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Abstract: Deflections are commonly measured in the static structural system identification of struc-
tures. Comparatively less attention has been paid to the possibility of measuring rotations for
structural system identification purposes, despite the many advantages of using inclinometers, such
as a high resolution and being reference free. Although some work using rotations can be found
in the literature, this paper, for the very first time, proposes a statistical analysis that justifies the
theoretical advantage of measuring rotations. The analytical expressions for the target parameters are
obtained via static structural system identification using the constrained observability method first.
Combined with the inverse distribution theory, the probability density function of the estimations
of the target parameters can be obtained. Comparative studies on a simply supported bridge and a
frame structure demonstrate the advantage of measuring rotations regarding the unbiasedness and
the extent of variation in the estimations. To achieve robust parameter estimations, four strategies to
use redundant rotations are proposed and compared. Numerical verifications on a bridge structure
and a high-rise building have shown promising results.

Keywords: rotations; static; observability; structural system identification; inverse distribution

1. Introduction
1.1. Existing Structural System Identification Method

Potential catastrophic events due to the failure or malfunction of civil infrastructures
(e.g., bridges, high-rise buildings, dams) might claim people’s lives and cause substantial
economic losses. To avoid this undesirable consequence, it is vital to know the current
condition of structures. For this reason, structural health monitoring (SHM) and structural
system identification have attracted much attention in recent decades [1–3]. A basic
assumption in structural system identification is that the deterioration or the damage of
structures is reflected in the change in structural parameters (such as bending and axial
stiffness). These parameters can be estimated by various structural system identification
methods using a measured response from structures under external excitations.

Dynamic-based methods account for the majority of structural system identification
methods. Depending on the source of excitation, dynamic structural system identification
methods are categorized as input–output methods and output-only methods. In the input–
output methods, the time history of the excitation and the response are measured to
compute frequency response functions. These functions are used to determine the natural
frequencies, mode shapes, and damping ratios of the structure using well-established
methods [4–6]. In the output-only methods [7,8], instead of using heavy, cumbersome
and expensive devices to excite large-scale structures in a controlled way, the ambient
(wind-induced, traffic-induced and subtle seismic) vibrations are measured conveniently
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and economically. The modal information of structures can be obtained by analyzing
the correlation functions or the spectral density matrices computed from the operating
response data. Among these methods, the Bayesian methods [8] can obtain the posterior
distributions of the target parameters by combining the assumed distributions of the
parameters in the priors and the evidence from the measurements. The error-domain
model [9–11] can identify parameter values in the existence of systematic errors and detect
the presence of unrecognized systematic errors. The residual minimization method [12] can
localize model errors and estimate physical parameters by minimizing the force unbalance
in the equations of motion.

Compared with dynamic methods, static structural system identification methods
are much less developed. Sanayei et al. [13] identified the plate-bending stiffness of a
reinforced concrete pier deck with incomplete static test data using accurate forces and
displacements. Later, Banan et al. [14] formulated structural system identification as a
constrained nonlinear least squares problem by minimizing the discrepancies between the
measured and predicted displacements or forces. Hjelmstad et al. [15] incorporated an
adaptive parameter grouping strategy with the work from Banan. The proposed method
can locate and assess damage even under sparse and noisy measurements. Yang et al. [16]
were able to locate and quantify damages in a cantilever beam and two trusses using a flex-
ibility disassembly technique with a baseline model and all DOFs measured. Sun et al. [17]
approximated the beam curvatures by the second-order difference of deflections. This
work was able to locate damage from the abnormality in the curvature curves while the
damage extent could not be quantified.

Recently, observability methods [18,19] were applied in the field of state estimation.
This method was able to identify whether a set of available measurements was sufficient
to estimate the state of systems. Lozano et al. [20] applied the observability method (OM)
to determine the observability of structural parameters in 2D beam models symbolically
with static measurements. Later, structural system identification by numerical OM (NOM)
was proposed by Nogal [21] to carry out numerical estimation of target parameters. Re-
cently, Tomás et al. [22] and Emadi et al. [23] developed this method to deal with actual
measurements on site, including shear deformations. The effects of measurement errors
and simulation errors on the estimation accuracy were investigated in [24]. Later, Lei [25]
derived the analytical relations that the displacements of beam-like structure should sat-
isfy using OM. The adverse effect of measurement errors on the estimation accuracy was
reduced by imposing the compatibility conditions. A new formulation of observability
equation with the measurement error terms separated was proposed in [26].

1.2. Application of Inclinometers in Civil Engineering

Existing static structural system identification methods largely measure deflections
rather than rotations [16,17,27]. However, wide industrial applications (e.g., automo-
tive, electronics and aviation industries) of inclinometers can be found [28]. The merits
of inclinometers make them very desirable for SHM applications [29–33]. Application
of inclinometers in SHM of civil structures can be found in the literature; for instance,
stadiums Design Plaza Building [34], Tianjin 117 (597 m) [35], construction hoists [36],
Lutrive Bridge [32], pavement construction [37], ground movement [38] and slope mea-
surement [39]. In particular, inclinometers are used to reconstruct the deflected shape
of bridges due to the difficulty in measuring deflections directly. However, direct use
of rotations might be preferred because systematic errors might be introduced into the
approximated deflections depending on the assumption made in the basic functions (e.g.,
precalculated deflected shapes [32], polynomials [40]). Zhang estimated the deflections
accurately via the partial least squares method from a Finite Element Model (FEM) without
using basis functions [33]. The possibility of locating damage using inclinometers was
also investigated in this work. Liu [37] achieved real-time measurement of lift-thickness
during highway construction using a system-integrating inclinometer, robotic total station,
and laser ranging sensors. Ha et al. [38] developed and applied a wireless MEMS-based
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borehole inclinometer for automated measurement of ground movement. Hou [41] pro-
posed to monitor interstory drift in building structures via rotation measurements with
MEMS inclinometers and an optimized sensor layout. A comparison of inclinometers
versus deflection measurements has already been investigated using information entropy
metrics [42]. Different metrics to evaluate the goodness of sensor placement were also
studied by Papadimitriou [43] and Argyris [44].

1.3. Research Objective

The novelty of this method is that it can determine the observability of target param-
eters when a measurement set is given. It is highlighted that a systematic procedure to
carry out statistical analysis of the distribution of parameter θ using analytical expression
is presented. The expression for parameter θ is obtained under the framework of static
structural system identification using the observability method. The distribution of the
parameters can be determined by the analytical expression from OM and the theory of
inverse distribution [45]. The advantage of this method is that it can obtain analytical
expression of the target parameters which have clear physical meaning and mathematical
elegance. It can avoid the heavy computation burden that normally occurs in the Bayesian
method or optimization-based method.

Although inclinometers have been used in SHM for a long time, the research on the
use of rotations in structural system identification is very limited. In the case of static
structural system identification for beam-like structures [25], it is found that the estimations
of bending stiffness were more sensitive to the measurement errors in deflections than
errors in rotations using Monte Carlo analysis. However, no theoretical advantage of using
rotations can be found. A comparative study of the use of rotations and/or deflections was
carried out to justify the theoretical advantage of using rotations over deflections regarding
the unbiasedness and the extent of variation in the estimations. Different strategies to use
redundant rotations with the aim of improving estimation accuracy are also discussed.

The remainder of this paper is organized as follows. Section 2 describes the algorithm
for structural system identification by constrained OM [46], which obtains the analytical
expressions for the parameters. Then, the procedure to carry out statistical analysis with
the resulting expression is also presented in this section. Section 3 adopts two illustrative
examples to justify the theoretical advantages of using rotations over deflections. Section 4
investigates the effectiveness of four strategies to make use of redundant rotations in a
high-rise building. Finally, some conclusions are presented in Section 5.

2. Methodology

This section presents the methodology to carry out statistical distribution of the estima-
tions. In Section 2.1, structural system identification using the Constrained Observability
Method is introduced. Then, the procedure to carry out the statistical analysis of the
distribution of estimations is described in Section 2.2.

2.1. Structural System Identification Using the Constrained Observability Method

In a previous study [20], the observability of structural parameters was determined
symbolically by checking the null space of the coefficient matrix of a system of equations
adapted from equilibrium equations. The null space for a m × n matrix [A] is the vector
space whose vectors satisfy the homogeneous equation as shown in Equation (1).

[A]{x} = {0} (1)

The null space for matrix [A] is defined in Equation (2).

Null([A]) = {{x} ∈ Rn|[A]{x} = 0} (2)

The null space matrix [N] for the matrix [A] is a matrix whose columns form a basis
of the null space Null([A]), which can be computed by Gaussian elimination. In fact,
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any vector in the null space is a linear combination of the basis vectors for Null([A]), i.e.,
columns of the matrix [N]. In structural system identification using both OM and NOM,
the identification of structural parameters is a recursive process in which the parameters
that are identified in the last recursive step are incorporated into the input of the current
recursive step to enable the identification of other parameters. In each recursive step, the
nonlinear variables appearing in the system of equations are treated as linearized ones.
However, the assumption of linearity might reduce the number of observable parameters
with given measurement sets [39]. Then, two-stage structural system identification using
the constrained OM (COM) was proposed. In Stage 1, the original structural system
identification using NOM is carried out until no more parameters are observable. In
Stage 2, the system of equations from the last recursive step in Stage 1 is reformulated as
a constrained optimization problem, minimizing the square sum of the residuals of this
system. The procedure to carry out structural system identification using COM is described
in the seven steps below, and all the seven steps are the novelty of this method. Stage 1 is
related to Steps 2–5, while Stage 2 is related to Step 7.

Step 1: Define an initial FEM using 2D beam elements for the structure to be analyzed.
Generate the system of equilibrium equations for this FEM, as shown by Equation (3).

[K]{δ} = {f } (3)

The matrix [K] is the global stiffness matrix that includes the information of length
Lj, elastic moduli Ej, area Aj and inertia Ij of element j (j = 1, 2 . . . Ne). The displacement
vector {δ} comprises horizontal deflection ui, vertical deflection vi and rotation wi of node i
(i = 1, 2 . . . Nn). The force vector {f } comprises horizontal force Hi, vertical force Vi and
moment Mi applied on node i (i = 1, 2 . . . Nn). The numbers of elements and nodes in the
FEM are denoted by Ne and Nn.

Step 2: Introduce the boundary conditions and values of the increments in displace-
ments and forces during the static test to obtain the observability equations.

The entries in the matrix [K] are sums of monomial ratios, which are the ratios between
axial or bending stiffnesses and the square (or cubic) of the length, i.e.,

Ej Aj
Lj

,
Ej Ij

L2
j

or
Ej Ij

L3
j

.

In static structural system identification, it is assumed that Lj is known and Ej, Aj and
Ij are unknown parameters to be estimated. Note that Ej, Aj, Ij and Lj from different
elements might appear in the same entry due to element connectivity. To separate these
parameters, each column of matrix [K] is divided into multiple columns such that any
resulting column is uniquely related to one monomial (stiffness), EjAj or EjIj. Meanwhile,
the displacement vector {δ} is expanded correspondingly. Then, these stiffnesses are
extracted from the matrix [K] and the expanded displacement vector is multiplied by them.
Hence, a (constant) modified matrix [K*] and a modified vector {δ*} composed of nonlinear
products, e.g., EjAjui, EjIjwi, EjIjvi, are obtained, as shown in Equation (4).

[K∗] · {δ∗} = { f } (4)

Once the boundary conditions and the forces applied in the non-destructive static test
have been defined, it is assumed that a subset of increments in deflections {δ∗1 } of {δ∗} are
known and a subset of forces {f 1} are known, while the remaining parts {δ∗0 } and {f 0} are
unknown. By static condensation, Equation (4) can be partitioned as Equation (5).

[K∗]{δ∗} =
[

K∗00 K∗01

K∗10 K∗11

]{
δ∗0
δ∗1

}
=

{
f0

f1

}
= { f } (5)
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To cluster the unknowns {δ∗0 } and {f 0}, Equation (5) can be rewritten equivalently as
the observability equation, Equation (6). I and 0 are the null and the identity matrices.

[B]{z} =
[

K∗10 0

K∗00 −I

]{
δ∗0
f0

}
=

{
f1 − K∗11δ∗1
−K∗01δ∗1

}
= {D} (6)

Step 3: Check the null space matrix [N] of the coefficient matrix [B] to determine
the observability of unknowns in {z} and obtain the numerical estimations for observable
variables. The structure of the general solution {zg} to Equation (6) is given by Equation (7).

{
zg
}
=
{

zp
}
+ {zh} =

{
δ∗0
f0

}
p

+ [N] · {ρ} (7)

{zp} is a particular solution to Equation (6) and {zh} is a solution to the homogeneous
version of Equation (6) (i.e., the vector [D] is replaced by zeros). {zh} is a linear combination
of the columns of the matrix [N]. The coefficients of the linear combination are denoted by
the vector {ρ}. The observability of unknowns in the vector {z} is determined by checking
null rows in the matrix [N]. If any row in the matrix [N] is null, then the same row of {zh}
is also null. Then, the associated variable in {zg} is determined by the particular solution
{zp}. Hence, the variable is uniquely determined and observable. The calculation of the null
space matrix [N] should be carried out symbolically to avoid omitting observable variables,
because close-to-zero values from numerical calculations might appear in those null rows.
The numerical values of the observable variables are obtained from the particular solution
of Equation (6) using least squares methods.

Step 4: Check whether new variables in the unknown vector {z} were identified or not.
If identified, go to Step 5. Otherwise, go to Step 6.

Step 5: Any identified variables will be incorporated into the preceding input to form
the subsequent input and initiate a new recursive step. This may enable the identification
of other unknowns in {z}. Steps 2–4 are repeated until no more variables can be identified.

Step 6: Check whether all variables are identified or not. If all the parameters are
identified, then end the procedure. Otherwise, go to Step 7.

Step 7: Obtain the estimations of parameters by solving the constrained optimization
problem that is adapted from the observability equations in the last recursive step. Since
the linearization of the unknowns leads to the reduction in observable unknowns, the
nonlinearity in structural system identification is regained by means of solving an opti-
mization problem with the constraints that the linearized products are equal to the product
of associated single variables, e.g., EI2v2 = EI2·v2.

Some single variables {zs} may not appear in the unknown vector {z} of Equation (6). A
new unknown vector {z*} is obtained by adding {zs} in {z}. A null matrix [Ω] is introduced
into the coefficient matrix so that the equations are not violated, as shown in Equation (8).

[B∗] · {z∗} = [B Ω]

{
z
zs

}
= {D} (8)

The objective function (Equation (9)) of the optimization is to minimize the square
sum of the residuals (unbalanced nodal forces) in Equation (8).

f ({z∗}) =
3Nn

∑
i=1

ε2
i (9)

where εi is the residual of the ith equation in Equation (8), and Nn is the number of nodes.
The procedure to carry out structural system identification by COM is summarized in

Figure 1.
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Figure 1. Flowchart of the algorithm for structural system identification by COM.

In stage 1 (Steps 2–5), the observability equations are treated linearly such that the
computation is much reduced when compared with nonlinear methods. All the steps
in stage 1 are the same as those in structural system identification by NOM. In stage 2
(Step 7), nonlinearity is introduced by imposing constraints via optimization, with the aim
of identifying more parameters. As some parameters have been identified in stage 1, the
solution space for the optimization algorithm to explore in stage 2 is much reduced, which
eases the computation and convergence issues.

It is highlighted that the observability of the parameters can be analyzed in the 7-step
procedure. The observability analysis can differentiate the meaningful estimations from
those estimations obtained using numerical optimization. That is to say, the numerical
estimations from optimization can always provide numerical values for all parameters, but
some values are not meaningful as they are not observable due to the limited number or
the limited spatial distribution of measurements.

2.2. Procedure for the Statistical Analysis of the Distribution of Estimations

In Step 3 (Figure 1) of the structural system identification using COM described in
Section 2.1, instead of obtaining numerical estimations of the variables, the analytical ex-
pressions can be obtained symbolically using Gaussian elimination. The obtained analytical
expression of the structural parameters is in the form of a fraction with the measurements
in the denominator. In this paper, it is assumed that measurement errors follow a normal
distribution. Random errors are added to theoretical displacements (usually generated by
the FEM) in a proportional manner, as indicated by Equation (10).

δ̃ = δr · (1 + Elevel · ξ) (10)

where δr is the displacement obtained from FEM and Elevel is the error level; ξ is a random
number that follows a normal distribution with zero mean and standard deviation 0.5. The
setting of this value is to be consistent with previous research. The effect of choosing such
a value is the decrease in the dispersion of the distribution of errors. Hence, it reduces the
chance of obtaining more extreme errors.

As the random variables are in the denominator, the definition of inverse distribution
is introduced here. Let X be a random variable and the random variable Y be the inverse of
X, i.e., Y = 1/X. Then, the distribution of Y is the inverse distribution of X. A closed-form
solution for the probability density function (PDF) of the distribution of Y is available
when the random variable X follows a normal distribution [45]. If the normally distributed
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variable X has a mean of µ and standard deviation of σ, i.e., X∼N(µ,σ2), the PDF of the
random variable Y = 1/X (or the inverse distribution of X) is given by Equation (11).

pY(y|µ, σ) =
1√

2πσy2
e−

[( 1
y )−µ]

2

2σ2 (11)

The distribution of Y is bimodal, and it has a negative mode at y1 and a positive mode
at y2.

y1 = −µ +
√

µ2 + 8σ2

4σ2 , y2 =
−µ +

√
µ2 + 8σ2

4σ2 (12)

The mean and standard deviation for the distribution of Y at a specified interval can
be calculated by associated integrations of the PDF pY. These formulas can be found in
classic statistic books [45]. With Equations (11) and (12) and the analytical expression of the
parameters, the procedure to carry out statistical analysis of the distribution of estimations
can be summarized below, and is depicted in Figure 2. Illustrative examples are provided
and discussed in detail in Section 3.
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Step 1: Define a FEM for the structure to be analyzed according to the targeted accuracy of
estimations.
Step 2: Choose a measurement set to obtain the analytical expression for the target parame-
ter θ, employing structural system identification using COM (see Section 2.1). Rewrite this
expression for θ as the reciprocal of an expression denoted by Ddenom, i.e., θ = 1/Ddenom.
Step 3: Calculate the theoretical displacements of the structure using the finite element method.
Step 4: Analyze the distribution of Ddenom using Equation (10) and the theoretical values
obtained in Step 3.
Step 5: Analyze the distribution of θ = 1/Ddenom using Equations (11) and (12).

In the parameter estimation problem in power systems, if a measurement set of n
measurements is able to identify all the n parameters and the drop in any measurement
fails to do so, then this set is defined as an essential set [47]. The availability of analytical
expressions for static structural system identification using COM depends on the number
and the type of measurements in Step 2. When less than the required measurements,
which is equal to the number of unknown parameters, are used, the target parameter is not
observable [48]. Neither analytical expressions nor numerical estimations can be obtained.
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When more than the required measurements are used, the target parameters are observable
and can be numerically evaluated, while the analytical expressions are not obtainable. The
necessary measurements can be determined by trial and error methods, i.e., adding one
measurement each time until the analytical expressions are obtained. It is noted that the
trial-and-error method can be carried out using computer programs. However, in the
case of a large structure, it could be a heavy workload as there are many combinations
of different DOFs. This trial-and-error method certainly can be helped by engineering
judgement, which makes the workload much lighter. The measurement sets that are
capable of deriving the analytical expressions for the target parameters θ are referred to as
essential sets of parameters θ.

In the whole process, MATLAB was used to develop a code based on the procedure in
Figures 1 and 2.

3. Theoretical Motivation for Measuring Rotations

The advantages of using rotations are not limited to the practical issues mentioned in
Section 1.2. Statistical analyses of two structures were carried out to emphasize the theoret-
ical motivation of measuring rotations rather than deflections. Example 1 corresponds to a
simply supported bridge, while example 2 corresponds to a two-story frame.

3.1. Statistical Analysis of a Simply Supported Bridge

Example 1 was a simply supported bridge measuring 3L long. Statistical analysis
was carried out for this structure using different measurement sets. The parameterization
of the FEM for this structure is shown in Figure 3. The target parameter was EI2. OM
(observability method) indicates that any two rotations, or one rotation plus two deflections,
or three deflections, in nodes 5–9 are qualified to identify EI2. Without loss of generality,
three measurement sets, set 1 (v5, v7, v9), set 2 (v5, v7, w9) and set 3 (w5, w9), were studied,
where vi and wi denote the measured deflection and rotation, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

observable and can be numerically evaluated, while the analytical expressions are not ob-
tainable. The necessary measurements can be determined by trial and error methods, i.e., 
adding one measurement each time until the analytical expressions are obtained. It is 
noted that the trial-and-error method can be carried out using computer programs. How-
ever, in the case of a large structure, it could be a heavy workload as there are many com-
binations of different DOFs. This trial-and-error method certainly can be helped by engi-
neering judgement, which makes the workload much lighter. The measurement sets that 
are capable of deriving the analytical expressions for the target parameters θ are referred 
to as essential sets of parameters θ. 

In the whole process, MATLAB was used to develop a code based on the procedure 
in Figures 1 and 2. 

3. Theoretical Motivation for Measuring Rotations 
The advantages of using rotations are not limited to the practical issues mentioned 

in Section 1.2. Statistical analyses of two structures were carried out to emphasize the the-
oretical motivation of measuring rotations rather than deflections. Example 1 corresponds 
to a simply supported bridge, while example 2 corresponds to a two-story frame. 

3.1. Statistical Analysis of a Simply Supported Bridge 
Example 1 was a simply supported bridge measuring 3L long. Statistical analysis was 

carried out for this structure using different measurement sets. The parameterization of 
the FEM for this structure is shown in Figure 3. The target parameter was EI2. OM (ob-
servability method) indicates that any two rotations, or one rotation plus two deflections, 
or three deflections, in nodes 5–9 are qualified to identify EI2. Without loss of generality, 
three measurement sets, set 1 (v5, v7, v9), set 2 (v5, v7, w9) and set 3 (w5, w9), were studied, 
where vi and wi denote the measured deflection and rotation, respectively. 

 
Figure 3. FEM for a simply supported bridge. 

Employing structural system identification using COM with set 3 (w5, w9), the analyt-
ical expression of EI2 (as shown in Equation (13)) can be obtained by solving the observa-
bility equation symbolically. 

ଶ ܫܧ
௦௘௧ଷ =

L
ହݓ)32 − (ଽݓ ⋅ {16 ෍(ܯ௜ − (ଵସି௜ܯ

ହ

௜ୀଵ

+ ଺ܯ8 − ଼ܯ8 + 4 ෍[(݅ − 1) ௜ܸܮ
ହ

௜ୀଶ

+ (݅ − 1) ଵܸସି௜ܮ] + 19 ଺ܸܮ + 20 ଻ܸܮ + 19଼ܸ (13) {ܮ

In Equation (13), the external loads are collected in the numerator while the measure-
ments (w5, w9) are collected in the denominator. The estimation of EI2 depends on the load-
ing case and the measured displacements, not related to EI1 or EI3. Assume that L = 3 m, 
and the depth and width of the cross section are 0.5 m and 0.3 m. The inertia and the elastic 
modulus are 3.125 × 10−3 m4 and 3.5 × 107 kN/m2, respectively. A vertical concentrated load 
V5 = 100 kN is applied at the one-third point. The ratio of the maximum deflection to the 
span is 1/760. The increments in the measured displacements obtained from FEM are 
listed in Table 1. Since V5 = −100 kN and all the other loads are null, Equation (13) can be 
simplified as Equation (14). 

ଶܫܧ
ୱୣ୲ଷ = ହܸܮଶ

ହݓ)2 − (ଽݓ
=

1
ହݓ)2 − (ଽݓ

ହܸܮଶ

 (14)

Figure 3. FEM for a simply supported bridge.

Employing structural system identification using COM with set 3 (w5, w9), the an-
alytical expression of EI2 (as shown in Equation (13)) can be obtained by solving the
observability equation symbolically.

EIset3
2 = L

32(w5−w9)
·
{

16
5
∑

i=1
(Mi −M14−i) + 8M6 − 8M8 + 4

5
∑

i=2
[(i− 1)ViL + (i− 1)V14−iL] + 19V6L + 20V7L + 19V8L

}
(13)

In Equation (13), the external loads are collected in the numerator while the mea-
surements (w5, w9) are collected in the denominator. The estimation of EI2 depends on
the loading case and the measured displacements, not related to EI1 or EI3. Assume that
L = 3 m, and the depth and width of the cross section are 0.5 m and 0.3 m. The inertia and
the elastic modulus are 3.125 × 10−3 m4 and 3.5 × 107 kN/m2, respectively. A vertical
concentrated load V5 = 100 kN is applied at the one-third point. The ratio of the maximum
deflection to the span is 1/760. The increments in the measured displacements obtained
from FEM are listed in Table 1. Since V5 = −100 kN and all the other loads are null,
Equation (13) can be simplified as Equation (14).

EIset3
2 =

V5L2

2(w5 − w9)
=

1
2(w5−w9)

V5L2

(14)
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Table 1. Increments in displacements for example 1 due to the concentrated load V5 = −100 kN.

Displacements Values Unit

v5 −0.010971 m
v7 −0.011829 m
v9 −0.009600 m
w5 −0.001829 rad
w9 0.002286 rad

As can be observed in Equation (14), the analytical equation of stiffnesses includes
the term w5 − w9. Hence, the sign of the analytical equation can be affected by the sign of
the term w5 − w9. When errors are introduced into the measurements, the sign of the term
w5−w9 might be reversed. Consequently, negative EI values might appear. The advantage
of this analytical method is that if such values appear, it is easy to locate the source of
error and either to discard the results, to improve the measurement data or to change the
measurement points to avoid close-to-zero values.

With Table 1, Equations (10)–(12), the distributions of w5 − w9 and 2(w5 − w9)
V5L2 as well

as EIset3
2 can be obtained. The distributions for EIset1

2 (v5, v7 and v9) and EIset2
2 (v5, v7 and

w9) were obtained in the same way. To validate the statistical analysis, 2000 samples of
measurement set (v5, v7 and v9) were generated by Equation (10) with an error level of
5%. Two thousand estimations of EI2 were obtained. All estimations were normalized by
their nominal values. The probability density curve of the estimation of EI2 was obtained
from the 2000 estimations using kernel density estimation, which was carried out by the
ksdensity command in Matlab.

The validity of the proposed statistical analysis is justified by the complete agreement
between the estimated probability density curve and the theoretical one from Equation (11)
in Figure 4a. The distribution of EI2 using set 1 (v5, v7 and v9) is severely right skewed,
characterized by the extremely long right tail. At low error levels, the positive mode occurs
close to one and the value of probability density is high for all three sets. This is no longer
true as error levels increase. Figure 4b,c provide the probability density curves for the
estimations of EI2 using set 1 and set 3 with 20% error. For set 1, the biased positive mode
x = 0.535 is related to a small density of 0.971. In addition, the negative mode x = −1.152 is
not negligible. On the contrary, for set 3, the positive mode x = 0.990 is related to a much
higher probability density of 5.664, while the negative mode x = −99.771 is negligible and
hence not shown. This implies that for high error levels, the estimation using deflections
leads to underestimations, and even negative estimations. In addition, the severe right
skewness of the probability density curve for set 1 indicates a much larger variation in the
estimations than in the case of using rotations (set 3).
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Figure 4. Probability density curves for the estimations of EI2 using (a) set 1 (v5, v7 and v9) with 5%
error (theoretical distribution and inferred from data), (b) set 1 (v5, v7 and v9) with 20% measurement
error and (c) set 3 (w5, w9) with 20% measurement error (shaded area for 2.5% and 97.5% percentiles).
(KDE for kernel density estimation).
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The 95% confidence intervals of the estimations of EI2 using set 3 with error levels
ranging from 0% to 20% are depicted in Figure 5. The lower and upper bounds of the
confidence interval are the cutting points of the 2.5% regions on the left and right sides
of the probability density curve (shaded in Figure 4c). Figure 5 shows that the bounds of
these confidence intervals satisfy a linear relation with the error level. In addition, these
intervals are bounded by [1 − Elevel, 1 + Elevel] for each error level.
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Figure 6 provides the variations inj the positive mode, the mean and the coefficient of
variation (c.o.v.) for the estimations of EI2 using different sets at different error levels. The
median is always one for set 3 at any error level. The mean and the c.o.v. were analyzed
with the interval [0, 2]. The remarkable consistency between the mode and the mean
for set 3 justifies the unbiasedness of the estimations using rotations (Figure 6a). With
20% error, the deviation in the mean is 0.24% and the related c.o.v. is 0.046. On the contrary,
the deviations in the mean increase rapidly with errors for set 1 and set 2. The positive
mode for set 1 was close to zero when the error level was high. This indicates a large c.o.v.,
as seen in Figure 6b, and a right skewness. When more deflections were used, larger c.o.v.s
were observed as the positions of the c.o.v. curves became higher.
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w9), 2w for (w5 and w9)) under error levels of 1~20%: (a) mean and mode, (b) coefficient of variation
(c.o.v.).

This analysis shows that: (1) The statistical analysis is capable of analyzing the distri-
bution of the estimations. (2) When the error level is high, the estimations using deflections
might be negative and the distribution is severely right skewed. (3) Unlike the case of using
deflections, the estimations using rotations are robust and insensitive to error levels, since
the confidence intervals of the estimations are well bounded. (4) The higher the number of
deflections used in the measurements, the higher the sensitivity of the estimations to errors.
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This is because the measurements appear in the denominator of the analytical solution of
stiffnesses. As demonstrated before, the value of the stiffness EI2 is affected by the values
of the term w5−w9. When measurement errors are considered and w5−w9 is close to zero,
the value of EI2 will vary drastically. When more deflections are used, the denominator of
the corresponding stiffnesses is also composed of terms such as wi − vj/L + vk/L. The de-
nominator in the analytical solution of stiffnesses using more deflections is more sensitive
to error. This is because the order of magnitude for the values of deflections is normally
higher than that of rotations. The value of the denominator for measurement sets using
deflections is much easier to be a close-to-zero value than the case of using rotations. As a
result, the resulting estimation using more deflections seems to be more disperse.

3.2. Statistical Analysis of a Two-Story One-Bay Frame

To further verify the proposed method, statistical analysis was carried out for a two-
story one-bay frame. The elastic modulus was 3.5 × 107 kN/m2. The area and inertia of
the columns were 0.24 m2 and 7.2 × 10−3 m4, while the area and inertias of the beams
were 0.15 m2 and 3.125 × 10−3 m4. The parameterization of the FEM for this structure is
shown in Figure 7a. A uniform load of 45 kN/m was applied to the second story. The
bending stiffness EI9 in the middle part of this story was the target parameter. To identify
EI9, four rotations or five deflections were required. Without loss of generality, two sets
were used for structural system identification. Set 1 comprised four rotations (green) and
set 2 comprised five deflections (red) (see Figure 7a). As the analytical expression for EI9
is not concise, it is not provided here. The probability density curves for the estimations
of EI9 for these sets under different error levels (indicated in the brackets) are presented
in Figure 7b. For set 1 (dashed lines), the positive modes always center around 1 and the
negative ones are negligible. As the errors increase, the probability density curve for the
estimation of EI9 using rotations becomes wider and flatter. At the error level of 5%, the
mean and the positive mode are 1.025 and 0.957, respectively. However, the estimations
using deflections (solid lines) are very sensitive to error levels. The bimodality of the
distribution for EI9 is observed with a minor error of 0.2%. In addition, the positive modes
are greatly deviated from 1. The positive modes related to 0.2% error and 1% error are
0.695 and 0.222, respectively.
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(b) The distributions of the estimations using rotations (w) or deflections (v) under different error
levels (indicated in the brackets).

This analysis shows that: (1) the estimations using deflections are extremely sensitive
to measurement errors in frame structures. (2) Measuring rotations outperforms measuring
deflections regarding both the unbiasedness and the extent of variation in the estimations
of the target parameter. It should also be pointed out that in frames, measuring rotations
might be more practical since finding a reference point to measure deflections is non-trivial.
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4. Using Redundant Rotations for Parameter Estimation

When essential measurement sets are used, the target parameters are observable.
However, due to the ill-conditioned inverse problem, the estimations using essential sets are
far from satisfactory. A reasonable solution to alleviate the adverse effect of measurement
errors is to include redundant measurements. Four strategies to use redundant rotations
are presented in Section 4.1. The effectiveness of these strategies was investigated in
two structures regarding the estimation accuracy and dispersion. The first structure
(Section 4.2) was a simply supported bridge (Figure 3) and the second (Section 4.3) was a
13-story frame structure.

4.1. Strategies to Use Redundant Measurements

In the case of redundant measurements with errors, the observability equations cannot
be satisfied strictly. Numerical estimations were obtained by using the least squares method.
However, the redundant measurement can be divided into several essential sets. For each
essential set, a unique solution can be obtained. Hence, four strategies to use redundant
rotations are presented as follows.

Strategy 1: Formulate the observability equations (Equation (6)) employing structural
system identification using COM with all rotations in one batch. In this case, the equations
cannot be satisfied strictly as measurement errors exist and the equations are solved directly
using the least squares method.
Strategy 2: Derive the geometrical relations (referred to as compatibility conditions) that
the nodal displacements should satisfy first [25]. Impose these compatibility conditions
using optimization techniques by minimizing the discrepancy between the measured shape
and the compatible one. The estimations of the parameters are obtained by providing the
compatible displacements in Equation (6).
Strategy 3: The estimations using the redundant measurement sets are obtained in several
batches. In each batch, the target parameters are obtained using one essential set, which is
a subset of the redundant set. The final estimations are the average of the estimations from
all batches. This strategy is also noted as an averaging method.
Strategy 4: The averaging method is carried out first. Then, the outliers in the estimations
from different batches are detected and removed. The final estimations are the average of
the remaining valid estimations. To determine outliers, the first quantile Q1 and the third
quantile Q3 of the estimations from different batches are calculated. By the assumption
of normal distribution, valid estimations should fall into the interval [Q1 − 2.7(Q3 − Q1),
Q3 + 2.7(Q3 − Q1)] with a coverage of 99.7%. Hence, values outside of this range are invalid
and ruled out.

4.2. Verification for a Simply Supported Bridge

These four strategies were applied to the simply supported bridge described in
Section 3.1 (Figure 3). Investigations of the estimations of parameters of a local zone
and of the whole structure are presented in Sections 4.2.1 and 4.2.2.

4.2.1. Case 1: Parameter Estimation for a Local Region

The load case was the same as the one in Section 3.1. The target parameter was EI2
and five rotations (w5–w9) were measured; 200 samples were generated for both error
levels of 5% and 10%, and 200 estimations were carried out for each error level; 10(= C2

5)
essential sets were able to identify EI2 as two rotations were sufficient to identify EI2. In
strategy 3, the final estimation was the average of the 10 estimations from these sets. The
boxplots of the estimations using the four strategies and the respective essential sets are
depicted in Figure 8. The first four columns are the results for the proposed strategies
while the last 10 columns are the results for respective essential sets. Great bias in the mean
and a large variation are seen for estimations obtained using strategy 1. This is due to
the formation of the observability equation. It is noted that the values of the rotations are
mainly fed into the coefficient matrix. Additionally, the solutions of the equations are very
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sensitive to the values of the entries in the coefficient matrix. When strategy 1 is used, the
solution is obtained using the least squares method. In such cases, the solution obtained
from an ill-posed coefficient matrix may be quite far from reasonable values. Hence, this
strategy is no longer investigated in the subsequent studies. In the case of strategies 2–4,
the estimations are unbiased and robust.
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Regarding the dispersion in the estimations, the best result was observed in the case of
imposing compatibility conditions (strategy 2). The extents of dispersion corresponding to
strategies 3 and 4 were also well controlled. After the outliers were ruled out, the c.o.v. of
the estimations decreased from 0.016 (strategy 3) to 0.014 (strategy 4) at the error level of 5%.
A decrease from 0.034 to 0.028 was also observed at the error level of 10%. The distributions
of the estimations using strategies 2–4 at error levels of 5% and 10% are depicted by the
probability density curves in Figure 9. It is seen that the deviations in the estimations are
bounded by the error levels.
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4.2.2. Case 2: Parameter Estimation for the Whole Structure

In this section, the target parameters are the three bending stiffnesses EI1–EI3. Two
load cases were studied. In the load case 1 (Figure 10a), a concentrated load V5 = 100 kN
was applied at one-third point (node 5) of the structure, while in load case two (Figure 10b),
a uniformly distributed load q = 20 kN/m was applied over the whole span.

For both load cases, seven rotations were measured and their locations are indicated in
Figure 10a,b. According to the observability analysis, there were 32 essential measurement
sets able to identify the parameters of this structure. Hence, the estimations of the bending
stiffnesses for strategies 3 and 4 were calculated by averaging the estimations from these
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32 essential sets. To check the performance of different strategies, 200 measurement sets
were generated using Equation (10). The 200 estimations for EI1–EI3 using strategies 2–4
are illustrated as the nine columns of boxplots in Figure 10c,d. The corresponding mean
and c.o.v.s are presented in Table 2.
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The parameters and strategies are indicated by the subscripts of the x labels in these fig-
ures. For instance, EI2,3 denotes the estimation of the bending stiffness EI2 using strategy 3.
As observed in Table 2 and Figure 10c, all the estimations from different strategies were
unbiased as the mean was always located at 1. Regarding the c.o.v., imposing the compati-
bility condition (strategy 2) achieved the best performance for all parameters in both load
cases 1 and 2. The extent of dispersion in the estimations was significant for those obtained
from strategy 3. After strategy 4 was adopted, the c.o.v.s for estimations using strategy 3
reduced as outliers were ruled out. A decrease in c.o.v.s for EI3 in load case 1 from 0.123
to 0.055 was observed. From the result for load case 2, similar conclusions can be drawn.
In addition, the performance of using strategy 4 was very close to that of using strategy 2.
The comparison between the results from load cases 1 and 2 shows the effect of load case
on the estimation accuracy. The poor estimation in EI3 is due to the less excited flexural
behavior of this region in load case 1. In load case 2, the mid span region was well excited
and the zones adjacent to the supports were less excited under the external loads. Hence,
the dispersion of the estimations for EI2 was low while that for EI1 and EI2 was larger.

Table 2. Statistical summary of the estimations using different strategies.

Parameter
Load Case 1 Load Case 2

Mean c.o.v. Mean c.o.v.

EI1,2 1.001 0.027 1.001 0.030
EI1,3 1.003 0.038 1.003 0.043
EI1,4 1.002 0.035 1.002 0.031
EI2,2 1.000 0.017 1.000 0.014
EI2,3 1.000 0.018 1.001 0.017
EI3,4 1.000 0.017 1.000 0.014
EI3,2 1.003 0.050 1.001 0.030
EI3,3 1.014 0.123 1.003 0.043
EI3,4 1.002 0.055 1.002 0.031
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From this section, it is concluded that in the bridge example: (1) Incorporating all
redundant measurements in the observability equation in one batch leads to greatly biased
estimations; this can be tackled by proposed strategies 2–4. (2) Imposing compatibility
conditions (strategy 2) is the best strategy regarding the unbiasedness and dispersion of
the estimations. (3) Averaging the estimations from different essential sets also leads to
satisfactory estimations. The result can be further improved by ruling out the outliers in
the estimations using different essential sets.

4.3. Verification for a High-Rise Frame Structure

Strategy 2 cannot be applied in frame structures as the compatibility condition is
not available in such structures. Hence, strategy 4 was applied in the identification of
parameters of a frame structure simulated by a FEM [49] studied previously (see Figure 11a).
In that study, the observability of the parameters was studied symbolically, while the
numerical analysis and the effect of measurement errors were not included. In this paper,
the focus is the identification of the bending stiffness of the floor slab in the middle right
of the third floor. Figure 11b shows the FEM for this part. It is parameterized by three
bending stiffnesses, EI9–EI11. The parameterization of the remaining part is the same
as that in [49]. The bending stiffnesses EI9 = EI10 = 1.75 × 108 N m2. Damage to the
right side of the target floor slab was simulated by a 30% reduction in bending stiffness
EI11, i.e., EI11 = 1.225 × 108 N·m2. An overload of 40 kN/m was applied to this floor
slab to simulate a static load test. Due to the unsatisfactory result of using deflections,
10 rotations (w32, w72, w74, w76, w78, w80, w82, w84, w86 and w46) were measured to identify
EI9–EI11. The increments in the rotations due to this load were calculated by direct analysis.
Five error levels (1–5%) were studied. For each error level, 100 measurement sets were
generated using Equation (10). To identify EI9–EI11, two rotations were required for each
parameter. Taking two rotations from (w32, w72, w74, w76), (w76, w78, w80, w82) and (w82,
w84, w86, w46), respectively, EI9–EI11 led to 117 essential sets composed of six rotations.
Thus, 117 estimations were obtained for each measurement set and the outliers in these
estimations were ruled out. Figure 11c presents the error bar of the final estimations of
EI9–EI11 under different error levels. The centerlines indicate the mean of estimations for
each set. The vertical error bars cover two standard deviations of the estimations. Hence,
the length of these bars indicates the extent of dispersion in the estimations.
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From Figure 11, it is seen that: (1) The estimations are unbiased, since the centerline is
located at 1. (2) The estimations of EI10 always have the least variation. (3) The increase
in variations in the estimations follows a linear relationship with error levels. (4) The
sensitivity of the increase of variation with error levels is the lowest for EI10. In fact, the
better estimations in EI10 are due to the higher curvature of the zones parameterized by
EI10 than the remaining zones, which agrees with the result in the previous study [24].

In the current study, only rotations were used in the measurement sets. The possibility
of using the combination of deflections and rotations will be investigated in future study.

5. Conclusions

This article proposes a statistical analysis to illustrate the theoretical advantage of
measuring rotations rather than deflections in static structural system identification, which
is also different from the system identification using dynamic data [50–52]. With this aim,
the analytical expressions for the target parameters are derived with structural system
identification using the constrained observability method. Combining these expressions
and the inverse distribution theory, a procedure for obtaining the distributions of the
estimations is proposed for the very first time. The statistical analyses were carried out in
two structures. Its effectiveness was verified by comparison with a Monte Carlo analysis.
From the numerical examples, the distributions of the estimations using only deflection
measurements are very sensitive to errors. These distributions explain the reason for the
biased or even negative estimations when only deflections are measured in the case of
essential sets. In the comparative study of measuring deflections or rotations, it is justified
that the estimations using rotations are always less sensitive to measurement errors than
those using deflections, with respect to the unbiasedness and the extent of variation in
the estimations.

Taking account of the theoretical and practical advantages of using rotations, four
strategies for using redundant rotations to improve the accuracy of estimations were pro-
posed and compared in different structures under static loading. In the simply supported
bridge example where the compatibility conditions were obtainable, the strategy of using
compatibility conditions outperformed the rest. The performance of strategy 4 (averaging
with outliers ruled out) was entirely satisfactory. Furthermore, strategy 4 can be applied
in frame structures where the compatibility conditions are not available. In the numerical
analysis of the high-rise frame, the satisfactory accuracy and robust performance achieved
by using rotations along with strategy 4 justify the effectiveness and versatility of the
proposed method. The theoretical basis of this method has been established in this paper
and it has been proved that with numerically generated data the method is able to provide
sensible results and improve the predictions obtained with just deflections. However,
empirical validation is lacking, and this has to be checked to confirm that the practical
application of the method is feasible. Moreover, applications based on field measurement
will also be carried out in future work.
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Nomenclature

[A] A m × n matrix {z} Unknown vector
[N] Null space matrix {zg} General solution vector
[K] Global stiffness matrix {zp} Particular solution vector
L Length {zh} One solution vector to the homogeneous equation
E Elastic moduli {D} Constant vector
A Area {ρ} Coefficient vector
I Inertia {zs} Single variables vector
{δ} Displacement vector {z*} A new unknown vector by adding {zs} in {z}
U Horizontal deflection [Ω] A null matrix
V Vertical deflection [B*] A new coefficient matrix by introducing null matrix [Ω]
W Rotation ε Residual

{ƒ} Force vector
∼
δ Random errors

H Horizontal force δr Displacement obtained from FEM
V Vertical force Elevel Error level

M Moment ξ
Random number follows a normal distribution with
zero mean and standard deviation 0.5

Ne Number of elements µ Mean value
Nn Number of nodes σ Standard deviation
[K*] Modified global stiffness matrix X Random variable
{δ*} Modified displacement vector Y The inverse distribution of X
I Identity matrices pY Probability density function of Y
0 Null matrices θ Target parameter
[B] Coefficient matrix Ddenom Reciprocal of target parameter θ

References
1. Al-Hussein, A.; Haldar, A. Structural damage prognosis of three-dimensional large structural systems. Struct. Infrastruct. Eng.

2017, 13, 1596–1608. [CrossRef]
2. Davoudi, R.; Miller, G.R.; Kutz, J.N. Data-driven vision-based inspection for reinforced concrete beams and slabs: Quantitative

damage and load estimation. Autom. Constr. 2018, 96, 292–309. [CrossRef]
3. Morgenthal, G.; Hallermann, N.; Kersten, J.; Taraben, J.; Debus, P.; Helmrich, M.; Rodehorst, V. Framework for automated

UAS-based structural condition assessment of bridges. Autom. Constr. 2019, 97, 77–95. [CrossRef]
4. Deraemaeker, A.; Ladevèze, P.; Leconte, P. Reduced bases for model updating in structural dynamics based on constitutive

relation error. Comput. Methods Appl. Mech. Eng. 2002, 191, 2427–2444. [CrossRef]
5. Christodoulou, K.; Ntotsios, E.; Papadimitriou, C.; Panetsos, P. Structural model updating and prediction variability using Pareto

optimal models. Comput. Methods Appl. Mech. Eng. 2008, 198, 138–149. [CrossRef]
6. Jensen, H.E.; Millas, E.; Kusanovic, D.; Papadimitriou, C. Model-reduction techniques for Bayesian finite element model updating

using dynamic response data. Comput. Methods Appl. Mech. Eng. 2014, 279, 301–332. [CrossRef]
7. Park, H.S.; Oh, B.K. Real-time structural health monitoring of a supertall building under construction based on visual modal

identification strategy. Autom. Constr. 2018, 85, 273–289. [CrossRef]
8. Beck, J.L.; Katafygiotis, L.S. Updating models and their uncertainties. I: Bayesian statistical framework. J. Eng. Mech. 1998, 124,

455–461. [CrossRef]
9. Papadimitriou, C.; Lombaert, G. The effect of prediction error correlation on optimal sensor placement in structural dynamics.

Mech. Syst. Signal Process. 2012, 28, 105–127. [CrossRef]
10. Goulet, J.-A.; Smith, I.F.C. Structural identification with systematic errors and unknown uncertainty dependencies. Comput.

Struct. 2013, 128, 251–258. [CrossRef]

http://doi.org/10.1080/15732479.2017.1304430
http://doi.org/10.1016/j.autcon.2018.09.024
http://doi.org/10.1016/j.autcon.2018.10.006
http://doi.org/10.1016/S0045-7825(01)00421-2
http://doi.org/10.1016/j.cma.2008.04.010
http://doi.org/10.1016/j.cma.2014.06.032
http://doi.org/10.1016/j.autcon.2017.10.025
http://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
http://doi.org/10.1016/j.ymssp.2011.05.019
http://doi.org/10.1016/j.compstruc.2013.07.009


Appl. Sci. 2021, 11, 9695 18 of 19

11. Proverbio, M.; Vernay, D.G.; Smith, I.F.C. Population-based structural identification for reserve-capacity assessment of existing
bridges. J. Civ. Struct. Health Monit. 2018, 8, 363–382. [CrossRef]

12. Alvin, K. Finite element model update via Bayesian estimation and minimization of dynamic residuals. AIAA J. 1997, 35, 879–886.
[CrossRef]

13. Sanayei, M.; Scampoli, S.F. Structural Element Stiffness Identification from Static Test Data. J. Eng. Mech. 1991, 117, 1021–1036.
[CrossRef]

14. Banan, M.; Hjelmstad, K.D. Parameter Estimation of Structures from Static Response. I. Computational Aspects. J. Struct. Eng.
1994, 120, 3243–3258. [CrossRef]

15. Hjelmstad, K.D.; Shin, S. Damage Detection and Assessment of Structures from Static Response. J. Eng. Mech. 1997, 123, 568–576.
[CrossRef]

16. Yang, Q.; Sun, B. Structural damage localization and quantification using static test data. Struct. Health Monit. 2010, 10, 381–389.
[CrossRef]

17. Sun, Z.; Nagayama, T.; Fujino, Y. Minimizing noise effect in curvature-based damage detection. J. Civ. Struct. Health Monit. 2016,
6, 255–264. [CrossRef]

18. Castillo, E.; Conejo, A.J.; Pruneda, R.E.; Solares, C. Observability in linear systems of equations and inequalities: Applications.
Comput. Oper. Res. 2007, 34, 1708–1720. [CrossRef]

19. Castillo, E.; Conejo, A.; Pruneda, R.; Solares, C. Observability Analysis in State Estimation: A Unified Numerical Approach. IEEE
Trans. Power Syst. 2006, 21, 877–886. [CrossRef]

20. Castillo, E.; Lozano-Galant, J.A.; Nogal, M.; Turmo, J. New tool to help decision making in civil engineering. J. Civ. Eng. Manag.
2015, 21, 689–697. [CrossRef]

21. Nogal, M.; Lozano-Galant, J.A.; Turmo, J.; Castillo, E. Numerical damage identification of structures by observability techniques
based on static loading tests. Struct. Infrastruct. Eng. 2015, 12, 1216–1227. [CrossRef]

22. Tomàs, D.; Lozano-Galant, J.A.; Ramos, G.; Turmo, J. Structural system identification of thin web bridges by observability
techniques considering shear deformation. Thin-Walled Struct. 2018, 123, 282–293. [CrossRef]

23. Emadi, S.; Lozano-Galant, J.A.; Xia, Y.; Ramos, G.; Turmo, J. Structural system identification including shear de-formation of
composite bridges from vertical deflections. Steel Compos. Struct. 2019, 32, 731–741.

24. Lei, J.; Lozano-Galant, J.A.; Nogal, M.; Xu, D.; Turmo, J. Analysis of measurement and simulation errors in structural system
identification by observability techniques. Struct. Control Health Monit. 2017, 24, e1923. [CrossRef]

25. Lei, J.; Xu, D.; Turmo, J. Static structural system identification for beam-like structures using compatibility conditions. Struct.
Control Health Monit. 2017, 25, e2062. [CrossRef]

26. Lei, J.; Lozano-Galant, J.A.; Xu, D.; Turmo, J. Structural system identification by measurement error-minimizing observability
method. Struct. Control Health Monit. 2019, 26, e2425. [CrossRef]

27. Chen, Z.W.; Cai, Q.L.; Zhu, S.; Wei, Z.; Qin, C.; Cai, L.; Zhu, S. Damage quantification of beam structures using deflection
influence lines. Struct. Control Health Monit. 2018, 25, e2242. [CrossRef]

28. Ha, D.W.; Park, H.S.; Choi, S.W.; Kim, Y. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring.
Sensors 2013, 13, 16090–16104. [CrossRef]

29. Shang, Z.; Shen, Z. Multi-point vibration measurement and mode magnification of civil structures using video-based motion
processing. Autom. Constr. 2018, 93, 231–240. [CrossRef]

30. Feng, M.Q.; Feng, S.; Beskhyroun, L.D.; Wegner, B.F.; Sparling, D.; Feng, M.Q. Vision-based multipoint displacement measurement
for structural health monitoring. Struct. Control Health Monit. 2016, 23, 876–890. [CrossRef]

31. Lee, J.-J.; Ho, H.-N. A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures. Sensors 2012, 12,
7326–7336. [CrossRef]

32. Robert-Nicoud, Y.; Raphael, B.; Burdet, O.; Smith, I.F.C. Model Identification of Bridges Using Measurement Data. Comput. Civ.
Infrastruct. Eng. 2005, 20, 118–131. [CrossRef]

33. Zhang, W.; Sun, L.M.; Sun, P.S.W. Bridge-Deflection Estimation through Inclinometer Data Considering Structural Damages. J.
Bridg. Eng. 2017, 22, 04016117. [CrossRef]

34. Park, H.S.; Shin, Y.; Choi, S.W.; Kim, Y. An Integrative Structural Health Monitoring System for the Local/Global Responses of a
Large-Scale Irregular Building under Construction. Sensors 2013, 13, 9085–9103. [CrossRef] [PubMed]

35. Liu, T.; Yang, B.; Zhang, Q. Health Monitoring System Developed for Tianjin 117 High-Rise Building. J. Aerosp. Eng. 2017, 30,
B4016004. [CrossRef]

36. Kim, T.; Lim, H.; Kim, S.W.; Cho, H.; Kang, K.-I. Inclined construction hoist for efficient resource transportation in irregularly
shaped tall buildings. Autom. Constr. 2016, 62, 124–132. [CrossRef]

37. Liu, D.; Wu, Y.; Li, S.; Sun, Y. A real-time monitoring system for lift-thickness control in highway construction. Autom. Constr.
2016, 63, 27–36. [CrossRef]

38. Ha, D.W.; Kim, J.M.; Kim, Y.; Park, H.S. Development and application of a wireless MEMS-based borehole inclinometer for
automated measurement of ground movement. Autom. Constr. 2018, 87, 49–59. [CrossRef]

39. Dirksen, J.; Pothof, I.; Langeveld, J.; Clemens, F. Slope profile measurement of sewer inverts. Autom. Constr. 2014, 37, 122–130.
[CrossRef]

http://doi.org/10.1007/s13349-018-0283-6
http://doi.org/10.2514/2.7462
http://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1021)
http://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3243)
http://doi.org/10.1061/(ASCE)0733-9399(1997)123:6(568)
http://doi.org/10.1177/1475921710379517
http://doi.org/10.1007/s13349-016-0163-x
http://doi.org/10.1016/j.cor.2005.05.035
http://doi.org/10.1109/TPWRS.2006.873418
http://doi.org/10.3846/13923730.2014.893904
http://doi.org/10.1080/15732479.2015.1101143
http://doi.org/10.1016/j.tws.2017.11.017
http://doi.org/10.1002/stc.1923
http://doi.org/10.1002/stc.2062
http://doi.org/10.1002/stc.2425
http://doi.org/10.1002/stc.2242
http://doi.org/10.3390/s131216090
http://doi.org/10.1016/j.autcon.2018.05.025
http://doi.org/10.1002/stc.1819
http://doi.org/10.3390/s120607326
http://doi.org/10.1111/j.1467-8667.2005.00381.x
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000979
http://doi.org/10.3390/s130709085
http://www.ncbi.nlm.nih.gov/pubmed/23860317
http://doi.org/10.1061/(ASCE)AS.1943-5525.0000602
http://doi.org/10.1016/j.autcon.2015.11.008
http://doi.org/10.1016/j.autcon.2015.12.004
http://doi.org/10.1016/j.autcon.2017.12.011
http://doi.org/10.1016/j.autcon.2013.10.014


Appl. Sci. 2021, 11, 9695 19 of 19

40. He, X.; Yang, X.; Zhao, L. New Method for High-Speed Railway Bridge Dynamic Deflection Measurement. J. Bridge Eng. 2014, 19,
05014004. [CrossRef]

41. Hou, S.; Zeng, C.; Zhang, H.; Ou, J. Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers.
Constr. Build. Mater. 2018, 185, 453–467. [CrossRef]

42. Bertola, N.J.; Papadopoulou, M.; Vernay, D.; Smith, I.F.C. Optimal multi-type sensor placement for structural identification by
static-load testing. Sensors 2017, 17, 2904. [CrossRef] [PubMed]

43. Papadimitriou, C. Optimal sensor placement methodology for parametric identification of structural systems. J. Sound Vib. 2004,
278, 923–947. [CrossRef]

44. Argyris, C.; Papadimitriou, C.; Panetsos, P. Bayesian optimal sensor placement for modal identification of civil infra-structures. J.
Smart Cities 2017, 2, 69–86. [CrossRef]

45. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: Hoboken, NJ, USA, 1994.
46. Lei, J.; Nogal, M.; Lozano-Galant, J.A.; Xu, D.; Turmo, J. Constrained observability method in static structural system identification.

Struct. Control Health Monit. 2018, 25, e2040. [CrossRef]
47. Abur, A.G. Exposito, Power System State Estimation: Theory and Implementation; CRC Press: Boca Raton, FL, USA, 2004.
48. Lozano-Galant, J.A.; Nogal, M.; Turmo, J.; Castillo, E. Selection of measurement sets in static structural identification of bridges

using observability trees. Comput. Concr. 2015, 15, 771–794. [CrossRef]
49. Lozano-Galant, J.A.; Nogal, M.; Castillo, E.; Turmo, J. Application of observability techniques to structural system identification.

Comput.-Aided Civ. Infrastruct. Eng. 2013, 28, 434–450. [CrossRef]
50. Zhang, F.-L.; Au, S.-K.; Ni, Y.-C. Two-stage Bayesian system identification using Gaussian discrepancy model. Struct. Health

Monit. Int. J. 2021, 20, 580–595. [CrossRef]
51. Zhang, F.L.; Kim, C.W.; Goi, Y. Efficient Bayesian FFT method for damage detection using ambient vibration data with considera-

tion of uncertainty. Struct. Control Health Monit. 2021, 28, e2659. [CrossRef]
52. Ni, Y.C.; Zhang, F.L. Uncertainty quantification in fast Bayesian modal identification using forced vibration data considering the

ambient effect. Mech. Syst. Signal Process. 2021, 148, 107078. [CrossRef]

http://doi.org/10.1061/(ASCE)BE.1943-5592.0000612
http://doi.org/10.1016/j.conbuildmat.2018.07.087
http://doi.org/10.3390/s17122904
http://www.ncbi.nlm.nih.gov/pubmed/29240684
http://doi.org/10.1016/j.jsv.2003.10.063
http://doi.org/10.18063/JSC.2016.02.001
http://doi.org/10.1002/stc.2040
http://doi.org/10.12989/cac.2015.15.5.771
http://doi.org/10.1111/mice.12004
http://doi.org/10.1177/1475921720933523
http://doi.org/10.1002/stc.2659
http://doi.org/10.1016/j.ymssp.2020.107078

	Introduction 
	Existing Structural System Identification Method 
	Application of Inclinometers in Civil Engineering 
	Research Objective 

	Methodology 
	Structural System Identification Using the Constrained Observability Method 
	Procedure for the Statistical Analysis of the Distribution of Estimations 

	Theoretical Motivation for Measuring Rotations 
	Statistical Analysis of a Simply Supported Bridge 
	Statistical Analysis of a Two-Story One-Bay Frame 

	Using Redundant Rotations for Parameter Estimation 
	Strategies to Use Redundant Measurements 
	Verification for a Simply Supported Bridge 
	Case 1: Parameter Estimation for a Local Region 
	Case 2: Parameter Estimation for the Whole Structure 

	Verification for a High-Rise Frame Structure 

	Conclusions 
	References

