
r = <eS (0,k)

vi = R(kF)
∣∣∣M(kF)

i

∣∣∣2 = G(kF)
∣∣∣M(kF)

v

∣∣∣2, (56)

where R( f ) = <eZ( f ) and G( f ) = <eY( f ) represent, respectively, the element resistance
and conductance as the frequency dependent function.

3. Simulation Results

The typical load of electrical or electronic systems can be modelled by the use of circuits
that consists of element sets, such as resistors, capacitors and inductors, connecting to each
other. The resonance phenomenon can occur in such circuits under some conditions. The
circuit becomes resonant and has selecting properties. The study of the power distribution
of such circuits is of particular interest.

The parallel resonant circuit with feeding current source, which is presented in
Figure 1a, was chosen for numerical simulation. The following parameters of the circuit
were established: R1 = 20 Ω, R2 = 125 Ω, L = 0.8 mH, C = 320 nF. Those parameters make
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it possible to determine the following circuit characteristics: Q factor Q = 1.25, resonant
frequency fr = 10 MHz, characteristic impedance ρ = 50 Ω.
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Figure 1. Resonant circuit with feeding current source (a) and the frequency characteristic of its input impedance as
impedance module and phase versus the excitation current frequency (b).

The FR describing the input impedance of the circuit is defined as:

Z( f ) =
R1R2 + j2π f LR2

−4π2 f 2LCR1R2 + j2π f (L + R1R2C) + R1 + R2
. (57)

The input impedance of the circuit versus frequency is presented in Figure 1b, where
its absolute value and phase are combined in the same double sided plot.

3.1. Finite Sum of Harmonics Current Excitation

The periodic current i(t), consisting of three sinusoids and a dc component with period
T = 0.1 µs, is considered as the first example:

i(t) = 2 + 3 cos
(

2πFt +
π

4

)
+ 2 cos

(
4πFt +

π

2

)
+ 2 cos

(
6πFt− π

3

)
[mA], (58)

where the frequency is F = 1/T = 10 MHz.
The current, i(t), voltage, v(t), and power, p(t), signals are depicted in Figure 2. They

are periodic functions with the same period, T.
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Figure 2. The current, voltage and power for the case of finite sum of harmonics current.

The spectra of current, i(t), and voltage, v(t), are presented in Figure 3a,b, respectively,
as the weights of the Dirac delta functions representing Fourier coefficients (5) and mea-
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sured in [A] and [V], respectively. The colors of the circles designate the phase of each
Fourier coefficient, according to the color bar, ranging from −π to π. The same visualizing
technique will be used for revealing the phase information in other figures.
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Figure 3. The current (a) and voltage (b) spectra for the case of finite sum of harmonics current.

It can be seen in Figure 3b that, for the voltage spectra, the maximum in absolute value
weights of the delta function are at frequencies ±10 MHz, which correspond to the circuit
resonant frequency, fr, and the fundamental frequency, F, of considered signals.

Figure 4 shows the weights of two-dimensional Dirac delta functions, forming the
bifrequency spectrum, Svi(f 1, f 2), of the current, i(t), and the voltage, v(t), in accordance
with (15). These delta functions are arranged with step 10 MHz, which corresponds to the
fundamental frequency, F, of signals i(t), v(t) and p(t). It can be seen that the section of
Svi(f 1, f 2) at f 1 = ±10 MHz have maximum weights.
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Figure 4. The bifrequency spectrum for the case of finite sum of harmonics current.

The absolute values, in µW, and phases, in radians, of the delta function weights
forming the bifrequency spectrum, Svi(f 1, f 2), are presented in Table 1, where each cell cor-
responds to a pair of frequencies, f 1 and f 2, defined in the rows and columns, respectively.
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Table 1. The amplitudes and phases of the bifrequency spectrum.

Frequency f2, in MHz

Fr
eq

ue
nc

y
f 1

,
M

H
z

−30 −20 −10 0 10 20 30

−30 18.5 ∠ 1.41 18.5 ∠ −2.26 27.7 ∠ −3.04 36.9 ∠ 2.45 27.7 ∠ 1.67 18.5 ∠ 0.88 18.5 ∠ −2.78

−20 31.3 ∠ −1.36 31.3 ∠ 1.26 46.9 ∠ 0.47 62.8 ∠ −0.32 46.9 ∠ −1.10 31.3 ∠ −1.89 31.3 ∠ 0.73

−10 99 ∠ −1.65 99 ∠ 0.97 148.5 ∠ 0.18 198 ∠ −0.6 148.5 ∠ −1.39 99 ∠ −2.17 99 ∠ 0.44

0 34.5 ∠ −1.05 34.5 ∠ 1.57 51.7 ∠ 0.79 69 ∠ 0 51.7 ∠ −0.79 34.5 ∠ −1.57 34.5 ∠ 1.05

10 99 ∠ −0.44 99 ∠ 2.17 148.5 ∠ 1.39 198 ∠ 0.6 148.5 ∠ −0.18 99 ∠ −0.97 99 ∠ 1.65

20 31.3 ∠ −0.73 31.3 ∠ 1.89 46.9 ∠ 1.10 62.5 ∠ 0.32 46.9 ∠ −0.47 31.3 ∠ −1.26 31.3 ∠ 1.36

30 18.5 ∠2.78 18.5 ∠ −0.88 27.7 ∠ −1.67 36.9 ∠ −2.45 27.7 ∠ 3.04 18.5 ∠ 2.26 18.5 ∠ −1.41

The alternative representation of the bifrequency spectrum is the diagram shown in
Figure 5a, where each delta-function is depicted as a circle whose area is proportional to the
absolute value of Svi(f 1, f 2). This way of presenting a 3D image of Svi(f 1,f 2), on plane, can
be convenient for the visualization and rapid estimation of the relative values of Svi(f 1,f 2)
components. We preferred to use a diagrammatic representation in subsequent typical
cases. The frequencies f1, f 2 range from −30 to 30 MHz.
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Figure 5. Diagrams of bifrequency spectrum (a) and CSCD (b) for the case of finite sum of harmonics current.

Figure 5b shows the diagram of CSCD Svi(α,f ) (21), where the weights (22) of delta
functions are presented. The cyclic frequency, α, ranges from −60 to 60 MHz, the frequency,
f, ranges from −30 to 30 MHz.

Figure 6 shows the distribution of the real and imaginary parts of average power. It
can be seen that the real part contributes, in average power, more than the imaginary part.
The weights of the delta function of the real part are highest at frequencies±10 MHz, which
is the circuit resonant frequency, fr, and the fundamental frequency, F, of considered signals.
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Figure 6. Average power distribution for the case of finite sum of harmonics current.

Figure 7 shows the spectrum of p(t). The delta functions forming the spectrum of
instantaneous power p(t) are at the same frequencies as the delta functions forming the
spectrum of instantaneous current i(t) and voltage v(t) because they are periodic functions
with the same period.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 26 
 

 

Figure 7. The spectrum of p(t) for the case of finite sum of harmonics current. 

The following quantitative power characteristics were calculated: the average power 

(33) Pav = 386.5 μW, apparent power (39) Papp = 541.2 μVA, power factor (43) PF = 0.71. 

These power quantities can be verified using the traditional method. The periodic 

voltage v(t), which is depicted in Figure 1a, can be found analytically using frequency 

characteristic (57). Its formal representation, which is written with 2-digit precision for the 

sake of compactness, is as follows: 

( ) ( ) ( )v t Ft Ft Ft  = + + + + + −( ) 34.5 198cos 2 0.6 62.6cos 4 0.32 36.9cos 6 2.45  [mV]. (59) 

The effective values of the voltage Veff and current Ieff, evaluated using (40) and (41), 

are, respectively, 153.0825 mV and 3.5355 mA, whose product yields the apparent power 

by definition (39): Papp = 541.2 μVA. 

As soon as the voltage and current are known in closed form, the average power Pav 

can also be evaluated analytically using (32) where the substitution p(t) = v(t)i(t) is made 

and the integration limits are chosen from 0 to T = 1/F. This yields Pav = 386.5 μW, which 

is exactly the same value as found above. 

3.2. Pulse Train Current Excitation 

The second example of signal i(t) to consider is a periodic train of rectangular pulses 

followed with period T = 0.1 μs, with exponentially smoothed leading and trailing edges. 

The current i(t) can be defined as: 

1
( ) ( )

n

i t i t nT
+

=−

= − [A], (60) 

where 

( )( ) ( )1
( ) ( ) ( ) 1 ( ) 1t ti t u t u t e u t e e  − − − = − − − + − − , (61) 

where u(t) is Heaviside function, and the time constant Δ = 1/α is equal to one tenth of the 

width of each pulse. The current, i(t), voltage, v(t), and power, p(t), signals are depicted in 

Figure 8. They are periodic functions with the same period, T. 

Figure 7. The spectrum of p(t) for the case of finite sum of harmonics current.

The following quantitative power characteristics were calculated: the average power
(33) Pav = 386.5 µW, apparent power (39) Papp = 541.2 µVA, power factor (43) PF = 0.71.

These power quantities can be verified using the traditional method. The periodic
voltage v(t), which is depicted in Figure 1a, can be found analytically using frequency
characteristic (57). Its formal representation, which is written with 2-digit precision for the
sake of compactness, is as follows:

v(t) = 34.5 + 198 cos(2πFt + 0.6) + 62.6 cos(4πFt + 0.32) + 36.9 cos(6πFt− 2.45) [mV]. (59)

The effective values of the voltage Veff and current Ieff, evaluated using (40) and (41),
are, respectively, 153.0825 mV and 3.5355 mA, whose product yields the apparent power
by definition (39): Papp = 541.2 µVA.

As soon as the voltage and current are known in closed form, the average power Pav
can also be evaluated analytically using (32) where the substitution p(t) = v(t)i(t) is made
and the integration limits are chosen from 0 to T = 1/F. This yields Pav = 386.5 µW, which
is exactly the same value as found above.

3.2. Pulse Train Current Excitation

The second example of signal i(t) to consider is a periodic train of rectangular pulses
followed with period T = 0.1 µs, with exponentially smoothed leading and trailing edges.
The current i(t) can be defined as:

i(t) =
+∞

∑
n=−∞

i1(t− nT)[A], (60)
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where
i1(t) = (u(t)− u(t− ∆))

(
1− e−αt)+ u(t− ∆)e−αt

(
e−α∆ − 1

)
, (61)

where u(t) is Heaviside function, and the time constant ∆ = 1/α is equal to one tenth of the
width of each pulse. The current, i(t), voltage, v(t), and power, p(t), signals are depicted in
Figure 8. They are periodic functions with the same period, T.
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Figure 8. The current, voltage and power for the case of pulse train current.

The spectra of current i(t) and voltage v(t) are presented in Figures 9 and 10, respec-
tively. The spectrum (Figure 9) of the current (60) contains more harmonics” in comparison
with the spectrum (Figure 3a) of the current (58), discussed above. However, the voltage
spectra in Figures 3b and 10 consist of a similar number of meaningful delta functions
because the absolute values of delta functions related the components higher than the
third become negligible. For the case of the voltage excited by the pulse current, this can
be explained by the selective properties of resonant circuits. It can be seen in Figure 10
that delta functions having the maximum weights by absolute value are at frequencies
±10 MHz, which correspond to the circuit resonant frequency, fr, and the fundamental
frequency, F, of the considered signals.
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Figure 11 shows the diagram of CSCD Svi(α,f ) found in accordance with (21). It has
more components than the diagram in Figure 5b because of the richer spectral composition
of the rectangular pulse train current (60).
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Figure 12 shows the distribution of the real and imaginary parts of average power. The
weights of the delta function of the real part are maximum at frequencies ±10 MHz, which
match the circuit resonant of the fundamental frequencies of the signal under investigation.
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Figure 12. Average power frequency distribution for the case of pulse train current.

Figure 13 shows the spectrum of instantaneous power p(t). The delta functions forming
the spectrum of p(t) are at the same frequencies as the delta functions forming the spectrum
of instantaneous current, i(t), and voltage, v(t), signals.
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The following quantitative power characteristics were calculated: the average power
(33) Pav = 199.4 µW, apparent power (39) Papp = 264.7 µVA, power factor (43) PF = 0.75.

3.3. Trasmission Line Example

The third example is a lossless transmission line (Figure 14a) with a load, which
coincides with the load of the circuit in Figure 1a.
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Figure 14. Transmission line loaded by the resonant circuit (a) and the frequency characteristic of its input impedance as
impedance module and phase versus the excitation current frequency (b).

The input impedance of transmission line can be evaluated as [48]:
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Z( f ) cos
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(

2π f l
c

)
+ j Z( f )
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(
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c

) , (62)

where c is the speed of wave propagation, l is the length of transmission line, Z is defined
by the formula (1), and Z0 is characteristic impedance. For numerical simulation, the
following parameters were chosen: c = 3 × 108 m/s, Z0 = 50 Ω, l = 12 m.

Consider the current source, which is the same as in the second example, defined by
formulas (60) and (61). The input impedance versus frequency is presented in Figure 14b,
where its absolute value and phase are combined in the same double sided plot.

The current, i(t), voltage, v(t), and power, p(t), signals are depicted in Figure 15. They
are periodic functions with period T.
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The spectrum of current i(t) is the same as in Figure 9, the spectrum of voltage v(t) is
presented in Figure 16. It can be seen that the maximum by absolute weight value delta
function are at frequencies ±20 MHz. This can be explained by the higher absolute value
of the input impedance (62) at frequencies ±20 MHz, compared to ±10 MHz.
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Figure 17 shows the diagram of CSCD Svi(α,f ) (21). It has even more components
than diagram in Figure 11 because more spectral components of |V(f )| in Figure 16 have
sufficient value, compared to |V(f )| in Figure 10.
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Figure 18 shows the distribution of the real and imaginary parts of average power.
The weights of the delta function of the real part are maximum at frequencies ±10 MHz,
which correspond to fundamental frequency, F, of the considered signals. The imaginary
part of delta function weights is maximum by its absolute value at frequencies ±30 MHz.
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Figure 18. Average power distribution for the case of transmission line and pulse train current.

Figure 19 shows the spectrum of p(t). The delta functions forming the spectrum of
instantaneous power p(t) are at the same frequencies as the delta functions forming the
spectrum of instantaneous current i(t) and voltage v(t). The first five spectral components
are higher with respect to the dc component than took place in the case of the resonant
circuit without transmission line (Figure 13).
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The following quantitative power characteristics were calculated: the average power
(33) Pav = 297.1 µW, apparent power (39) Papp = 537.2 µVA, power factor (43) PF = 0.55.

4. Discussion on Conservation Law

From its definition (18), CCF suggests performing the multiplication of time shifted
versions of the voltage and current. We are going to show, in this section, that this can lead
us to important properties linking the components of CSCD (22) over all the elements of
which any circuit consists.

Let us consider an electric circuit assembled of N elements, whose currents and
voltages are denoted by in(t) and vn(t), respectively. Tellegen’s theorem [10] states that,
whenever the currents obey the equation set constituting Kirchhoff’s current law and the
voltages obey the equation set constituting Kirchhoff’s voltage law (KVL), the instantaneous
powers pn(t) = vn(t)in(t) will submit to the balance equation:

N

∑
n=1

pn(t) =
N

∑
n=1

vn(t)in(t) = 0. (63)
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The equation expressing KVL in the lth loop looks like the linear combination of
the voltages:

N

∑
n=1

λlnvn(t) = 0, (64)

where λln is a coefficient taking one of three possible values: 1, −1 or 0. If the element has
not been included in the lth loop, λln = 0. If the nth element is a part of the loop, the mutual
directions of the element voltage and the loop trace determine λln = 1 if they coincide, and
λln = −1 otherwise. The structure of equation set describing KVL establishes the fact that
they are invariant to time shift θ applied to all voltages, vn(t + θ), simultaneously.

Similarly, the equation for KCL in the pth node is the linear combination of the currents:

N

∑
n=1

βpnin(t) = 0, (65)

where βpn is a coefficient taking values out of the set {1, −1, 0}. If the nth element is not
adjacent to the pth loop, βpn = 0. If the current associated with the nth element is leaving
the node, βpn = 1, and if the current is entering the node, βpn = −1. Provided the time shift
σ applied to all currents, in(t + σ), simultaneously, the KCL equation set remains valid.

More importantly, time shifts applied to voltages and currents do not need to be equal
to each other. Returning to the genuine Tellegen’s theorem, we may conclude that:

∀(t, τ) ∈ R2 :
N

∑
n=1
Rvi n(t, τ) =

N

∑
n=1

vn(t + τ/2)i∗n(t− τ/2) = 0, (66)

where the additional index, n, written in the subscript ofRvi n(t, τ), highlights the posses-
sion of CCF by the nth element of the circuit. Equation (66) provides us with a generalized
version of Tellegen’s theorem in a time domain.

However, the series made of Dirac delta functions in (21) forms the frequency domain
counterpart of orthogonal basis for formal expansion of CCF into double Fourier series:

Rvi(t, τ) =
+∞

∑
m=−∞

+∞

∑
k=−∞

S (m,k)
vi exp

{
j2π

[
mFt +

(
k +

((m))2
2

)
Fτ

]}
. (67)

In other words, provided the complex exponential term is rewritten into a concise
expression:

Em,k(t, τ) = exp
{

j2π

[
mFt +

(
k +

((m))2
2

)
Fτ

]}
, (68)

the orthogonality condition will hold:

1
2T2

∫
T

∫
2T

Em1,k1(t, τ)E∗m2,k2
(t, τ)dτdt = δk1k2 δm1m2 , (69)

where δpq denotes the Kronecker delta, which is equal to 1 if p = q and 0 otherwise.
Having applied the component wise orthogonality property to relation (66), we come

to a new version of the conservation law:

∀(m, k) ∈ Z2 :
N

∑
n=1
S (m,k)

vi n = 0, (70)

which means that each component of (22) obeys the conservation law separately.
The direct yet useful corollary of conservation law (70) is the fact that an appropriately

chosen function, depending on a subset containing some of the components, will also sub-



Appl. Sci. 2021, 11, 9711 22 of 25

mit to the conservation law. In particular, a sum of individually transformed components
can assemble a function of such a type:

N

∑
n=1

yn = 0, yn = ∑
(m,k)∈V

g
(
S (m,k)

vi n

)
, (71)

where g() defines a one variable function, satisfying a linearity condition, and V ⊂ Z2

determines the set of pairs (m, k) chosen for performing the summation.
For instance, the average power (33) and the coefficients of Fourier series (31), which

is expressing the instantaneous power, can be treated this way if the function g(x) = x and
V = {M} × Z, where scalar M is the coefficient number: it will be equal to zero for the
average power. Another example is combination:

Qn = 2
+∞

∑
k=1
=mS (0,k)

vi n , (72)

which can be fairly treated as the reactive power, according to Budeanu’s theory [15]. It also
obeys to the conservation law, as it follows from (70), with g(x) = =m(x) and V = {0} ×N.
On the other hand, some other transformations may not agree with componentwise Equa-
tion (70). Thus, it should not be surprising that the apparent power (42), which actually
does not obey the conservation law, as it has not got any reasons, rooted in (70), to be
governed by it.

5. Conclusions

The approach proposed in this paper to power analysis in electric circuits under
arbitrary periodic excitation suggests a systematic framework, which is mainly based on
two ideas. The first is expressing the voltage across, and current through, an element by
their complex valued Fourier series; this allows one to consider them as first order CS
processes. The second idea consists in applying the set of conventional CS tools, such as
CCF and SCF, to the voltage–current pair in the element under analysis.

The main advantages of the proposed method are generally based on its methodology.
The method reveals the elementary, so called “atomic”, power components, which still obey
the conservation law. Proper combinations of these components, including nonlinear, as for
apparent power by (42), can be used for representing any quantity, characterizing power.
As it is shown in this paper, the description based on CS properties perfectly matches the
nature of instantaneous power as a product of the voltage and current related to the same
element of electric circuit, or one port.

On the one hand, such an approach may look overly complicated since there exist
alternative approaches to the same problem based on real valued, or amplitude and phase
representation. The introduction of complex numbers for describing power components
may be looking excessive, since complex Fourier series are more common for researchers
dealing with signal processing tasks than for researchers working in the fields of electric
machines and power delivery.

At the current development stage, the proposed method was implemented as a
specialized software utility used for postprocessing the data obtained as the output of an
applied software performing circuit analysis in steady state mode. One of the classes of the
problems typically solved by means of this software is the numerical optimization of the
power factor, which is to be achieved by the allowed variation of the load, e.g., by adding
extra reactance or changing the length of the transmission line. However, the classical
optimization approach is usually performed for a single harmonic, whereas the other
harmonics are considered primarily as the distortion. In contrast, the proposed method
utilizes the compact component wise representation of the full instantaneous power in the
element of the circuit excited by an arbitrary periodic waveform. This paves the way to
more accurate optimization procedures, taking into account higher harmonics of the signal.
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Although, from an applied mathematician’s point of view, CCF can be treated as
an extended model of the time varying instantaneous power, in which the auxiliary lag
parameter has been introduced, the physical meaning of CCF may still require deeper
clarification. Thus, although each of the components given by (22) obeys conservation law
(70) separately, they will contribute to the Fourier series representing the instantaneous
power (30) only in aggregated form (31). Other aggregations are carried out to form the
average and reactive powers. In addition, the question of the realizability of the circuit,
which can implement the product of the time-translated voltage and currents, is omitted in
this paper, leaving this issue open.

Future development of the CS framework proposed in this paper can be carried out
in several directions. The first one consists in its application to the circuits containing
nonlinear or time varying elements. As soon as the simplified model of a nonlinear
element is involved, the relation between the voltage and current in such an element can
be described by its volt–ampere characteristics. In contrast, the time varying behavior of an
element can be described by linear periodically time-varying, which are perfectly covered
by the CS theory. In both cases, instantaneous power still remains periodic and keeps its
representative ability as the quantitative measure of the voltage–current interaction.

Another generalization of the proposed theory can be performed if the circuit is ex-
cited by voltages and currents whose sources are modeled as random processes. Moreover,
promising results are expected for cases of wide sense stationary and wide sense cyclosta-
tionary random processes. However, since the voltage and current cease to be deterministic,
the expectation starts taking on an important part in the power representation. Not only
can this procedure be carried out in a probabilistic manner using ensemble averaging, but
it can also be performed in the infinite time limiting process, according to the concepts
developed within fraction of time theory [49]. Those may also become the promising topics
for further research.

Finally, after proper generalization, the proposed approach can be used for describing
the power in a multiport, where voltages and currents can be measured in dedicated ports
rather than separate elements. Furthermore, starting from voltage–current interaction, the
approach may be used in electromagnetics for describing power produced by appropri-
ate cross product electric and magnetic fields expressed as component vectors in three
dimensional space.
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