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Abstract: The widespread use of mobile devices and sensors has motivated data-driven applications 
that can leverage the power of big data to benefit many aspects of our daily life, such as health, 
transportation, economy, and environment. Under the context of smart city, intelligent transporta-
tion systems (ITS), such as a main building block of modern cities and edge computing (EC), as an 
emerging computing service that targets addressing the limitations of cloud computing, have at-
tracted increasing attention in the research community in recent years. It is well believed that the 
application of EC in ITS will have considerable benefits to transportation systems regarding effi-
ciency, safety, and sustainability. Despite the growing trend in ITS and EC research, a big gap in the 
existing literature is identified: the intersection between these two promising directions has been far 
from well explored. In this paper, we focus on a critical part of ITS, i.e., sensing, and conducting a 
review on the recent advances in ITS sensing and EC applications in this field. The key challenges 
in ITS sensing and future directions with the integration of edge computing are discussed.  
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1. Introduction 
Data explosion has been posing unprecedented opportunities and challenges to our 

cities. To utilize big data to better allocate urban resources for the purpose of improving 
life quality and city management, the concept of Smart City was introduced as an emerg-
ing topic to society and the research community. To fulfill the increasing demand in data 
processing, cloud computing is expected not to be able to fully support the computing 
services, and thus, the community has realized the need for a new form of computing, i.e., 
edge computing (EC). Edge computing processes sensor data closer to where the data are 
generated, thereby balancing the computing load and saving network resources. At the 
same time, edge computing has the potential for improved privacy protection by not 
transmitting all the raw data to the cloud datacenters.  

Transportation is a key building block of our city, and the concept of intelligent trans-
portation systems (ITS) is a critical component of Smart City. Research studies and engi-
neering implementations on ITS have been attracting attention in recent years. According 
to the Web of Science, we surveyed the number of publications with the keywords intelli-
gent transportation, intelligent vehicle, or smart transportation. It can be seen from Figure 1 
(the orange line) that the number of publications on ITS increased from 2011 to 2019 by 
almost five times. We also searched the publications with keywords edge computing, and 
the trend is similar to that of ITS (the blue line). However, when we searched the com-
bined keywords, including edge computing + transportation and edge computing + vehicle, the 
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related publications were in very small numbers: 21 publications in 2011 and 199 publica-
tions in 2019. 

From the numbers themselves, we might conclude that EC and ITS are two unrelated 
research fields. Nevertheless, with careful investigation, this is not the case at all. In sev-
eral of the most highly cited survey papers on edge computing [1–3], the summarized key 
applications of edge computing included smart transportation, connected vehicle, wire-
less sensing, smart city, traffic video analytics, and so on. These are core research topics 
in ITS. They envisioned that, with the wide spread of mobile phones, sensors, network 
cameras, connected cars, etc., cloud computing would no longer be suitable for many city-
wide applications. Edge computing would be able to leverage the large amount of data 
produced by them. On the other hand, we observed more and more studies and articles 
on applying edge computing to ITS (e.g., [4–9]). Though still in a relatively small number, 
these studies are innovative and show great potential to branch out into new ideas and 
solutions. 

 
Figure 1. The number of publications from 2011 to 2019 on the topics of (1) edge computing, (2) 
intelligent transportation systems, and (3) edge computing + transportation. The statistics are from 
the Web of Science.  

Therefore, the statistics in Figure 1 actually unveil a big gap and high demand in 
future research on the combination of EC and ITS. In this paper, we conduct a survey on 
recent advances in ITS, especially ITS sensing technologies; we then propose the chal-
lenges in ITS sensing and how EC may help address them, as well as future research op-
portunities in applying EC to the area of ITS sensing. Note that EC could benefit not only 
ITS sensing but also other components of ITS, such as data pre-processing, traffic pattern 
analysis, and control strategies; however, in this paper, we mainly focus on EC’s applica-
tion in ITS sensing and present a detailed survey. The structure of the content in this paper 
is displayed in Figure 2. 
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Figure 2. The structure of the content in this review paper. 

2. Intelligent Transportation Systems (ITS) 
ITS is a combination of cutting-edge information and communication technologies 

for the advancement of traffic management. Examples include traffic signal control, smart 
parking management, electronic toll collection, variable speed limit, route optimization, 
and, more recently, connected and automated vehicles. Regardless of the specific applica-
tion, ITS is typically composed of five major components: traffic sensing, data pre-pro-
cessing, data pattern analysis, information communication, and control. Other compo-
nents, such as traffic prediction, may also be necessary for certain tasks. In this section, we 
review the ITS components and their functions. 

 

2.1. Sensing 
Sensing is essentially the detection of certain types of signals in the real world and 

the conversion of them into readable data. Traffic sensors generate data that supports the 
analysis, prediction, and decision-making of intelligent transportation systems. There are 
various sensors for different data collection purposes and scenarios. The most commonly 
seen traffic sensors in today’s roadway networks and transportation infrastructures in-
clude, but are not limited to, inductive loop detectors [10–12], magnetic sensors [13,14], 
cameras [15,16], infrared sensors [17], LiDAR sensors [18], acoustic sensors [19], Bluetooth 
[20], wi-fi [21], mobile phones [22], and probe vehicle sensors [23–25]. These sensors meas-
ure the feature quantity of some objects or scenarios in transportation systems, such as 
road users, traffic flow parameters, congestion, crashes, queue length at intersections, and 
automobile emission. 

For most sensor signals, while there is a lot of valuable information that can be mined 
from them, the conversion process is straightforward and can be completed based on 
some simple rules. For example, loop detectors measure the change in the inductance 
when vehicles pass over them for traffic volume and occupancy detection; Bluetooth sen-
sors capture the radio communication signal with a device unique identifier, i.e., the me-
dia access control address (MAC) so that they can estimate the number of devices (usually 
associated with the number of road users) or travel time; acoustic sensors generate acous-
tic wave to detect the existence of objects at a certain location, without the ability to tell 
the object type. For some sensors, such as camera and LiDAR, the conversion of the raw 
signals (i.e., the digital images and the 3D point cloud) to useful data can be quite compli-
cated, and thereby advanced algorithms have been applied widely to the conversion of 
LiDAR and camera signals.  

2.2. Data Pre-Processing 
Data pre-processing, when necessary, is conducted right after the sensing task. It can 

address data quality issues that are hard to be addressed previously. Noisy data and miss-
ing data are two major problems in traffic data pre-processing and cleaning. While data 
denoising can be done with satisfactory performance using traditional methods, such as 
wavelet filter, moving average model, and Butterworth filter [26], missing data imputa-
tion is much harder since it adds information properly. Another commonly applied traffic 
data denoising task is trajectory data map matching. The most popular models for this 
task that denoises the map matching errors are often based on the Hidden Markov Model 
[27–29]. There have been quite some efforts in deep learning-based missing data imputa-
tion lately. These state-of-the-art methods often focus on learning spatial-temporal fea-
tures using deep learning models so that that are able to inference the missing values us-
ing the existing values [30–35]. Given the spatial-temporal property of traffic data, the 
Convolutional Neural Network (CNN) is a natural choice due to its ability to learn image-
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like patches. Zhuang et al. designed a CNN-based method for loop traffic flow data im-
putation and demonstrated its improved performance over the state-of-the-art methods 
[32]. Generative adversarial network (GAN) is another deep learning method that is ap-
propriate for traffic data imputation, given its recent advances in image-like data genera-
tion. Chen et al. proposed a GAN algorithm to generate time-dependent traffic flow data. 
They made two modifications to the standard GAN on using the real data and introducing 
a representation loss [31]. GAN is also experimented for travel time imputation using 
probe vehicle trajectory data. Zhang et al. developed a travel times imputation GAN (TTI-
GAN) considering the network-wide spatial-temporal correlations [35]. 

2.3. Traffic Pattern Analysis 
With the data organized, the next step for an ITS is to learn the traffic patterns, un-

derstand traffic status, and make traffic predictions. There are two critical steps in most 
tasks for traffic pattern learning: 1) feature selection and 2) model design. Essentially, fea-
ture selection forms the original data space, and model design converts the original space 
to a new space that is learnable for classification, regression, clustering, or other tasks. On 
the one hand, traffic sensing is so important that, without original data property collected, 
it is almost impossible to make up a new space for pattern learning from poor original 
data space. On the other hand, once the traffic sensing is done with good design and qual-
ity, it is then necessary to focus on designing models to extract useful information for your 
tasks. Machine learning has been widely applied for a variety of traffic pattern learning 
tasks, such as driver and passenger classification using smart phone data [36], K-means 
clustering for truck bottleneck identification using GPS data [37], estimation of the num-
ber of bus passengers using deep learning [38], and faulty detection in vehicular cyber-
physical systems [39]. 

A traditional group of studies is transportation mode recognition. Models are devel-
oped to recognize the mode of travelers, such as working, biking, running, and driving. 
This can be achieved by identifying travel features, such as speed, distance, and accelera-
tion. Jahangiri and Rakha applied multiple traditional machine learning techniques for 
mode recognition using mobile phone data and found Random Forest (RF) and Support 
Vector Machine (SVM) to have the best performances [40]. Ashqar et al. enhanced the 
mode recognition accuracy by designing a two-layer hierarchical classifier and extracting 
new frequency domain features [41]. Another work introduced an online sequential ex-
treme learning machine (ELM), which focuses on transfer learning techniques for mode 
recognition. It was trained with both labeled and unlabeled data for better training effi-
ciency and classification accuracy. Recently, deep learning models were also developed 
for mode recognition [42]. Jeyakumar et al. developed a convolutional bidirectional Long 
Short-Term Memory (LSTM) model for transportation mode recognition. Feature extrac-
tion includes time domain and frequency domain features from the raw data [43].  

Another representative group in data-driven pattern analysis is traffic accident de-
tection. It is beneficial for transportation management agencies and travelers to have real-
time information of traffic accidents regarding where it occurs and what the situation is. 
Otherwise, it may cause severe congestion and other issues besides the accident itself. This 
group of work often extracts features from traffic flow data, weather data, and so on to 
identify the traffic pattern change or differences around the accident location. Parsa et al. 
implemented eXtreme Gradient Booting (XGBoost) to detect the occurrence of accidents 
using real-time data, including traffic flow, road network, demographic, land use, and 
weather information. The Shapley Additive exPlanation (SHAP) is employed for interpre-
tation of the results for the analysis of the importance of individual features [44]. They 
also led another study that showed the superiority of probabilistic neural networks for 
accident detection on freeways using imbalanced data. It revealed that the speed differ-
ence between the upstream and downstream of the accident was very significant [45]. In 
addition to traffic flow data, social media data is also shown to be effective for traffic ac-
cident detection. Zhang et al. employed the Deep Belief Network (DBN) and LSTM in the 
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detection of traffic accidents using Twitter data in Northern Virginia and New York City. 
They found that nearly 66% of the accident-related tweets can be located by the accident 
log and over 80% can be linked to abnormal traffic data nearby [46]. Another sub-category 
is to detect accidents in real-time from a vehicle’s perspective. For example, Dogru and 
Subasi studied the possibility of applying RF, SVM, and a neural network for accident 
detection based on an individual vehicle’s speed and location under the context of Vehic-
ular Ad-hoc Network (VANET) [47].  

2.4. Traffic Prediction 
Traffic pattern analysis is fundamental to traffic prediction. In some cases, traffic pre-

diction is critical for an ITS if decision-making requires information in advance. In traffic 
prediction, the models extract features and learn the current pattern of traffic in order to 
predict some measurements. Traffic prediction is crucial for intelligence. It is one of the 
areas in which artificial intelligence, especially deep learning techniques, have been heav-
ily applied. Traffic prediction has covered many tasks in transportation systems. Exam-
ples are traffic flow prediction [26,48–54], transit demand prediction [55,56], taxi or ride-
hailing demand prediction [57–59], bike sharing-related prediction [60,61], parking occu-
pancy prediction [62], pedestrian behavior prediction [63], and lane change behavior pre-
diction [64]. LSTM, CNN, GAN, and graph neural networks are some of the most widely 
used deep learning methods for traffic prediction. The current trend of traffic prediction 
is larger scale, higher resolution, higher prediction accuracy, and real-time speed. For in-
stance, Ma et al. investigated the feasibility of applying LSTM for single-spot traffic flow 
data prediction [51]. Their work is a milestone in this field and has laid the foundation for 
sophisticated models that can capture network-wide features for large-scale traffic speed 
prediction [65–67]. 

2.5. Information Communication and Control 
There are two purposes of information communication: 1) gathering information to 

support decision making and 2) disseminating the decisions and control strategies to de-
vices and road users. Traditional communication relies a lot on wired communication. 
Actuated traffic signal control collects vehicle arrival data from loop detectors underneath 
the roadway surface and pedestrian signal data via push button at intersections [68]. This 
information is gathered through wires into the signal controller cabinet, which is usually 
located at the roadside near an intersection. A similar communication method is for ramp 
metering control at freeway entrances [69]. Loop detectors are located underneath the 
freeway mainstream lanes and sometimes also underneath ramp lanes and they com-
municate with the cabinet through wire [70]. Using an Ethernet cable is another common 
method for wired communication for ITS. It can either connect devices to the Internet or 
serves as media for local communication, such as video streaming [71]. Controller Area 
Network (CAN bus) is a standard vehicle bus designed for microcontroller communica-
tions without a host computer [72], which enables the parts within vehicles to 
communicate with each other. Wired communication through CAN is an important way 
to test vehicle onboard innovations and solutions in ITS studies.  

Wireless communication has been widely used in different applications, thanks to 
the rapid development of general communication technologies. Probe vehicle data can be 
available in real-time through vehicle-cloud communications. Companies, such as INRIX 
[73], and Wejo [74], have such connected vehicle data, such as trajectories and driver 
events, given their good connections to the vehicle OEMs. Similar vehicle and traffic data 
are available via devices other than the vehicle itself, such as smartphones, to provide real-
time information for drivers via phone apps, such as Google Maps and Waze [75]. A con-
nected vehicle, in many other scenarios, refers to not only vehicle-cloud communication 
but also vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and even vehicle-to-eve-
rything (V2X) [76]. Dedicated Short Range Communication (DSRC) was a standard com-
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munication protocol for V2X application [77]; however, recently, C-V2X has been pro-
posed as a new communication protocol with the emergence of 5G for high bandwidth, 
low latency, and highly reliable communication among a broad range of devices in ITS 
[78]. Information, such as variable speed limit via control strategy, work zone information, 
and real-time travel time, can be disseminated via variable message signs on the roadways 
in Advanced Traffic Management System (ATMS) and Advanced Traveler Information 
System (ATIS), from traffic management centers to road users [79,80]. 

3. ITS Sensing 
This section goes into deep detail in the state-of-the-art in ITS sensing from a unique 

angle. First, existing ITS sensing works using camera and LiDAR are briefly introduced 
in Section 3.1, since those two sensors often require complicated methods for formatting 
input signals into useful data. The authors then summarize ITS sensing into infrastruc-
ture-based traffic sensing, vehicle onboard sensing, and aerial sensing for surface traffic 
from Sections 3.2 to 3.4: (1) From the transportation system functionality perspective, in-
frastructure and road users are the two crucial elements that form the ground transporta-
tion system; the ground transportation system’s functionality is further extended with the 
emergence of aerial-based surveillance in civil utilization; (2) From the methodological 
perspective, sensor properties for these three transportation system components requires 
different solutions. Taking video sensing as an example, surveillance video, vehicle 
onboard video, and aerial video have different video background motion patterns so that 
there are unique video analytics algorithms for video foreground extraction for each of 
the three groups.  

3.1. LiDAR and Camera 
LiDAR has been predominately used in autonomous vehicles compared to its use in 

transportation infrastructure systems. LiDAR signal is 3D point cloud and it can be used 
for 3D object detection, 3D object tracking, lane detection, obstacle detection, traffic sign 
detection, and 3D mapping in autonomous vehicles’ perception systems [81]. For exam-
ple, Qi et al. proposed PointNets, a deep learning framework for 3D object detection from 
RGB-D data that learned directly from the raw point clouds to extract 3D bounding boxes 
of vehicles [82]. Allodi et al. proposed using machine learning for combined LiDAR/stereo 
vision data that did tracking and obstacle detection at the same time [83]. Jung et al. de-
signed an expectation-maximization-based method for real-time 3D road lane detection 
using raw LiDAR signals from a probe vehicle [84]. Guan developed a traffic sign classifier 
based on a supervised Gaussian-Bernoulli deep Boltzmann machine model, which used 
LiDAR point cloud and images as input [85]. There are also some representative works 
providing critical insights into the application of LiDAR as an infrastructure-based sensor. 
Zhao et al. proposed a clustering method for detecting and tracking pedestrians and ve-
hicles using roadside LiDAR [18]. The findings are helpful for both researchers and trans-
portation engineers. 

Camera collects images or videos, and these raw data are essentially 2D matrices with 
quantized pixel numbers that are samples of the real-world visual signals. New tech-
niques are applied to convert these complex 2D matrices into traffic-related data. One 
fundamental application is object detection. Researchers in the engineering and computer 
science fields have spent a lot of effort designing smart and fast object detectors using 
traditional statistics/learning [15] and deep learning techniques [86,87]. Object detection 
localizes and classifies cars, trucks, pedestrians, bicyclists, etc., in traffic camera images 
and enables different data collection tasks. There are also datasets being collected and 
published specifically for object detection and classification in traffic surveillance images, 
which has generated much interest [88]. The AI City Challenge is a leading workshop and 
competition in the field of traffic surveillance video data processing [89]. It has guided 
video-based traffic sensing, such as traffic volume counting, vehicle re-identification, mul-
tiple-vehicle tracking, and traffic anomaly detection. Since the camera sensor is a critical 
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component of autonomous vehicles, advanced traffic sensing techniques have been heav-
ily deployed in autonomous vehicles’ perception systems to understand the environment 
[81]. Traffic events, congestion levels, road users, road regions, infrastructure information, 
road user interactions, etc., are all meaningful data that can be extracted from the raw 
images using machine learning. Datasets have also been published and widely recognized 
to facilitate the design of cutting-edge methods for converting camera data into readable 
traffic-related data [90–93]. 

3.2. Infrastructure-Based ITS Sensing 
A key objective of the ITS concept is to leverage the existing civil infrastructures to 

improve traffic performance. Transport infrastructure refers to roads, bridges, tunnels, 
terminals, railways, traffic controllers, traffic signs, other roadside units, and so on. Sen-
sors installed with transport infrastructures monitor certain locations in a transportation 
system, such as intersections, roadway segments, freeway entrances/exists, and parking 
facilities.  

3.2.1. Traffic Flow Detection 
One of the fundamental functions of infrastructure-based ITS sensing is traffic flow 

detection and classification at certain locations. Vehicle counts, flow rate, speed, density, 
trajectories, classes, and many other valuable data can be available through traffic flow 
detection and classification. Chen et al. [94] proposed a traffic flow detection method us-
ing optimized YOLO (You Only Look Once) for vehicle detection and DeepSORT (Deep 
Simple Online and Realtime Tracking) for vehicle tracking and implemented the method 
on Nvidia edge device Jetson TX2. Haferkamp et al. [95] proposed a method by applying 
machine learning (KNN and SVM) to radio attenuation signals and were able to achieve 
success in traffic flow detection and classification. If processed with advanced signal pro-
cessing methods, traditional traffic sensors, such as loop detectors and radar, can also ex-
pand their detection categories and performance. Ho and Chung [96] applied Fast Fourier 
Transform (FFT) to radar signals to detect traffic flow at the roadside. Ke et al. [97] devel-
oped a method for traffic flow bottleneck detection using Wavelet Transform on loop de-
tector data. Distributed sensing with acoustic sensing, traffic flow outlier detection, deep 
learning, and robust traffic flow detection in congestion are examples of other state-of-
the-art studies in this sub-field [98–101]. 

3.2.2. Travel Time Estimation 
Coupled with traffic flow detection, travel time estimation is another task in ITS sens-

ing. Accurate travel time estimation needs multi-location sensing and re-identification of 
road users. Bluetooth sensing is a primary way to detect travel time since Bluetooth de-
tection comes with a MAC address of a device so it can naturally re-identify the road users 
that carry the device. Vehicle travel time [102] and pedestrian travel time [103] can both 
be extracted with Bluetooth sensing. Bluetooth sensing has generated privacy concerns. 
With the advance in computer vision and deep learning, travel time estimation has been 
advanced with road user re-identification using surveillance cameras. Deep image fea-
tures are extracted for vehicles and pedestrians and are compared among region-wide 
surveillance cameras for multi-camera tracking [104–108]. An effective and efficient pe-
destrian re-identification method was developed by Han et al. [108], called KISS+ (Keep It 
Simple and Straightforward Plus), in which multi-feature fusion and feature dimension 
reduction are conducted based on the original KISS method. Sometimes it is not necessary 
to estimate travel time for every single road user. In those cases, more conventional detec-
tors and methods could achieve good results. Oh et al. [109] proposed a method to esti-
mate link travel time, as early as in the year 2002, using loop detectors. The key idea was 
based on road section density that can be acquired by observing in-and-out traffic flows 
between two loop stations. While no re-identification was realized, these methods had 
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reasonably good performances and provided helpful travel time information for traffic 
management and users [109–111].  

3.2.3. Traffic Anomaly Detection 
Another topic in infrastructure-based sensing is traffic anomaly detection. As the 

name suggests, traffic anomaly refers to those abnormal incidents in an ITS. They rarely 
occur, and examples include vehicle breakdown, collision, near-crash, wrong-way driv-
ing, and so forth. Two major challenges in traffic anomaly detection are (1) the lack of 
sufficient anomaly data for algorithm development and (2) the wide variety of anomalies 
that lacks a clear definition. Anomalies detection is achieved mainly using surveillance 
cameras given the requirement for rich information, though time series data is also feasi-
ble in some relatively simple anomaly detection tasks [112]. Traffic anomaly detection can 
be divided into three categories: supervised learning, unsupervised learning, and semi-
supervised learning. Supervised learning methods are useful when the number of classes 
is clearly defined and training data is large enough to make the model statistically signif-
icant; but supervised learning requires manual labeling and needs both data and labor, 
and they cannot detect unforeseen anomalies [113–115]. Unsupervised learning has no 
requirement for labeling data and is more generalizable to the unforeseen anomaly as long 
as sufficient normal data is given; however, anomaly detection will be hard when the data 
nature changes over time (e.g., if a surveillance camera keeps changing angle and direc-
tion) [116]. Li et al. [117] designed an unsupervised method based on multi-granularity 
tracking, and their method won first place in the 2020 AI City Challenge. Semi-supervised 
learning needs only weak labels. Chakraborty et al. [118] proposed a semi-supervised 
model for freeway traffic trajectory classification using YOLO, SORT, and maximum-like-
lihood-based Contrastive Pessimistic Likelihood Estimation (CPLE). This model detects 
anomalies based on trajectories and improves the accuracy by 14%. Sultani et al. [119] 
considered videos as bags and video segments as instances in multiple instance learning 
and automatically learned an anomaly ranking model with weakly labeled data. Lately, 
traffic anomaly detection has been advanced not only by the design of new learning meth-
ods but also by object tracking methods. It is interesting to see that, in the 2021 AI City 
Challenge, all top-ranking methods somewhat made contributions to the tracking part 
[120–122]. 

3.2.4. Parking Detection 
Alongside roadway monitoring, parking facility monitoring, as another typical scene 

in the urban area, plays a crucial role in infrastructure-based sensing. Infrastructure-based 
parking space detection can be divided into two categories from the sensor functionality 
perspective: the wireless sensor network (WSN) solution and camera-based solution. The 
WSN solution has one sensor for each parking space, and the sensors need to be low 
power, sturdy, and affordable [8,123–132]. The WSN solution has some pros and cons: 
algorithm-wise, it is often straightforward; a thresholding method would work in most 
cases, but a relatively simple detection method may lead to a high false detection rate. A 
unique feature for the WSN is it is robust to sensor failure due to a large number of sen-
sors. That means, even if a few stop working, the WSN still covers most of the spaces. 
However, a large number of sensors do require a high cost of labor and maintenance in 
large-scale installation. Magnetic nodes, infrared sensors, ultrasonic sensors, light sensors, 
and inductance loops are the most popular sensors. For example, Sifuentes et al. [131] 
developed a cost-effective parking space detection algorithm based on magnetic nodes, 
which integrates a wake-up function with optical sensors. The camera-based solution has 
been increasingly popular with advances in video sensing, machine learning, and data 
communication technologies [8,123,133–144]. Compared to the WSN, one camera covers 
multiple parking spaces; thus, the cost per space is reduced. It is also more manageable 
regarding maintenance, since the installation of camera systems is non-intrusive. Addi-
tionally, as aforementioned, video contains more information than other sensors, which 
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has the potential to apply to more complicated tasks in parking. Bulan et al. proposed to 
use background subtraction and SVM for street parking detection, which achieved a 
promising performance and was not sensitive to occlusion [133]. Nurullayev et al. de-
signed a pipeline with a unique design of dilated convolutional neural network (CNN) 
structure. The design was validated to be robust and suitable for parking detection [136]. 

3.3. Vehicle Onboard Sensing 
Vehicle onboard sensing is complimentary to infrastructure-based sensing. It hap-

pens on the road user side. The sensors move with road users and thereby are more flex-
ible and cover larger areas. Additionally, vehicle onboard sensors are the eyes of an intel-
ligent vehicle, making the vehicle see and understand the surroundings. These properties 
pose opportunities for urban sensing and autonomous driving technologies, but at the 
same time create challenges for innovation. A major technical challenge is the irregular 
movement of sensors. Traditional ITS sensing on infrastructure-mounted sensors deal 
with stationary backgrounds and relatively stable environment settings. For instance, ra-
dar sensors for speed measurement know where the traffic is supposed to be. Camera 
sensors have a fixed video background so that traditional background modeling algo-
rithms can be applied. Therefore, in order to benefit from vehicle onboard sensing, it is 
necessary to address the challenges. 

3.3.1. Traffic Near-Crash Detection 
Traffic near-crash or traffic near-miss is the conflict between road users that has the 

potential to develop into a collision. Near-crash detection using onboard sensors is the 
first step for multiple ITS applications: near-crash data serves as (1) surrogate safety data 
for traffic safety study, (2) corner-case data for autonomous vehicle testing, and (3) input 
to collision avoidance systems. There were some pioneer studies on automatic near-crash 
data extraction on the infrastructure side using LiDAR and camera [145–147]. In recent 
years, near-crash detection systems and algorithms using onboard sensors have been de-
veloped at a fast pace. Ke et al. [148] and Yamamoto et al. [149] each applied conventional 
machine learning models (SVM and random forest) in their near-crash detection frame-
works and achieved fairly good detection accuracy and efficiency on regular computers. 
The state-of-the-art methods tend to use deep learning for near-crash detection. The inte-
gration of CNN, LSTM, and attention mechanisms was demonstrated to be superior in 
recent studies [149–151]. Ibrahim et al. presented that a bi-directional LSTM with self-at-
tention outperformed a single LSTM with a normal attention mechanism [150]. Another 
feature in recent studies was the combination of onboard camera sensor input and 
onboard telematics input, such as vehicle speed, acceleration, and location to either im-
prove the near-crash detection performance or increase the output data diversity 
[9,149,152]. Ke et al. mainly used onboard video for near-crash detection but also collected 
telematics and vehicle CAN data for post analysis [9]. 

3.3.2. Road User Behavior Sensing 
Human drivers can recognize and predict other road users’ behaviors, e.g., pedestri-

ans crossing the street, vehicle changing lanes. For intelligent or autonomous vehicles, 
automating this kind of behavior recognition process is expected to be part of the onboard 
sensing functions [153–157]. Stanford University [157] published an article on pedestrian 
intent recognition using onboard videos. They built a graph CNN to exploit spatio-tem-
poral relationships in the videos, which was able to show the relationships between dif-
ferent objects. While, for now, the intent prediction just focused on crossing the street or 
not, the research direction is clearly promising. They also published over 900 h of onboard 
videos online. Another study proposed by Brehar et al. [154] on pedestrian action recog-
nition used an infrared camera, which compensates for regular cameras in the nighttime, 
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on foggy days, and on rainy days. They built a framework composed of a pedestrian de-
tector, an original tracking method, road segmentation, and LSTM-based action recogni-
tion. They also introduced a new dataset named CROSSIR. Likewise, vehicle behavior 
recognition is of the same importance for intelligent or autonomous vehicles [158–162]. 
Wang et al. [159] lately developed a method using fuzzy inference and LSTM for vehicles’ 
lane changing behavior recognition. The recognition results were used for a new intelli-
gent path planning method to ensure the safety of autonomous driving. The method was 
trained and tested by NGSIM data. Another study on vehicle trajectory prediction using 
onboard sensors in a connected-vehicle environment was conducted. It improved the ef-
fectiveness of the Advanced Driver Assistant System (ADAS) in cut-in scenarios by estab-
lishing a new collision warning model based on lane-changing intent recognition, LSTM 
for driving trajectory prediction, and oriented bounding box detection [158]. Another type 
of road user-related sensing is passenger sensing, while for different purposes, e.g., transit 
ridership sensing using wireless technologies [163] and car passenger occupancy detec-
tion using thermal images for carpool enforcement [164].  

3.3.3. Road and Lane Detection 
In addition to road user-related sensing tasks, road and lane detection are often per-

formed for lane departure warning, adaptive cruise control, road condition monitoring, 
and autonomous driving. The state-of-the-art methods mostly apply deep learning mod-
els for onboard camera sensors, LiDAR, and depth sensors for road and lane detection 
[165–170]. Chen et al. [165] proposed a novel progressive LiDAR adaption approach-aided 
road detection method to adapt LiDAR point cloud to visual images. The adaption con-
tains two modules, i.e., data space adaptation and feature space adaptation. This camera-
LiDAR fusion model currently stays at the top of the KITTI road detection leaderboard. 
Fan et al. [166] designed a deep learning architecture that consists of a surface normal 
estimator, an RGB encoder, a surface normal encoder, and a decoder with connected skip 
connections. It applied road detection to the RGB image and depth image and achieved 
state-of-the-art accuracy. Alongside road region detection, an ego-lane detection model 
proposed by Wang et al. outperformed other state-of-the-art models in this sub-field by 
exploiting prior knowledge from digital maps. Specifically, they employed Open-
StreetMap’s road shape file to assist lane detection [167]. Multi-lane detection has been 
more challenging and rarely addressed in existing works. Still, Luo et al. [168] were able 
to achieve pretty good multi-lane detection results by adding five constraints to Hough 
Transform: length constraint, parallel constraint, distribution constraint, pair constraint, 
and uniform width constraint. A dynamic programming approach was operated after the 
Hough Transform to select the final candidates. 

3.3.4. Semantic Segmentation 
Detecting the road regions at the pixel level is a type of image segmentation focusing 

on the road instance. There has been a trend in onboard sensing to segment the entire 
video frame at pixel level into different object categories. This is called semantic segmen-
tation and is considered a must for advanced robotics, especially autonomous driving 
[171–179]. Compared to other tasks, which can usually be fulfilled using different types 
of onboard sensors, semantic segmentation is strictly realized using visual data. Nvidia 
researchers [172] proposed a hierarchical multi-scale attention mechanism for semantic 
segmentation based on the observation that certain failure modes in the segmentation can 
be resolved in a different scale. The design of their attention was hierarchical so that 
memory usage was four times more efficient in the training process. The proposed method 
ranked top on two segmentation benchmark datasets. Semantic segmentation is relatively 
computationally expensive; thus, working towards the goal of real-time segmentation is 
a challenge [171,174]. Siam et al. [171] targeted proposing a general framework for real-
time segmentation and ran 15 fps on Nvidia Jetson TX2. Labeling at the pixel level is time-
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consuming and is another challenge for semantic segmentation. There are some bench-
mark datasets available for algorithm testing, such as Cityscapes [180]. Efficient labeling 
for semantic segmentation and unsupervised/semi-supervised learning for semantics seg-
mentation are interesting topics worth exploring [173,175,176]. 

3.4. Aerial Sensing for ITS 
Aerial sensing using drones, i.e., unmanned aerial vehicles (UAVs), has been per-

formed in the military for years and recently has become increasingly explored in civil 
applications, such as agriculture, transportation, good delivery, and security. Automation 
and smartness of surface traffic cannot be fulfilled with ground transportation itself. UAV 
extends the functionality of existing ground transportation systems with its high mobility, 
top-view perspective, wide view range, and autonomous operation [181]. UAV’s role is 
envisaged in many ITS scenarios, such as flying accident report agents [182], traffic en-
forcement [183], traffic monitoring [184], and vehicle navigation [185]. While there are 
regulations to be completed and practical challenges to be addressed, such as safety con-
cerns, privacy issues, and short battery life problem, UAV’s applications in ITS is envi-
sioned to be one step forward towards transportation network automation [181]. On the 
road user side, UAV extends the functionality of ground transportation systems by de-
tecting vehicles, pedestrians, and cyclists from the top view, which has a wider view range 
and better view angle (no occlusion) than surveillance cameras and onboard cameras. 
UAV also detects road users’ interactions and traffic theory-based parameters, thereby 
supporting applications in traffic management and user experience improvement.  

3.4.1. Road User Detection and Tracking 
Road user detection and tracking are the initialization processes for traffic interaction 

detection, pattern recognition, and traffic parameter estimation. Conventional UAV-based 
road user detection often uses background subtraction and handcrafted features, assum-
ing UAV is not moving or stitching frames in the first step [186–191]. Recent studies 
tended to develop deep learning detectors for UAV surveillance [192–196]. Road user de-
tection itself can acquire traffic flow parameters, such as density and counts, without any 
need for motion estimation or vehicle tracking. Zhu et al. [196] proposed an enhanced 
Single Shot Multibox Detector (SSD) for vehicle detection with manually annotated data, 
resulting in high detection accuracy and a new dataset. Wang et al. [197] identified the 
challenge in UAV-based pedestrian detection, particularly at night time, and proposed an 
image enhancement method and a CNN for pedestrian detection at nighttime. In order to 
conduct more advanced tasks in UAV sensing on the road user side, road user tracking is 
a must because it connects individual detection results. Efforts have been made on UAV-
based vehicle tracking and motion analysis [186–188,198–200]. In many previous works, 
existing tracking methods, such as particle filter and SORT, were directly applied and had 
fairly good tracking performance. Recently, Ke et al. [201] developed a new tracking algo-
rithm that incorporated lane detection information and improved tracking accuracy. 

3.4.2. Advanced Aerial Sensing 
Road user detection and tracking support advanced aerial ITS sensing applications. 

For example, in [192,202], the researchers developed new methods for traffic shock-wave 
identification and synchronized traffic flow pattern recognition under oversaturated traf-
fic conditions. Chen et al. [203] conducted a thorough study on traffic conflict based on 
extracted road user trajectories from UAV. The Safety Space Boundary concept in the pa-
per is an informative design for conflict analysis. One of the most useful applications using 
UAV is traffic flow parameter estimation: Traditional research in this field focused on us-
ing static UAV videos for macroscopic parameters extraction. McCord et al. [204] led a 
pioneering research work to extract a variety of critical macroscopic traffic parameters, 
such as annual average daily traffic (AADT). Later on, a new method was proposed by 
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Shastry et al. [205], in which they adopted image registration and motion information to 
stitch images and obtain fundamental traffic flow parameters. Lately, Ke et al. developed 
a series of efficient and robust frameworks to estimate aggregated traffic flow parameters 
(speed, density, and volume) [206–208]. Because of the potential benefits of higher-reso-
lution data in ITS, microscopic traffic parameter estimation has been conducted [209]. 
Barmpounakis et al. proposed a method to extract naturalistic trajectory data from UAV 
videos at a relatively less congested intersection using static UAV video [194]. Ke et al. 
[201] developed an advanced framework composed of lane detection, vehicle detection, 
vehicle tracking, and traffic parameter estimation that can estimate 10 different macro-
scopic and microscopic parameters from a moving UAV. 

3.4.3. UAV for Infrastructure Sensing 
On the infrastructure side, UAV has been utilized for some ITS sensing services, such 

as road detection, lane detection, and infrastructure inspection. UAV is extremely helpful 
at locations where it is hard for humans to reach. Road detection is used to localize the 
regions where traffic appears from UAV sensing data. It is crucial to support applications 
such as navigation and task scheduling [210–212]. For instance, Zhou et al. [213,214] de-
signed two of the popular methods for road detection in UAV imagery. While there were 
some studies before these two, the paper [213] was the first targeting speeding up the road 
localization part with a proposed tracking method. Reference [214] presented a fully au-
tomatic approach that detects roads from a single UAV image with two major compo-
nents: road/non-road seeds generation and seeded road segmentation. Their methods 
were tested on challenging scenes. UAV has been intensely used for infrastructure inspec-
tion, particularly bridge inspection [215–218] and road surface inspection [219–221]. Man-
ual inspection for bridges and road surfaces is costly in terms of both time and labor. 
Bolourian et al. [217] proposed a high-level framework for bridge inspection using Li-
DAR-equipped UAVs. It contained planning a collision-free optimized path and a data 
analysis framework for point cloud processing. Bicici and Zeybek [219] developed an ap-
proach with verticality features, DBSCAN clustering, and robust plane fitting to process 
point cloud for automated extraction of road surface distress. 

4. Edge Computing: Opportunities in ITS Sensing Challenges 
Despite the massive advances in ITS sensing both in methodology and application, 

there are various challenges to be addressed towards a truly smart city and smart trans-
portation system. We envision the major objectives of future ITS sensing to be large-scale 
sensing, high intelligence, and real-time capability. These three properties would lay the 
foundation for high automation of city-wide transportation systems. On the other hand, 
we summarize the challenges into a few categories: heterogeneity, high probability of sen-
sor failure, sensing in extreme cases, and privacy concern. In review of the emerging 
works in using edge computing for ITS tasks, it is reasonable to consider that edge com-
puting will be a primary component of the solutions to these challenges. 

4.1. Objectives 
4.1.1. Large-Scale Sensing 

ITS sensing in smart cities is expected to cover a large network of microsites. Without 
edge computing, the cost for large-scale cloud computing services (e.g., AWS and Azure) 
is significant and will eventually reach the upper limit of network resources (bandwidth, 
computation, and storage) [9]. Sending network-wide data over a limited bandwidth to a 
centralized cloud is counterproductive. Edge computing could significantly improve net-
work efficiency by transporting non-raw data in smaller amounts or providing edge func-
tions to eliminate irrelevant data onsite. Systems and algorithms will need to be developed 
to address concerns in high probability of sensor failure in a high variety of large scale  
real-world scenarios and maintenance and support facilities. 
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4.1.2. High Intelligence 
Intelligence in ITS sensing means that transportation systems understand the sur-

rounding environment through intelligent sensing functions, thus providing valuable in-
formation for efficient and effective decision-making. Many ITS environments today still 
have unreliable or unpredictable network connectivity. These could include buses, planes, 
parking facilities, traffic signal facilities, and general infrastructures under extreme con-
ditions. Edge computing functions can be designed as self-contained, thereby neatly sup-
porting these environments by allowing autonomous or semi-autonomous operation 
without network connectivity. One existing example could be ADAS functions, which au-
tomatically run onboard vehicles. Without Internet connection, it may not serve as a data 
collection point for other services but is still able to warn and protect drivers in risky sce-
narios. However, high intelligence often requires high-complexity methods and compu-
tation power. Concerns exist in the resource constraint on edge devices, the ability to han-
dle corner cases that the machines never encountered, and other general challenges in AI.  

4.1.3. Real-Time Sensing 
Sensing in real-time is critical for many future ITS applications. Connected infrastruc-

ture, autonomous vehicles, smart traffic surveillance, short-term traffic prediction, and so 
on, all expect real-time capability, and they cannot tolerate even milliseconds of delay in 
processing due to effectiveness and safety. These tasks that require fast response time, low 
latency, and high efficiency, especially when on a large scale, cannot be achieved without 
edge computing architecture. However, there is always a tradeoff between real-time sens-
ing and high intelligence: as intelligence increases, efficiency commonly decreases. This 
conflict stands out in edge computing, given the limited resources at the edge. Sometimes, 
the input data itself is intense, such as video data and sensor fusion data, which puts ad-
ditional burdens on the edge computing devices. Careful design in system architectures 
that balance the computation load between edge and cloud is expected to move towards 
this goal. Algorithm design that targets innovation in light-weight neural network struc-
tures and other models has shown effectiveness in reducing computation load at the edge 
while maintaining a good sensing performance. In summary, concerns are a tradeoff be-
tween real-time sensing and high intelligence, the network and computation resource con-
straint, and intense data input at the edge.  

4.2. State of the Art 
In this subsection, we summarize state-of-the-art models in edge computing for ITS 

sensing. The benefit of edge computing lies in the improvement in computation efficiency, 
network bandwidth usage, response time, cyber security, and privacy [1]. However, the 
resource constraints on edge devices are the key bottleneck for the implementation of high 
intelligence. Zhou et al. conducted a comprehensive survey on edge AI and considered 
edge computing is paving the last mile of AI [2]. In terms of AI model optimization at the 
edge, the compression of deep neural networks using pruning and quantization tech-
niques is significant [222,223].  

In ITS applications, there have not been many pioneering studies that explore the 
design of both system architectures and algorithms for certain transportation scenarios 
using edge computing. It is widely known that edge computing with machine learning is 
a trend for ITS. Ferdowsi et al. introduced a new ITS architecture that relies on edge com-
puting and deep learning to enhance computation, latency, and reliability [224]. They in-
vestigated the potential of using edge deep learning to solve multiple ITS challenges, in-
cluding data heterogeneity, path planning, autonomous vehicle and platoon control, and 
cyber security.  

Crowdsensing with the Internet of Vehicles (IoV) is one category of research using 
edge computing for ITS. Vehicles are individual nodes in the traffic network with local 
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data collection and processing units. As a whole, they form the IoV network that can per-
form crowdsensing. One example is monitoring urban street parking spaces with in-vehi-
cle edge video analytics [225]. In this work, smart phones serve as the data producer; the 
edge unit detects cars, signs, and GPS and uploads the ego-vehicle location and road iden-
tifier to the cloud for data aggregation. Another study uses a crowdsensing scheme and 
edge machine learning for road surface condition classification. A multi-classifier is ap-
plied at the edge to recognize road surface type and anomaly situation [226]. Liu et al. 
proposed SafeRNet, a safe transportation routing computation framework that utilized 
the Bayesian network to analyze crowdsensing traffic data to infer safe routes and deliver 
them to users in real time [227].  

Some other studies focus on managing and optimizing the resources of the system to 
ensure efficient message delivery, computation, caching, and so on for IoV [6,7,228–230]. 
Dai et al. [7] exploited reinforcement learning (RL) to formulate a new architecture that 
dynamically optimizes edge computing and caching resources. Yuan et al. [229] proposed 
a two-level edge computing architecture for efficient content delivery of large-volume, 
time-varying, location-dependent, and delay-constrained automated driving services. Ji 
et al. [6] developed a relay cooperative transmission algorithm of IoV with aggregated 
interference at the destination node.  

Another group of research on this topic focuses on developing machine learning 
methods for certain ITS tasks with edge computing, instead of for resources management 
in crowdsensing. Real-time video analytics, as the killer app for edge computing, has gen-
erated challenges and thereby huge interests for research [5,231]. Microsoft Research has 
explored a new architecture with deep learning and edge computing techniques for inter-
section traffic monitoring and potential conflict detection [5]. Ke et al. [4] designed a new 
architecture that splits the computation load into cloud part and edge part for smart park-
ing surveillance. On the edge device Raspberry Pi, background subtraction ,and an SSD 
vehicle detector were implemented, and only the bounding boxes related information was 
sent back to the cloud for object tracking and occupancy judgment. The proposed work 
improved efficiency, accuracy, and reliability of the sensing system in adverse weather 
conditions.  

Detecting parking space occupancy by lightweight CNN models on edge devices has 
also been investigated by different researchers [135,143,232]. Another lightweight CNN 
that comprised factorization convolution layers and compression layers was developed 
for edge computing and multiple object detection on a Nvidia Jetson device for transpor-
tation cyber-physical systems [232]. Cyber-attacks can also be detected in transportation 
cyber-physical systems using machine learning. Chen et al. proposed a deep belief net-
work structure to achieve attack detection in a transportation mobile edge computing en-
vironment [233]. UAV can also serve as an edge unit for attack detection for smart vehicles 
[234]. Another interesting application of edge machine learning is detecting road surface 
quality issues onboard a vehicle [235,236]. Traditional machine learning methods, such as 
random forest, appeared to perform well with high accuracy and real-time operation for 
this task. 

4.3. Challenges in ITS Sensing 
4.3.1. Challenge 1: Heterogeneity 

Developing advanced ITS applications requires the adoption of different sensors and 
sensing methods. On a large scale, heterogeneity resides in many aspects, e.g., hardware, 
software, power supply, and data. Sensor hardware has a large variety of different ITS 
tasks. Magnetic sensor, radar sensor, infrared sensor, LiDAR, camera, etc., are common 
sensor types that each poses unique advantage in certain scenarios. These sensors are dif-
ferent regarding cost, size, material, reliability, working environment, sensing capability, 
and so on. Not only is there a large variety of sensors themselves, the hardware support-
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ing the sensing functions for storage and protection is also diverse. The associated hard-
ware may limit the applicability of sensors, as well. A sensor with local storage is able to 
store data onsite for later use; a sensor with a waterproof shell is able to work outdoors, 
while those without may solely be available for indoor monitoring.  

Even within the same type of sensors, there can be significant variance with respect 
to detailed configurations and will influence the effectiveness and applicability of the sen-
sors. Cameras with different resolution is an example, and those with high resolution are 
suitable for some tasks that are not possible for low-resolution cameras, such as small 
object detection; the low-resolution cameras may support less complicated tasks and have 
a better efficiency and lower cost. The installation locations of the same sensors also vary. 
As aforementioned, sensors onboard a vehicle or carried by a pedestrian have different 
functions from those installed on infrastructures. Some sensors can only be installed on 
the infrastructures, and some are appropriate for onboard sensing. For example, loop de-
tectors and magnetic nodes are most often on or underneath the road surface, while sen-
sors for collision avoidance need to be onboard cars, buses, or trucks. 

Software is another aspect that poses heterogeneity in ITS sensing. There is open-
source software and proprietary software. Open-source software is free and flexible and 
can be customized for specific tasks; however, there is a relatively high risk that some 
open-source software is unreliable and may solely work in specific settings. There are 
many open-source codes on platforms such as GitHub. A good open-source tool can gen-
erate massive influence on the research community, such as open codes for Mask R-CNN 
[237], which has been widely applied for traffic object instance segmentation. Proprietary 
software is generally more reliable, and some software comes with customer services from 
the company who develop the software. These software tools are usually not free and 
have less flexibility in being customized. It is also hard to know the internal sensing algo-
rithms or design. When an ITS system is composed of multiple software tools, which is 
likely the case most of the time, and these tools lack transparency or flexibility regarding 
communication, there will be hurdles in developing efficient and advanced ITS applica-
tions. 

Heterogeneous settings in ITS sensing inevitably collect a heterogeneous mix of data, 
such as vehicle dynamics, traffic flow, driver behavior, safety measurements, and envi-
ronmental features. There are uncertainties, noises, and missing patches in ITS data. Mod-
ern ITS applications would require data to be of high quality, integrated, and sometimes 
in real-time. Despite improving sensing functionality for individual sensors at a single 
location, new challenges arise in the integration of heterogeneous data. New technologies 
also pose challenges in data collection as some data under traditional settings will be re-
dundant, and at the same time, new data will be required for some tasks, e.g., CAV safety 
and mixed autonomy.  

Edge computing is promising in terms of improving data integration of different data 
sources. For example, Ke et al. [238] developed an onboard edge computing system based 
on Nvidia Jetson TX2 for near-crash detection based on video streams. The system lever-
aged edge computing for real-time video analytics and communicated with another Li-
DAR-based system onboard; while the sensor sets and data generated from the two 
onboard systems were very different, the designed edge data fusion framework was able 
to address the data heterogeneity of the two groups neatly through a CAN-based trigger-
ing mechanism. In future ITS, data heterogeneity problems are expected to be more com-
plex, involving not only data from different sensors on the same entity but also data with 
completely different characteristics and generation processes. Edge computing will make 
it one step closer to an ideal solution by formatting the data immediately after they are 
produced. 

 

4.3.2. Challenge 2: High Probability of Sensor Failure 
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Large-scale and real-time sensing requirements will have little tolerance for sensor 
failure because it may cause severe problems to the operation and safety of ITS. A repre-
sentative example is sensor failure in an autonomous vehicle, which could lead to prop-
erty damage, injuries, and even fatality. When ITS becomes more advanced, where one 
functional system will likely consist of multiple coordinated modules, the failure of one 
sensor could malfunction the entire system. For instance, a connected vehicle and infra-
structure system may stop working because some infrastructure-mounted sensors have 
no readings, so the data flow for the system would be interrupted.  

Sensor failure may rarely occur for every individual sensor, but according to proba-
bility theory, if the failure probability of one sensor is p during a specific period, the failure 
that occurs among N sensors will be 1 − (1 − 𝑝)ே. When N is large enough, the probabil-
ity of sensor failure will be very high. This phenomenon is similar to the fault tolerance in 
cloud computing, which is about designing a blueprint for continuing the cloud compu-
ting ongoing work when a few machines are down. However, in ITS sensing, sensor fault 
tolerance is more challenging due to: (1) the hardware, software, and data heterogeneity 
mentioned in the last sub-section; (2) the fact that, unlike cloud computing settings, sen-
sors are connected to different networks or even not connected to any network; (3) the 
potential cost and loss from a sensor fault, which could be much more serious than one in 
cloud computing.  

This problem naturally exists and is hard to be eliminated, because, as we discussed, 
even when the failure probability for a single sensor is super low, in city-scale ITS sensing 
applications, where there are hundreds and even thousands of heterogeneous sensors, the 
probability goes up significantly. Furthermore, it is not realistic to reduce the failure prob-
ability of a single sensor or device to zero in the real world. Edge computing could help 
improve the situation. On the one hand, an edge computing device or an edge server can 
make the network edge itself more robust to sensor fault with fault detection designs. A 
sensor directly connected to the network cannot notify the datacenter of a failure of itself, 
but when a sensor mounted on an edge device fails, the edge device would know and 
communicate with the datacenter. On the other hand, backup sensor sets could be de-
ployed within an edge computing platform. With computing capability at the edge, the 
backup sensor set could be called in case of sensor failure. Nevertheless, more compre-
hensive solutions to perfectly deal with sensor failure are still under exploration. 

4.3.3. Challenge 3: Sensing in Extreme Cases 
ITS sensing tasks that seem simple could become extraordinarily complicated or un-

reliable in extreme cases, such as during adverse weather, due to occlusion, and at 
nighttime. A typical example is video sensing, which is sensitive to lighting changes, 
shadow, reflection, and so forth. In smart parking surveillance, a recent study showed that 
video-based detectors performed more reliably indoors than outdoors due to extreme 
lighting conditions and adverse weather [4]. Due to low-lighting conditions, even the cut-
ting-edge video-based ADAS products on the market are not recommended for operation 
at night [239]. The LiDAR sensor is one of the most reliable sensors for ITS; however, Li-
DAR sensing performance downgrades in rainy and snowy weather, and it is also sensi-
tive to objects with reflective surfaces. GPS sensors experience signal obstruction due to 
surrounding buildings, trees, tunnels, mountains, and even human bodies. Therefore, 
GPS sensors work well in open areas but not in areas where obstructions are unavoidable, 
such as downtown.  

In ITS, especially in automated vehicle testing, extreme cases can also refer to corner 
cases that an automated and intelligent vehicle has not encountered before. For example, 
a pedestrian crossing the freeway at night may not be a common case that is thoroughly 
covered in the database, so a vehicle might not understand the sensing results enough to 
proceed confidently; therefore, it would cause uncertainty in the real-time decision mak-
ing. Some corner cases may be created by attackers. Adding noise that is unnoticeable by 
human eyes to a traffic sign image could result in a missed detection of the sign [240]; 
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these adversarial examples threaten the security and robustness of ITS sensing. Corner 
case detection appears to be one of the hurdles that slow down the pace towards L-5 au-
tonomous driving. The first question is: how does a vehicle know when it encounters a 
corner case?. The second question is: how should it handle the unforeseen situation? We 
expect that corner case handling will not only be an issue for the automated vehicle but is 
also faced by the broad ITS sensing components.  

There have been research studies that focused on addressing extreme case challenges. 
Li et al. [241] developed a domain adaptation method that used UAV sensing data from 
daytime to train detectors for traffic sensing at nighttime. The transfer learning method is 
a promising direction to address extreme cases in sensing. With edge computing, the ma-
chine is expected to be able to collect onsite data and improve the sensing functions over 
time. A particular edge device at one certain location could overfit itself for improved 
sensing performance at that certain location, though overfitting is not good in traditional 
machine learning. 

4.3.4. Challenge 4: Privacy Protection 
Privacy protection is another major challenge. As ITS sensing becomes advanced, 

more and more detailed information is available, and there have been increasing concerns 
regarding the use of the data and possible invasion of privacy. Bluetooth sensing detects 
the MAC address of the devices such as cell phones and tracks the devices in some appli-
cations, which not only risk people’s identification but also their location information. 
Camera images, when not properly protected, may contain private information, such as 
faces and license plates. These data are often stored on the cloud and not owned by the 
people whose private information is there.  

Edge computing is a great solution to privacy challenges. Data are collected and pro-
cessed at the edge, and raw data, with private information, is not transmitted to the cloud. 
In [238], video and other sensor data are processed onboard the vehicles and most are 
removed in real-time. While the primary purpose was to save network and cloud re-
sources, privacy protection was fulfilled, as well as with edge computing. Federated learn-
ing [2] is a learning mechanism for privacy protection that assumes that users at different 
locations/agencies cannot share all the data to the cloud datacenter, so learning with new 
data has to happen at the edge first before transmitting some intermediate values to the 
cloud. 

5. Future Research Directions 
5.1. Resource-Efficient Edge Sensing Design 

The state-of-the-art sensing models, especially those based on AI, are mostly re-
source-intensive and consume lots of computation, storage, network bandwidth, and 
power. Abundant hardware and network support is crucial for boosting the performance 
of the latest sensing methods. However, edge devices are resource-constrained. The sharp 
contrast naturally entails the design of resource-friendly algorithms and system architec-
tures for ITS sensing. There have been quite a few studies on AI model compression tech-
niques, e.g., network pruning and quantization, that target reducing the weight of neural 
networks. In addition to resizing existing AI models, another solution is to exploit the 
AutoML and neural architecture search methods to search over the model parameter 
space, at the same time considering the edge hardware constraints [242,243]. Alongside 
general designs on AI models, it is sometimes beneficial to leverage the characteristics of 
certain ITS scenes and theories, which can simplify the models and even improve the over-
all robustness when incorporated appropriately. On the other hand, system design is vital 
for edge sensing: system architecture design includes designs at the edge and designs 
across the edge and cloud. The purpose of system architecture design is to optimize the 
resource allocation to support requirements in different sensing tasks.  
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5.2. Federated Sensing 
Federated learning was proposed by Google in 2016, which is adopted for joint learn-

ing of data from multiple edge devices for a centralized model. The learning occurs both 
on the edge devices and the centralized cloud. In ITS sensing, federated learning can be 
leveraged in many research areas (e.g., IoV sensing). Sensing models at the same type of 
agents for a specific task are often the same. It would be helpful to update the model as 
multiple agents collect new data; this is expected to improve the overall sensing perfor-
mance by training using more samples. In the large-scale application, new data accumu-
late quickly, thus the general model training could iterate. However, at present, these val-
uable data are often discarded or stored in a place for offline analysis. There is also a hur-
dle regarding data sharing by different edge devices due to privacy issues or technology 
constraints. In the future, federated sensing schemes are expected to be devised towards 
real-time data sharing from edge devices and to enhance ITS sensing applications. 

5.3. Cooperated Sensing by Infrastructure and Road Users 
While federated learning will benefit multi-agent sensing for the same sensing task, 

it is also expected that sensor data integration from different ITS components will be an-
other research direction. At present, sensing tasks are carried out by individual road users 
or individual infrastructure, e.g., roadside radars for speed enforcement, surveillance 
cameras for traffic flow detection, onboard LiDAR for collision avoidance. Even sensor 
fusion techniques are mostly about sensor signal integration at an individual agent, e.g., 
camera and LiDAR fusion onboard a vehicle. However, sensor data from different types 
of ITS components could provide richer information from different angles towards the 
same problem. For example, for a freeway segment of interest, individual loop detectors 
are distributed at fixed locations, sampling the traffic flow (speed, volume, occupancy) 
about every 0.5–1 mile. There is no ground truth data regarding what goes on at locations 
not covered by the loop detectors. If we can develop a cooperated sensing mechanism that 
integrates vehicle telematics data or other onboard data, tasks such as congestion man-
agement and locating an incident would benefit largely. Another example is jointly de-
tecting objects of interest (e.g., street parking spaces). From a certain angle, either from a 
road user or some roadside infrastructure, there may be occlusion of a certain parking 
space; a cooperated sensing on the edge could help improve the detection accuracy and 
reliability. 

5.4. ITS Sensing Data Abstraction at Edge 
There will be a huge number of edge devices for ITS sensing. The large amount of 

data provided at the edge, even not raw data, still needs further data abstraction to a level 
that balances the workload and resources. There are a few points that may guide us 
through the exploration. First, to what extent do the edge devices conduct data abstrac-
tion? Second, data from different devices may be in different formats, e.g., the cooperated 
sensing data, so what are the abstraction and fusion frameworks for multi-source data? 
Third, if the data abstraction layer should be on the top of the sensor layer, then, for an 
application, how would the data abstraction strategies change as the sensor distributions 
change? We envision that appropriate data abstraction is the foundation to support ad-
vanced tools and application development in ITS sensing. Good data abstraction strate-
gies at the edge will not only balance resource usage and information availability but also 
make the upper layers of pattern analysis and decision-making easier. 

5.5. Training and Sensing All at Edge 
A previous survey on edge computing [2] summarized six levels in the development 

of edge intelligence, ranging from level-1 cloud-edge co-inference to level-6 both training 
and inference on edge devices. We agree on this point and envision that ITS sensing with 
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edge computing will follow a similar path of development. At present, most edge compu-
ting applications in ITS are level-1 to level-3, where the training happens on the cloud and 
models are deployed to the edge devices with or without compression/optimization. 
Sometimes the sensing function is done collaboratively by edge and cloud. Since federated 
sensing needs to be conceived in the future, with huge benefits from consistent data input 
to update the general model, it is reasonable to require an extension from federated sens-
ing and for each device to update a customized sensing model online at the edge. Com-
pared to a general model, all at-edge training and sensing is more flexible and intelligent. 
However, it does not mean that centralized learning from distributed devices is not useful; 
even in the era of level-5 or level-6, we expect that there will be models updating on single 
devices and aggregated learning to some extent for optimal sensing performances. 

6. Conclusions 
The intersection between ITS and EC is expected to have enormous potential in smart 

city applications. This paper has initially reviewed the key components of ITS, including 
sensing, data pre-processing, pattern analysis, traffic prediction, information communica-
tion, and control. This has been followed by a detailed review of the recent advances in 
ITS sensing, which summarized ITS sensing from three perspectives: infrastructure-based 
sensing, vehicle onboard sensing, and aerial sensing; under each of the three correspond-
ing subsections, we further divided these perspectives into representative applications. 
Based on the review of state-of-the-art models in ITS sensing, the next section summarized 
three objectives of future ITS sensing (large-scale sensing, high intelligence, real-time ca-
pability) and was followed by a review of recent edge computing applications in ITS sens-
ing. Several key challenges in ITS sensing (heterogeneity, high probability of sensor failure, 
sensing in extreme cases, and privacy protection) and how edge computing could help 
address them were then discussed. Five future research directions were envisioned by the 
authors in Section 5, including resource-efficient edge sensing design, federated sensing, 
cooperative sensing by infrastructure and road users, ITS sensing data abstraction at edge, 
and training and sensing all at edge. Edge computing applications in ITS sensing, as well 
as other ITS components, are still in their infancy. The road ahead is full of opportunities 
and challenges. 
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