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Abstract: By using one-dimensional (1-D) map methods, some lossless transmission line circuits
with a short at one side terminal have been actively studied. Bifurcation results or chaotic states in
the circuits have been reported. On the other hand, many weak or strong definitions such that a
1-D map is mathematically chaotic are still being studied. In such definitions, the definition of formal
chaos is well known as being the most traditional and most definite. However, formal chaos existences
have not been rigorously proven in such circuits. In this paper, a general lossless transmission circuit
is considered first with a dc bias voltage source in series with a load resistor at one side terminal
and with a three-segment piecewise linear resistor at another side terminal. Secondly, the method
for deriving a 1-D map describing the behavior of the circuit is summarized. Thirdly, to provide a
basis of chaotic application for the 1-D map, the mathematical definition of formal chaos and the sufficient
conditions of the existence of formal chaos are discussed. Furthermore, by using Maple, formal chaos
existences and bifurcation behavior of 1-D maps are presented. By using the Lyapunov exponent, the
observability of formal chaos in such bifurcation processes is outlined. Finally, the principal results
and the future works are summarized.

Keywords: formal chaos; shift dynamics (σ, Σ2) with 2 symbols; Lyapunov exponent; lossless
transmission line circuit; piecewise linear resistor

1. Introduction

Transmission line circuits, switched capacitor circuits, neuron model circuits, and
constrained circuits are notable as the nonlinear circuits of which behavior may be described
by one-dimensional (1-D) maps [1–11]. Furthermore, in [12], by using real imperfect
integrated devices induced by unavoidable manufacturing imperfections that plausibly
have so called hidden dynamics with parasitic effects and nonidealities, the possibility of
designing imperfect electronic circuits generating megahertz chaotic oscillations, without
the use of additional capacitors or inductors, has been explored and discussed.

By using one-dimensional (1-D) map methods, some lossless transmission line circuits
with a short at one side terminal [5–11] (or, with a dc bias voltage source in series with a
load resistor at one side terminal [7]) have been actively studied. On the other hand, many
weak or strong definitions such that a 1-D map is mathematically chaotic are still being
studied [13–18]. In this paper, we use the following definition that is well known as most
traditional and most definite since Moser [19].

Definition 1. A 1-D discrete dynamical system or 1-D map ϕ on M is said to be chaotic if there
exists an invariant subset Λ ⊂ M on which some iterates of ϕ is topologically conjugate to the
shift dynamics (σ, Σm) with m symbols.

Appl. Sci. 2021, 11, 9672. https://doi.org/10.3390/app11209672 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3708-520X
https://orcid.org/0000-0003-3755-1968
https://orcid.org/0000-0002-4476-8893
https://doi.org/10.3390/app11209672
https://doi.org/10.3390/app11209672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209672
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209672?type=check_update&version=4


Appl. Sci. 2021, 11, 9672 2 of 24

The shift dynamics (σ, Σm) with m symbols has the following properties [13,15–17]:
(1) There are countably many periodic points with different periods in Σm. (2) The set of
all periodic points in dense in Σm. (3) σ is topologically transitive. Namely, there exists
a point c ∈ Σm where its orbit is dense in Σm. (4) σ is topologically expansive. (5) Σm is
homeomorphic to a Cantor set. (6) The topological entropy of σ is h(σ) = loge m.

For a 1-D discrete dynamical system ϕ, it is well known that “ϕ has a homoclinic point”
implies Definition 1, and they are often equivalent [15,20,21]. Definition 1 is not based on
the theoretical measure but is based on the topological viewpoint, and it is called formal
chaos or topological chaos, which may be not observable generally [13]. Thus, we call the
chaos in Definition 1 formal chaos.

Binary sequences based on observable chaotic behavior produced by 1-D maps coming
from the nonlinear circuits are reported and well known to have good statistical properties
useful for applications relative to several digital communication systems [4,13]. However,
the sufficient conditions for the existence of observable chaos are so strong that most 1-D maps
coming from general nonlinear circuits cannot be rigorously proved to possess observable
chaos. Indeed, for general 1-D maps such that the absolute slops of them are either greater
or less than unity, it is very difficult to rigourously prove the existence of observable chaos,
except for 1-D maps such as the logistic map family or 1-D piecewise linear maps such that
all their absolute slopes of are greater than unity.

Once the existence of formal chaos is guaranteed, the degree of the observability of
the chaos can be checked by the existence of maximal positive Lyapunov exponent [14]
through computer simulations from the viewpoint of engineering. Hence, we pay attention
to the sufficient condition that formal chaos in Definition 1 exists in a 1-D map.

In [5,6], a lossless transmission line circuit with a short at one side terminal and with a
three-segment piecewise linear (3SPWL) resistor (so called Nagumo’s 3SPWL resistor) at
another side terminal is considered. The v− i characteristic of the (3SPWL) resistor is not
only in point symmetry at the origin but also in all four quadrants of a (v, i) coordinate
system. The method for deriving a 1-D map describing the dynamics of the circuit is
discussed at the base of the incident and reflected waves. Some analytical results are
obtained by using the 1-D map. In [8–10], for a lossless transmission line circuit with a short
at one side terminal and with a three-segment piecewise linear resistor function at another
side terminal, the conditions are provided for the existence of the explicit function form
of the incident and reflected wave transformed from the three-segment piecewise linear
resistor function, the existence of the 1-D map, and the existence of the invariant interval of
the 1-D map. Furthermore, in [8–11], by using a 1-D map, analytical bifurcation results or
chaotic states (except for formal chaos) are reported in terms of numerical simulation.

However, formal chaos and observable chaos existence [13,18,20] have not been rigorously
proven in such lossless transmission line circuits in [5–11]. In [22], by using interval
arithmetic, the formal chaos existence was proven in a lossless transmission line circuit, but
the proof is very tedious.

In this paper, from the above background, in Section 2, we consider a lossless transmis-
sion circuit with a dc bias voltage source in series with a load resistor at one side terminal
and with a three-segment piecewise linear resistor at another side terminal. In Section 3,
we summarize the method for deriving a 1-D map describing the behavior of the circuit. In
Section 4, in order to provide a basis of chaotic application for the 1-D map (or the transmis-
sion circuit), we discuss the mathematical definition of formal chaos and the sufficient conditions
of the existence of formal chaos for generating 1-D maps. In Section 5, using Maple [23], we
present an example of formal chaos existence and several examples of bifurcation behavior
of 1-D maps. Using the degree of observability of chaotic states in terms of Lyapunov
exponent, we discuss the observability of formal chaos in such bifurcation processes. In the
Conclusion section, we summarize the principal results and the future works. In particular,
we mention the possibility of designing imperfect transmission lines with parasitic effects
and nonidealities inside real integrated devices generating high frequency ranges and
chaotic oscillations without the use of additional capacitors or inductors.
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2. Lossless Transmission Circuit Equations with Terminal Conditions

Incorporating the works in [5–10], we consider a lossless transmission circuit with
a dc bias voltage source in series with a load resistor at one side terminal and with a
three-segment piecewise linear resistor at another side terminal such as (N) Nagumo’s
3SPWL resistor in Figures 1 and 2 or (T) the present authors’ Modeled Tunnel Diode (TD)
3SPWL resistor in Figures 3 and 4 in Figure 5. The circuit in Figure 5 can be represented
by the circuit in Figure 6 with 3SPWL resistor (N) or (T) together with the side terminal
conditions as follows. At one side terminal A of the circuit, we have the following: (i) a
dc bias voltage source in series with 3SPWL resistor (N) or (T): EB0 6= 0; and (ii) 3SPWL
resistor (N) or (T): EB0 = 0. At another side terminal B of the circuit, we have the following:
(1) short: EB = 0, RL = 0; (2) open: EB = 0, RL → ∞; (3) a load resistor: EB = 0, RL 6= 0; (4)
a dc bias voltage source: EB 6= 0, RL = 0; or (5) a dc bias voltage source in series with a load
resistor: EB 6= 0, RL 6= 0. We focus on considering a lossless transmission line circuit with
3SPWL resistor (N) or (T), together with the above side terminal conditions in Figure 6.
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Figure 1. Op amp circuit based Nagumo’s 3SPWL resistor.
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Figure 3. Op amp circuit based Modeled Tunnnel Diode 3SPWL resistor.
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Figure 5. Transmission line circuit with generally practical side terminal conditions.
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Figure 6. Transmission line circuit with standard side terminal conditions.

2.1. Three-Segment Piecewise Linear Resistor

The three-segment Piecewise Linear (3SPWL) resistor iNR = Fk(vNR), (k = N, T) in
Figure 5 is realized by the op amp based circuit (N) Nagumo’s 3SPWL resistor in Figure 1
and Figure 2 or (T) the present authors’ Modeled Tunnel Diode (TD) 3SPWL resistor in
Figures 3 and 4. In Figure 1 or Figure 3, E+

s (or −E−s ) denotes positive (or negative)
saturation of the op amp, and V+

cc (or −V−cc ) denotes positive (or negative) power supply.
Ed in Figure 3 denotes the forward voltage drop of the ideal switching diode. In Figure 2
or Figure 4, the v-i characteristic of Fk is always of the N type such that g1, g2, and g3 are
positive, negative, and positive slopes, respectively.
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(N) Nagumo’s 3SPWL Resistor FN :

The slopes gi, i = 1, · · · , 3 and break points −E−p and E+
p in Figure 2 are given as

follows:

g1 =
1

R1
, g2 = − R1

R2R3
= − ζ

R1
, g3 =

1
R1

,

E−p =
E−s R3

R2 + R3
, E+

p =
E+

s R3

R2 + R3
= ηE−p ,

on the condition that η > −1, ζ > 0, E+
p > 0 > −E−p , and R3 =

R2
1

ζR2
. E−p is freely set up

by V−cc . η (i.e., E+
p ) is also freely set up by V+

cc because, for any op amps, E+
s (or −E−s ) is

generally in proportion to V+
cc (or −V−cc ).

(T) TD 3SPWL Resistor FT :

The slopes gi, i = 1, · · · , 3 and break points Ed and Ep in Figure 4 are given as follows:

g1 =
1

R0
, g2 =

1
R0
− R1

R2R3
= − ζ

R0
,

g3 =
1

R0
+

1
R1

=
2

R0
, Ep =

E+
s R3

R2 + R3
= ηEd,

on the conditions that η > 1, ζ > 0, Ep > Ed > 0, R3 = R0R1
R2(ζ+1) , and R1 = R0. Ed is

freely set up by RV . η (i.e., Ep) is also freely set up by V+
cc because, for any op amps, E+

s is
generally in proportion to V+

cc .

2.2. Transmission Line Circuit Equation

The relation of the voltage v and the current i in the line in Figure 6 becomes the
following:

∂v
∂τ

= − ∂i
∂x

,
∂i
∂τ

= − ∂v
∂x

, (1)

where Z =
√

L
C is the characteristic impedance of the line; s = 1√

LC
is the propagation

velocity of waves in the line; T = 2l
s , v = vC/Vmax, i = iL/Imax, x = xl/2l, τ = t/T, L

are the series of inductance per unit length of the line; C is the parallel capacitance per
unit length of the line; l is line length; vC is the voltage in the line; iL is the current in the
line; xl is the coordinate in the line; v is the non-dimensional voltage in the line; i is the
non-dimensional current in the line; x is the non-dimensional coordinate in the line; and τ
is non-dimensional time. Accordingly, by eliminating i (or v), we have the following.

∂2v(τ, x)
∂τ2 =

∂2v(τ, x)
∂x2 ,

(
∂2i(τ, x)

∂τ2 =
∂2i(τ, x)

∂x2

)
. (2)

The following Equations (3) and (4) provide the boundary conditions of Figure 6.
Equations (3) and (4) also provide the boundary conditions of Figure 5 as follows. At one
side terminal, we have the following: (i) a dc bias voltage source in series with 3SPWL
resistor (N) or (T): ξ 6= 0 and (ii) 3SPWL resistor (N) or (T): ξ = 0. At another side terminal,
we have the following: (1) short: E = 0, R = 0; (2) open: E = 0, R→ ∞; (3) a load resistor:
E = 0, R 6= 0; (4) a dc bias voltage source: E 6= 0, R = 0 ; or (5) a dc bias voltage source in
series with a load resistor: E 6= 0, R 6= 0.

v(τ, 0) = E− Ri(τ, 0), (3)

i(τ,
1
2
) = fk(v(τ,

1
2
), ζ, η, ξ), (k = N, T). (4)
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fk(v, ζ, η, ξ) = ImaxFk(Vmax(v− E0)) =

(N) Nagumo’s 3SPWL Resistor fN :


v+(1−ξ)bp

r +
ζbp

r , v < −(1− ξ)bp,
− ζv

r +
ζξbp

r , −(1− ξ)bp ≤ v
≤ (η + ξ)bp,

(v−(η+ξ)bp)
r − ζηbp

r , (η + ξ)bp < v,

(5)

Here, ζ > 0, η > −1, r = R1
Rmax

(> 0), bp =
E−p

Vmax
(> 0), ηbp =

E+
p

Vmax
(> 0 > −bp).

(T) TD 3SPWL Resistor fT :


v
r −

ξbp
r , v < (1 + ξ)bp,

− ζ(v−(1+ξ)bp)
r +

bp
r , (1 + ξ)bp ≤ v

≤ (η + ξ)bp,
2(v−(η+ξ)bp)

r − ζ(η−1)bp
r +

bp
r , (η + ξ)bp < v,

(6)

Here, ζ > 0, η > 1, r = R1
Rmax

(> 0),bp = Ed
Vmax

(> 0), ηbp =
Ep

Vmax
(> bp). In addition in

(N) or (T), ξbp = E0, R = RL/Rmax, E0 = EB0/Vmax, E = EB/Vmax, EB0, and EB are the dc
bias voltage sources; RL is the load resistor; and fk(v, ζ, η, ξ) is the non-dimensional current
of 3SPWL resistor, (k = N, T).

3. 1-D Map Describing the Behavior of the Transmission Line Circuit
3.1. Derivation of 1-D Map

Here, we discuss how to derive the 1-D map or the difference equation of which the
dynamics completely describes the dynamics of Equations (2)–(6).

The 1-D wave equation of Equation (2) has the d’Alembert’s solution, which is de-
scribed as the following.

v(τ, x) = ψ(τ − x)− φ(τ + x),

i(τ, x) =
ψ(τ − x) + φ(τ + x)

Z
.

(7)

Equation (7) can be solved with regard to the scattering variables, that is,ψ and φ.
Then, we have the following description.(

ψ
φ

)
=

1√
2

(
cos(−π

4 ) − Z sin(−π
4 )

sin(−π
4 ) Z cos(−π

4 )

)(
v
i

)
. (8)

Equation (8) denotes that the (ψ, φ)-coordinate system is identical with the −π/4
rotation of (v, i)-coordinate system. Substituting Equation (7) into Equations (3) and (4),
we rewrite the boundary conditions as follows:

ψ(τ)− φ(τ) = E− R
(ψ(τ) + φ(τ))

Z
, (9)

ψ(τ − 1) + φ(τ)

Z
= fk((ψ(τ − 1)− φ(τ)), ζ, η, ξ), (10)

where the time is shifted 1/2 back in (10) and (k = N, T).

The following Equations (9) and (10) provide the boundary conditions of Figure 6.
Equations (9) and (10) also provide the boundary conditions of Figure 5 as follows.



Appl. Sci. 2021, 11, 9672 7 of 24

At one side terminal, we have the following: (i) a dc bias voltage source in series with
3SPWL resistor (N) or (T): ξ 6= 0 and (ii) 3SPWL resistor (N) or (T): ξ = 0. At another side
terminal, we have the following: (1) short: E = 0, R = 0; (2) open: E = 0, R→ ∞; (3) a load
resistor: E = 0, R 6= 0; (4) a dc bias voltage source: E 6= 0, R = 0; or (5) a dc bias voltage
source in series with a load resistor: E 6= 0, R 6= 0.

Since fk(v, ζ, η, ξ) is a three segment piecewise linear function, we can identify Equation (11)
with fk(v, ζ, η, ξ) for v ∈ Ikw ⊂ R, w = 1, 2, 3:

mkwv + nkw, v ∈ Ikw ⊂ R, mkw, nkw ∈ R, w = 1, 2, 3,

Ikw ⊂ R, : wth segment of three domain intervals,
(11)

where mkw : (ζ, η, ξ)→ R and nkw : (ζ, η, ξ)→ R.
Here, from Equations (9) and (10), we briefly show how to derive an explicit piecewise

linear 1-D map of ψ(τ) and ψ(τ − 1). First of all, substitute Equation (11) into fk(v, ζ, η, ξ)
at the right hand side of Equation (10). We obtain Equations (12) and (13). Now since
Equations (9) and (12) are simultaneous linear equations, we solve Equations (9) and (12)
as Equation (14). We also solve Equations (12) and (13) as Equation (15).

ψ(τ − 1) + φ(τ)

Z
= mkw(ψ(τ − 1)− φ(τ)) + nkw, (12)

ψ(τ − 1)− φ(τ) ∈ Ikw ⊂ R. (13)

ψ(τ) =
1− R

Z

1 + R
Z

(
mkw − 1

Z

mkw + 1
Z

ψ(τ − 1)− nkw

mkw + 1
Z
+

E
1− R

Z

)
, (14)

ψ(τ − 1) ∈
mkw + 1

Z
2
Z

(
Ikw +

nkw

mkw + 1
Z

)
⊂ R, (15)

In the following, using the similar procedure from Equations (9)–(15), we provide
Theorem 1 and Corollary 1 such that φ(τ) and ψ(τ) are explicitly determined by 1-D maps
of ψ(τ − 1) with the iterative time 1. We also provide Corollary 2 such that v(τ + 1

2 , 1
2 ) is

explicitly determined by the1-D map of v(τ − 1
2 , 1

2 ).

Theorem 1. If 1 > r
Z > ζ > 0 and Nagumo’s 3SPWL Resistor (k = N) is η > −1 or TD

3SPWL Resistor (k = T) is η > 1, then χk, (k = N, T): R → R is defined by the following:

φ(τ) = χk(ψ(τ − 1)) =


χk1(ψ(τ − 1)) , ψ(τ − 1) < ψk1,
χk2(ψ(τ − 1)) , ψk1 ≤ ψ(τ − 1) ≤ ψk2,
χk3(ψ(τ − 1)) , ψk2 < ψ(τ − 1)

(16)

0 < Dχk1 < 1, Dχk2 < −1, 0 < Dχk3 < 1,

which also holds when the following is the case:

χN1(ψ(τ − 1)) =
(1− r

Z
)ψ(τ − 1)

r
Z

+ 1
+

((1− ξ) + ζ)bp
r
Z

+ 1
,

χN2(ψ(τ − 1)) =
(

ζ

Z
+

r
Z
)ψ(τ − 1)

(
ζ

Z
− r

Z
)

−
ζξbp

(ζ − r
Z
)

,

χN3(ψ(τ − 1)) =
(1− r

Z
)ψ(τ − 1)

(
r
Z

+ 1)
−

(η(ζ + 1) + ξ)bp

(
r
Z

+ 1)
,

ψN1 =
1
2

(
−(1− ξ) +

Zζ

r

)
bp,

ψN2 =
1
2

(
η + ξ − Zζη

r

)
bp(> ψN1),
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or we have the following:

χT1(ψ(τ − 1)) =
(1− r

Z
)ψ(τ − 1)

(
r
Z
+ 1)

−
ξbp

(
r
Z
+ 1)

,

χT2(ψ(τ − 1)) =
(ζ +

r
Z
)ψ(τ − 1)

(ζ − r
Z
)

−
(ζ(1 + ξ) + 1)bp

(ζ − r
Z
)

,

χT3(ψ(τ − 1)) =
(2− r

Z
)ψ(τ − 1)

(
r
Z
+ 2)

−
((2 + ζ)(η − 1) + 1 + 2ξ)bp

(
r
Z
+ 2)

,

ψT1 =
1
2

(
(1 + ξ) +

Z
r

)
bp,

ψT2 =
1
2

(
η + ξ +

Z(1− ζ(η − 1))
r

)
bp (> ψT1),

where Dχki is the slope of χki(ψ(τ − 1)), 1 ≤ i ≤ 3, and R is the set of real numbers.

Proof in Appendix A.

Corollary 1. If 1 > r
Z > ζ > 0 and Nagumo’s 3SPWL Resistor (k = N) is η > −1 or TD

3SPWL Resistor (k = T) is η > 1, then hk, (k = N, T): R → R is defined by the following:

ψ(τ) = hk(ψ(τ − 1))

=
(1− R

Z )χk(ψ(τ − 1))

1 + R
Z

+
E

1 + R
Z

,

(in the case of 1 > R
Z ≥ 0), or

= −χk(ψ(τ − 1)), (in the case of R→ ∞),

=


hk1(ψ(τ − 1)) , ψ(τ − 1) < ψk1,
hk2(ψ(τ − 1)) , ψk1 ≤ ψ(τ − 1) ≤ ψk2,
hk3(ψ(τ − 1)) , ψk2 < ψ(τ − 1).

(17)

hki =
(1− R

Z )χki

1 + R
Z

+
E

1 + R
Z

,

(in the case of 1 > R
Z ≥ 0), or

= −χki, (in the case of R→ ∞).

in the case where 1 > R ≥ 0: 0 < Dhk1 < 1, Dhk2 < −1, 0 < Dhk3 < 1 holds, where

Dhki =
(1− R

Z )Dχki
1+ R

Z
: slope of hki(ψ(τ − 1)), 1 ≤ i ≤ 3.

The other case is where R→ ∞: −1 < Dhk1 < 0, Dhk2 > 1, −1 < Dhk3 < 0 holds, where
Dhki = −Dχki is the − slope of χki(ψ(τ − 1)), 1 ≤ i ≤ 3, andR is the set of real numbers.

Proof in Appendix A.
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Corollary 2. If 1 > r
Z > ζ > 0 and Nagumo’s 3SPWL Resistor (k = N) is η > −1 or TD

3SPWL Resistor (k = T) is η > 1, then v(τ + 1
2 , 1

2 ) is explicitly determined by 1-D map gk of
v(τ − 1

2 , 1
2 ) such that the following is the case.

v(τ +
1
2

,
1
2
) = gk(v(τ −

1
2

,
1
2
), ζ, η, ξ), (18)

ψ(τ − 1) =
v(τ − 1

2 , 1
2 ) + fk(v(τ − 1

2 , 1
2 ), ζ, η, ξ)

2
,

v(τ +
1
2

,
1
2
) = hk(ψ(τ − 1))−

1 +
R
Z

1− R
Z

hk(hk(ψ(τ − 1)))

+
E

1− R
Z

, (in the case of 1 > R
Z ≥ 0), or

= −χk(ψ(τ − 1)) + χk(−χk(ψ(τ − 1))),

(in the case of R→ ∞),

Remark that i(τ, 1
2 ) = fk(v(τ, 1

2 ), ζ, η, ξ), for any τ.

Proof in Appendix A.

3.2. Global Behavior of 1-D Map

Here, we provide Theorem 2 to guarantee that for any initial point, every orbit by
the iteration of the 1-D map of ψ(τ) = h(ψ(τ − 1)) ultimately penetrates an invariant
interval set.

Theorem 2. If 1 > r
Z > ζ > 0, 1 > R

Z ≥ 0 and Nagumo’s 3SPWL Resistor (k = N):

η > −1, (ξ +
R
Z ζ− r

Z
r
Z

)− E
bp

< 0, and (ξ − η( R
Z ζ− r

Z )
r
Z

)− E
bp

> 0 or TD 3SPWL Resistor (k = T):

η > 1, 0 > − E
bp

+ (1 + ξ +
R
Z
r
Z
) +

(η−1)( r
Z−ζ)(1+ R

Z )
2 r

Z
, and 0 < − E

bp
+ (η + ξ +

(1−(η−1)ζ) R
Z

r
Z

)−
(η−1)(r−Zζ)(1+ R

Z )
2r , then the following is the case.

1. The 1-D map ψ(τ) = hk(ψ(τ − 1)) has a unique unstable fixed point ψk∗ in the interval
[ψk1, ψk2], where

ψN∗ =
(R−Z)ζξbp

2(Rζ−r) + E(Zζ−r)
2(Rζ−r) ,

ψT∗ =
(Z−R)(ζ(1+ξ)+1)bp

2(r−Rζ)
+ E(r−Zζ)

2(r−Rζ)
(> 0).

2. There exists an invariant interval Ikψ = [hk(ψk2), hk(ψk1)] ⊃ [ψk1, ψk2] such that hk(Ikψ) ⊂

Ikψ and hk(ψk2) < ψk1 < ψk2 < hk(ψk1), where hN(ψN1) =
(1− R

Z )(ζ+(1−ξ) r
Z )bp

2 r
Z (1+ R

Z )
+ E

1+ R
Z

,

hN(ψN2) =
(−1+ R

Z )(ηζ+(η+ξ) r
Z )bp

2 r
Z (1+ R

Z )
+ E

1+ R
Z

,

hT(ψT1) =
(1− R

Z )(1− r
Z (1+ξ))bp

2 r
Z (1+ R

Z )
+ E

1+ R
Z

,

hT(ψT2) =
(−1+ R

Z )((η−1)ζ−1+(η+ξ) r
Z )bp

2 r
Z (1+ R

Z )
+ E

1+ R
Z

.

3. For any ψ0 ∈ (−∞, ∞), there exists jth iterate of hk such that hj
k(ψ0) ∈ Ikψ, j(> 0) ∈ Z ,

where hj
k denotes the jth iterate of hk, i.e., hj

k is the j-fold composition of hk with itself. Z is
the set of non negative integers.

Proof in Appendix A.
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4. Formal Chaos Existing Conditions of 1-D Maps

As mentioned before, binary sequences based on observable chaotic behavior produced
by 1-D maps are well known to have good statistical properties useful for applications
relative to several digital communication systems [4,13]. However, the sufficient conditions
for the existence of observable chaos are so strong that most 1-D maps cannot be rigorously
proved to possess observable chaos. Furthermore, once the existence of formal chaos is
guaranteed, the degree of the observability of the chaos can be checked by the existence
of maximal positive Lyapunov exponent [14] through computer simulations from the
viewpoint of engineering. Hence, we focus on the sufficient condition that formal chaos in
Definition 1 exists in a 1-D map.

4.1. Formal Chaos Existing Conditions of a General 1-D Map

In this subsection, in order to verify formal chaos existence for 1-D map easily, we
provide Theorem 3 to guarantee the formal chaos existence in Definition 1 in the case of
m = 2. Although a similar 1-D map to the map in Theorem 3 appears in Devaney or Aoki’s
mathematical proof process for “ϕ has a homoclinic point” implying Definition 1 in [15,21],
the existence of the similar 1-D map has not been considered as an easy-to-use sufficient
condition implying Definition 1.

Therefore, the authors propose to adopt the existence of the similar 1-D map as the
sufficient condition implying Definition 1 and to summarize this condition as Theorem 3.
This theorem can be regarded as 1-D map version of Moser’s theorems [14,19] for two
dimensional maps.

Theorem 3. Let I be a closed interval of real numbers. Let f be a continuous piecewise differentiable
mapping from I to itself and D f be a derivative of f .

A1 There exist I0 and I1 disjoint closed subintervals in I such that I0 ∪ I1 ⊂ f (I0) and I0 ∪ I1 ⊂
f (I1).

A2 |D f (x)| > 1 holds for any x in I0 ∪ I1. If f satisfies A1 and A2, then the invariant set
Λ = ∩0≤n≤∞( f )n(I0 ∪ I1) ⊂ I exists, and the 1-D map f on Λ is topologically conjugate
to the shift dynamics (σ, Σ2) with 2 symbols. The one-dimensional map f on Λ is mathemati-
cally chaotic.

Proof in Appendix A.

4.2. Formal Chaos Existing Conditions of a 1-D Map Family

As mentioned precisely in the later subsections, for a lossless transmission circuit
with a dc bias voltage source in series with a load resistor at one side terminal and with a
three-segment piecewise linear resistor at another side terminal, the existence of a three-
segment piecewise linear 1-D map describing the dynamics of the circuit, the existence of
the invariant interval of the 1-D map, and the coordinate transformation from the invariant
interval to the normalized interval I = [0, 1] are provided.

Therefore, in this subsection, we pay our attention to the normalized 1-D map on the
normalized interval I after applying the coordinate transformation to the three-segment
piecewise linear 1-D map. We discuss the formal chaos verification of the normalized three-
segment piecewise linear 1-D map H on I such that the absolute slopes of the map are
either greater or less than unity. In general such map H satisfies Theorem 3 under very
narrow range-limited circuit parameters. Instead of H, focusing on H2 of which the circuit
parameters are expected to have the broader range implying that H2 satisfies Theorem 3,
we provide Theorem 5 to guarantee that the dynamics of H2 on I is topologically conjugate
with respect to the shift dynamics (σ, Σ2) with two symbols. Since one tends to consider it
as routine work for providing the sufficient inequality conditions of Theorem 5, once again
we note that,in order to obtain the inequality conditions, one needs an elaborate symbolical
manipulation technique.
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We consider the normalized 1-D map as follows (see in Figure 7):

xn+1 = H(xn) =


H1(xn) =

(1− n1)xn
k1

+ n1 , xn < k1,

H2(xn) =
−xn + k1
k2 − k1

+ 1 , k1 ≤ xn ≤ k2,

H3(xn) =
n2(xn − k2)

1− k2
, k2 < xn,

(19)

where I = [0, 1] ⊂ R, xn, xn+1 ∈ I, andR is the set of real numbers.

-
+

-
,

.
,

* +

+

*

.
+

Figure 7. Normalized 1-D map.

Theorem 4. If 1− k1(k2 − k1) > n1 > n2 > (k2 − k1)(1− k2), n1 > 1− n2 > k2 > n2 >
k1 > 1− n1 and 0 < k1, k2, n1, n2 < 1, then the following is the case:

xn+1 = H2(xn) =



H1(H1(xn)), when xn < − (k1−n1)k1
n1−1 ,

H2(H1(xn)), when − (k1−n1)k1
n1−1 ≤ xn

< − (k2−n1)k1
n1−1 ,

H3(H1(xn)), when − (k2−n1)k1
n1−1 ≤ xn < k1,

H3(H2(xn)), when k1 ≤ xn < k2 − k2(k2 − k1),
H2(H2(xn)), when k2 − k2(k2 − k1) ≤xn < k2(1− k1) + k2

1,
H1(H2(xn)), when k2(1− k1) + k2

1 ≤ xn < k2,
H1(H3(xn)), when k2 ≤ xn < k2 +

k1(1−k2)
n2

,

H2(H3(xn)), when k2 +
k1(1−k2)

n2
≤ xn< k2 +

k2(1−k2)
n2

,

H3(H3(xn)), when k2 +
k2(1−k2)

n2
< xn,

(20)

− (k1 − n1)k1

n1 − 1
< − (k2 − n1)k1

n1 − 1
< 0, (21)

0 < k1 < k2 − k2(k2 − k1), (22)

k2 − k2(k2 − k1) < k2(1− k1) + k2
1 < k2, (23)

k2 < k2 +
k1(1− k2)

n2
< 1, (24)

1 < k2 +
k2(1− k2)

n2
, (25)

such that |DH1H1| =

∣∣∣∣ (1− n1)
2

k2
1

∣∣∣∣ < 1, |DH2H2| =

∣∣∣∣ 1
(k2 − k1)

2

∣∣∣∣ > 1,

|DH3H3| =

∣∣∣∣ n2
2

(1− k2)
2

∣∣∣∣ < 1, |DH3H1| = |DH1H3| =

∣∣∣∣n2(1− n1)
k1(1− k2)

∣∣∣∣ < 1,

|DH3H2| = |DH2H3| =
∣∣∣∣ −n2
(k2 − k1)(1− k2)

∣∣∣∣ > 1, |DH1H2| = |DH2H1| =
∣∣∣∣ −(1− n1)
k1(k2 − k1)

∣∣∣∣ > 1,

where DHi Hj is the slope of Hi(Hj(xn)), 1 ≤ i, j ≤ 3.
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Proof in Appendix A.

Theorem 5. If 1− k1(k2 − k1) > n1 > n2 > (k2 − k1)(1− k2), n1 > 1− n2 > k2 > n2 >

k1 > 1− n1, k2 − k2(k2 − k1) >
k2−n2
k2−k1

and 0 < k1, k2, n1, n2 < 1, then the following is the case:

1. There exist disjoint closed intervals I0 = [k2 − k2(k2 − k1), k2(1 − k2) + k2
1] ⊂ I and

I1 = [k2 +
k1(1−k2)

n2
, 1] ⊂ I such that I0 ∪ I1 ⊂ H2(I0) = H2H2(I0), I0 ∪ I1 ⊂ H2(I1) =

H2H3(I1), and
∣∣DH2(Ψ)

∣∣ > 1 holds for xn ∈ I0 ∪ I1, where DH2(xn) is the slope of
H2(xn).

2. Invariant set Λ = ∩0≤n≤∞(H2)n(I0 ∪ I1) ⊂ I exists, and H2 on Λ is topologically conju-
gate to the shift dynamics (σ, Σ2) with two symbols. H2 on Λ is mathematically chaotic.

Proof in Appendix A.

4.3. Formal Chaos Existing Conditions of 1-D Maps of Lossless Transmission Circuits

Now, we discuss the method for verifying formal chaos in the dynamics of the 1-D
map of ψ(τ) = hk(ψ(τ − 1)), (k = N, T) rigorously. In the following, we assume that the
conditions of Theorem 2 are satisfied. Then, ψ(τ) = hk(ψ(τ − 1)) has a unique unstable
fixed point ψ∗k ∈ Iψk and an invariant interval Iψk such that h(Iψk) ⊂ Iψk, and for any

ψ0 ∈ (−∞, ∞), there exists jth iterate of hk such that hj
k(ψ0) ∈ Iψk, j(> 0) ∈ Z . Thus,

eventually all we have to consider are the dynamics of ψ(τ) = hk(ψ(τ− 1)) on the invariant
interval of Iψk. To this end, we consider the following coordinate transformation and maps.
Using Equations (26) and (27), we provide Theorem 4. By further using Theorem 3, we
provide Theorem 5 in order to guarantee that the dynamics of h2

k on an invariant subset
⊂ Iψk is topologically conjugate to the shift dynamics (σ, Σ2) with two symbols.

When the conditions of Theorem 2 are satisfied, the coordinate transformation pk,
(k = N, T) : Ikψ → I (or p−1

k : I → Ikψ) is defined as follows:

Ψ = pk(ψ) =
ψ− hk(ψk2)

hk(ψk1)− hk(ψk2)
, (26)

p−1
k (Ψ) = (hk(ψk1)− hk(ψk2))Ψ + hk(ψk2). (27)

where Ikψ = [h(ψk2), h(ψk1)], I = [0, 1].

5. Formal Chaos Existence and Bifurcation Behavior of 1-D Maps by Using Maple

In this section, we pay our attention to the 1-D maps derived from the transmission
line circuits with TD 3SPWL Resistor FT at another side terminal because the characteristics
of TD 3SPWL Resistor FT is more general than the characteristics of Nagumo’s 3SPWL
resistor FN . Then, we present an example of formal chaos existence and several exam-
ples of bifurcation behavior of 1-D maps. Using the degree of observability of chaotic
states in terms of Lyapunov exponent, we show the observability of formal chaos in such
bifurcation processes.

5.1. An Example of Formal Chaos Existence

In this subsection, using Maple, we present an example of the existence of formal chaos.
Under the condition such that Vmax = 10 [V], Z = 300 [Ω], bp = 3

50 , r = 3
25 , η = 20

3 , ζ = 1
10 ,

E = 143
320 and R = 7

16 , the following is the case.

1. η > 1, 1 > r > ζ > 0, and 1 > R > 0 hold;

2. E = 143
320 > bp(1+ R

r )+ bp
(η−1)(r−ζ)(1+R)

2r = 3067
9600 , and E = 143

320 < bp(η + (1−(η−1)ζ)R
r )−

bp
(η−1)(r−ζ)(1+R)

2r = 1453
3200 hold;

3. k1 = 23
561 , k2 = 460

1683 , n1 = 235
238 , and n2 = 57,481

227,953 hold;
4. 0 < k1, k2, n1, n2 < 1 holds;
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5. n1 = 235
238 > 1− n2 = 170,472

227,953 > k2 = 460
1683 > n2 = 57,481

227,953 > k1 = 23
561 > 1− n1 = 3

238
holds;

6. 1− k1(k2 − k1) = 55,010
55,539 > n1 = 235

238 > n2 = 57,481
227,953 > (k2 − k1)(1− k2) = 28,129

166,617
holds.

7. k2 − k2(k2 − k1) =
34,960

166,617 > k2−n2
k2−k1

= 43,411
476,629 holds.

Hence, all the conditions of Theorems 1, 2, 4, and 5 and Corollaries 1 and 2 are satisfied.
H2(Ψ) has obviously the following properties:

1. There exist disjoint intervals I0 = [ 34960
166617 , 14651

55539 ] ⊂ I and I1 = [ 92897
237303 , 1] ⊂ I such that

I0 ∪ I1 ⊂ H2(I0) = H2H2(I0), I0 ∪ I1 ⊂ H2(I1) = H2H3(I1), and
∣∣DH2(Ψ)

∣∣ > 1 holds
for Ψ ∈ I0 ∪ I1, where DH2(Ψ) is the slope of H2(Ψ);

2. Invariant set Λ = ∩0≤n≤∞(H2)n(I0 ∪ I1) ⊂ I exists, and H2 on Λ is topologically
conjugate to the shift dynamics (σ, Σ2) with two symbols. H2 on Λ is mathemati-
cally chaotic.

In the following, we show f (v, ζ, η), H(Ψ), and H2(Ψ) and illustrate the v-i charac-
teristic of f (v, ζ, η) and the graphs of H(Ψ) and H2(Ψ) in Figures 8 and 9, respectively.
Further graphical iterative paths of H2(Ψ) and voltage map by Corollary 2 and iterative
time series data of the voltage map at iterative time n are illustrated in Figures 10–12,
respectively. The conditions of these graphical iterations are as follows: the initial point of
these iterations is x0 = 52,828

227,953 ⊂ I0, and with the use of Maple 8, the graphical iterations in
these figures are illustrated by 2000 iterations such that the iterations from first until 1000
are not used in the total 3000 iterations. In addition, the real parameters of the conditions
above are reasonable because Ed = 3

5 [V], Ep = 4 [V], R1 = R2 = 36 [Ω], R4 = 12,960
11R3

[Ω],
R4 = 360

11 [Ω], if R3 = 36 [Ω], EB = 143
32 [V], and RL = 525

4 [Ω]. The real transmission line
circuit with three-segment piecewise linear resistor can be implemented.

Figure 8. v-i characteristic of f (v).

-

, -

/*1+

/*1+
.

0 , 0 -

Figure 9. H(Ψ) and H2(Ψ).
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+

+*

Figure 10. Iterative paths of H2(Ψ).

Figure 11. Iterative paths of voltage map.

Figure 12. Time series data of voltage map at iterative time n.

5.2. Several Examples of Bifurcation Behavior of 1-D Maps

In this subsection, by using Maple 8, we present various bifurcation behavior (includ-
ing the found formal chaos) of 1-D voltage maps of Equation (18) with maximal Lyapunov
exponent. The degree of observability of chaotic states is given by Lyapunov exponent
µ(v0) of Equation (28) for any initial point v0 [14].

µ(v0) =
1
N

N−1

∑
i=0

∣∣∣∣dgk
dv

(vi, ζ, η, ξ)

∣∣∣∣ (28)

Here, codimension one bifurcation diagrams with one of the bifurcation parameters:
ζ, η, ξ, or E, and representative iterative paths are summarized as follows. With one of
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the following bifurcation parameters from (1) bifurcation parameter ζ until (4) bifurca-
tion parameter E, the codimension one bifurcation diagrams including the found formal
chaos togethar with the Lyapunov exponents, are illustrated in Figures 13–16, respectively
(Vmax = 10 [V], Imax = 1

30 [A], Rmax = 300 [Ω]).

(1) bifurcation parameter ζ: η = 20
3 , ξ = 0,Z = 1, E = 143

320 , R
Z = 7

16 .

(2) bifurcation parameter η: ζ = 1
10 , ξ = 0, Z = 1, E = 143

320 , R
Z = 7

16 .

(3) bifurcation parameter ξ: ζ = 1
10 , η = 20

3 , Z = 1, E = 143
320 , R

Z = 7
16 .

(4) bifurcation parameter E: ζ = 1
10 , η = 20

3 , ξ = 0, Z = 1, R
Z = 7

16 .

Representative iterative paths in bifurcation diagrams of Figures 13–16 are illustrated
in Figures 17–20, respectively. Graphical iterations in these figures are illustrated by
60 iterations such that the iterations from first until 40 are not used in the total 100 iterations.
Since the voltage maps are composite maps consisting of incident waves or reflected waves,
etc., it takes too much computation time to obtain bifurcation diagrams with Lyapunov
exponents in Figures 13–16. Therefore, the number of iterations for the voltage maps is
intentionally reduced.

Figure 13. Bifurcation diagram with ζ parameter.

Figure 14. Bifurcation diagram with η parameter.
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Figure 15. Bifurcation diagram with ξ parameter.

Figure 16. Bifurcation diagram with E parameter.

Figure 17. Iterative paths with the initial point: v0 = 0.5. (a) ζ = 0.1. (b) ζ = 0.2. (c) ζ = 0.3.

Figure 18. Iterative paths with the initial point: v0 = 0.5. (a) η = 6.7. (b) η = 6.8. (c) η = 6.9.
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Figure 19. Iterative paths with the initial point: v0 = 0.5. (a) ξ = 0.1. (b) ξ = 0.2. (c) ξ = 0.3.

Figure 20. Iterative paths with the initial point: v0 = 0.5. (a) E = 0.44. (b) E = 0.445. (c) E = 0.45.

6. Conclusions

1. We have described an implicit 1-D map of the incident and reflected waves that is
derived from a lossless transmission line circuit with a dc bias voltage source in series
with a load resistor at one side terminal and with a three-segment piecewise linear
resistor at another side terminal.

2. We have provided Theorem 1 establishing a 1-D map such as an incident wave:
ψ(τ − 1)→ a reflected wave: φ(τ); Corollary 1 establishing 1-D map such as an
incident wave: ψ(τ − 1)→ a reflected wave: φ(τ); and Corollary 2 establishing 1-D
map such as a voltage: v(τ − 1

2 , 1
2 )→ a voltage: v(τ + 1

2 , 1
2 ) in the case of Nagumo’s

3SPWL resistor or TD 3SPWL Resistor at the side terminal: x = 1
2 .

3. We have provided Theorem 3 such as an easy-to-use sufficient condition implying
formal chaos existence in Definition 1.

4. We have provided Theorem 2 to guarantee that for any initial point, every orbit by
the iteration of the 1-D map ultimately penetrates in an invariant interval.

5. We have provided Theorems 2 and 5 to guarantee that the dynamics of the second
iterate map of the 1-D map on an invariant subset of the invariant interval has
formal chaos.

6. We have found that formal chaos exists under the condition such that Vmax = 10 [V],
Z = 300 [Ω], bp = 3

50 , r = 3
25 , η = 20

3 , ζ = 1
10 , E = 143

320 , and R = 7
16 .

7. We have obtained the codimension of one type of four various bifurcation diagrams
including the found formal chaos, with one of the bifurcation parameters: ζ, η, ξ, or E.
From each bifurcation diagram with the Lyapunov exponent, the obsavability of the
found formal chaos is considered to be rather high.

8. As with the case of [12] such that the hidden dynamics of the circuit based on the
integrated device has been unveiled on the basis of an analogy with the well-known
Colpitts oscillator with the chaotic oscillations, we think that the hidden dynamics
of imperfect transmission lines with parasitic effects and nonidealities inside real
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integrated devices can be unveiled on the basis of an analogy with the transmission
line circuit of Equations (2)–(6) with formal chaos and that the parameters of the hidden
dynamics can also be estimated by synchronizing a transmission line circuit with the
chaotic oscillations acquired from the experimental circuit.

9. We will report bifurcation processes with each of bifurcation parameters, Z or R,
because nonlinear phenomena such as intermittency of chaos or blue sky bifurcation are
observed in simulations.

10. We will establish a method to find the bifurcation parameter ranges such that formal
chaos exists for applications relative to several digital communication systems.
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Appendix A. Proofs of Theorems and Corollaries

Proof of Theorem 1. Each of the proof for the case k = N, or T, is given as follows.

1. In the case of k = N: By using Equations (5) and (8), the break points (−(1 −
ξ)bp, fN(−(1− ξ)bp, ζ, η, ξ)) and ((η + ξ)bp, fN((η + ξ)bp, ζ, η, ξ)) are transformed
into (ψN1, φN1) and (ψN2, φN2), respectively, such that the following is the case.

ψN1 =
1
2

(
−(1− ξ) +

ζ

r

)
bp, φN1 =

1
2

(
(1− ξ) +

ζ

r

)
bp,

ψN2 =
1
2

(
η + ξ − ζη

r

)
bp, φN2 =

1
2

(
−(η + ξ)− ζη

r

)
bp.

ψN2 > ψN1 and φN1 > φN2 hold because ψN2 − ψN1 =
bp(η + 1)(r− ζ)

2r > 0 and

φN1 − φN2 =
bp(η + 1)(r + ζ)

2r > 0, respectively. Since (ψ, φ)-coordinate system is
identical with the −π/4 rotation of (v, i)-coordinate system and ψN2 > ψN1 and
φN1 > φN2, as shown in Figure A1, φ(τ) is explicitly described by a three-segment
piecewise linear function of Equation (16). 0 < 1− r < 1, 1 < 1+ r < 2, 0 < r− ζ < r,
and r + ζ < 2r hold because of the conditions such that 1 > r > ζ > 0 and η > 1.

Therefore, 0 < DχN1 =
(1− r)
(r + 1) < 1, −1 > DχN2 =

(ζ + r)
(ζ − r) , and 0 < DχN3 =

(1− r)
(r + 1) < 1 hold.
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2. In the case of k = T: By using Equations (6) and (8), the break points ((1+ ξ)bp, fT((1+
ξ)bp, ζ, η, ξ)) and ((η + ξ)bp, fT((η + ξ)bp, ζ, η, ξ)) are transformed into (ψT1, φT1)
and (ψT2, φT2), respectively, such that the following is the case:

ψT1 =
1
2

(
1 + ξ +

1
r

)
bp, φT1 =

1
2

(
−1− ξ +

1
r

)
bp,

ψT2 =
1
2

(
η + ξ +

1− ζ(η − 1)
r

)
bp,

φT2 =
1
2

(
−η − ξ +

1− ζ(η − 1)
r

)
bp.

ψT2 > ψT1 and φT1 > φT2 hold because ψT2 − ψT1 =
bp(η − 1)(r− ζ)

2r > 0 and

φT1 − φT2 =
bp(η − 1)(r + ζ)

2r > 0, respectively. Since the (ψ, φ)-coordinate system
is identical with the −π/4 rotation of (v, i)-coordinate system and ψT2 > ψT1 and
φT1 > φT2, as shown in Figure A2, φ(τ) is explicitly described by a three-segment
piecewise linear function of Equation (16). 0 < 1− r < 1, 1 < 1+ r < 2, 0 < r− ζ < r,
r + ζ < 2r, 1 < 2− r < 2, and 2 < r + 2 < 3 hold because of the conditions such that

1 > r > ζ > 0 and η > 1. Therefore, 0 < DχT1 =
(1− r)
(r + 1) < 1, −1 > DχT2 =

(ζ + r)
(ζ − r) ,

and 0 < DχT3 =
(2− r)
(r + 2) < 1 hold.

Figure A1. The characteristics of Nagumo’s 3SPWL Resistor in (ψ, φ) and (v, i) coordinate systems.

Figure A2. The characteristics of TD 3SPWL Resistor in (ψ, φ) and (v, i) coordinate systems.

The proof is now complete.

Proof of Corollary 1. With the substitution of Equations (16) into (9), ψ(τ) = hk(ψ(τ− 1)),
that is, Equation (17) is easily obtained. Then, 0 < 1− R < 1 and 1 < 1 + R < 2, that is,
0 < 1−R

1+R < 1 hold because 1 > R > 0. Therefore, under the conditions of Corollary 1,

0 < Dhk1 = (1−R)Dχk1
1+R < 1, −1 > Dhk2 = (1−R)Dχk2

1+R , and 0 < Dhk3 = (1−R)Dχk3
1+R < 1 hold.

Proof of Corollary 2. The 1-D map in Corollary 2 is easily derived from Equations (7), (8),
and (10); Corollary 1; and Theorem 1.
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Proof of Theorem 2. Under the conditions that Theorem 2 holds, the following is the case.
In the case of k = T: It is easy to check the following properties: (1) ψT∗ > 0 holds

because r − ζ > 0 and r − Rζ > 0. (2) ψT∗ − ψT1 =
bp(ζ−r)(R+r(1+ξ))

2r(r−Rζ)
+ E(r−ζ)

2(r−Rζ)
> 0 and

ψT2 − ψT∗ = −
(ζ−r)((η+ξ)r+(1+(1−η)ζ)R)bp

2r(r−Rζ)
− E(r−ζ)

2(r−Rζ)
> 0, i.e., ψT∗ ∈ [ψT1, ψT2] hold in the

case of E > bp(1 + ξ + R
r ) and E < bp(η + ξ + (1−(η−1)ζ)R

r ).

Therefore, in the case of E > bp(1 + ξ + R
r ) + bp

(η−1)(r−ζ)(1+R)
2r and E < bp(η + ξ +

(1−(η−1)ζ)R
r ) − bp

(η−1)(r−ζ)(1+R)
2r , ψT∗ ∈ [ψT1, ψT2] obviously holds because

bp
(η−1)(r−ζ)(1+R)

2r > 0. Furthermore, for all x such as x < ψT1, (DhT1 − 1)(x− ψT1) > 0
holds because (DhT1 − 1) < 0 and (x− ψT1) < 0 for all x such as x < ψT1. E

1+R + (DhT1 −
1)ψT1 =

bp(r−ζ)(η−1)
2r > 0 holds in the case of E > bp(1 + ξ + R

r ) + bp
(η−1)(r−ζ)(1+R)

2r .
Therefore, for all x such as x < ψT1, the following is the case.

hT(x)− x = (DhT1 − 1)(x− ψT1) +
E

1 + R
+ (DhT1 − 1)ψT1 > 0.

(A1)

In a similar manner as the above, for all x such as x > ψT2, (1− DhT3)(x− ψT2) > 0
holds because (1− DhT3) > 0 and (x− ψT2) > 0 for all x such as x > ψT2.

− E
1+R + (1 − DhT3)ψT2 =

bp(r−ζ)(η−1)
2r > 0 holds in the case of E < bp(η + ξ +

(1−(η−1)ζ)R
r )− bp

(η−1)(r−ζ)(1+R)
2r .

Therefore, for all x such as x > ψT2, the following is the case.

x− hT(x) = (1− DhT3)(x− ψT2)−
E

1 + R
+ (1− DhT3)ψT2 > 0.

(A2)

It is easy to check that ψT∗ = hT2(ψT∗) and DhT2 < −1. Thus the 1-D map:
ψ(τ) = hT(ψ(τ − 1)) has a unique unstable fixed point ψT∗(> 0) in the interval [ψT1, ψT2].

In the case of k = N: It is easy to check the following properties: (1) ψN∗ > 0 holds

because r− ζ > 0 and r− Rζ > 0. (2) ψN∗ − ψN1 =
bp(r−ζ)(r(1−ξ)−Rζ)

2r(r−Rζ)
+ E(r−ζ)

2(r−Rζ)
> 0 and

ψN2 − ψN∗ =
(r−ζ)(ξr+η(r−Rζ))bp

2r(r−Rζ)
− E(r−ζ)

2(r−Rζ)
> 0, i.e., ψN∗ ∈ [ψN1, ψN2] hold in the case of

E > bp(ξ +
Rζ−r

r ) and E < bp(ξ − η(Rζ−r)
r ).

Furthermore, for all x such as x < ψN1, (DhN1 − 1)(x − ψN1) > 0 holds because
(DhN1 − 1) < 0 and (x− ψN1) < 0 for all x such as x < ψN1. E

1+R + (DhN1 − 1)ψN1 > 0

holds in the case of E > bp(ξ +
Rζ−r

r ).
Therefore, for all x such as x < ψN1, the following is the case.

hN(x)− x = (DhN1 − 1)(x− ψN1) +
E

1 + R
+ (DhN1 − 1)ψN1 > 0.

(A3)

In the similar way above, for all x such as x > ψN2, (1− DhN3)(x− ψN2) > 0 holds
because (1 − DhN3) > 0 and (x − ψN2) > 0 for all x such as x > ψN2. − E

1+R + (1 −
DhN3)ψN2 > 0 holds in the case of E < bp(ξ − η(Rζ−r)

r ).
Therefore, for all x such as x > ψN2, the following is the case.

x− hN(x) = (1− DhN3)(x− ψN2)−
E

1 + R
+ (1− DhN3)ψN2 > 0.

(A4)
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It is easy to check that ψN∗ = hN2(ψN∗) and DhN2 < −1. Thus, the 1-D map ψ(τ) =
hN(ψ(τ − 1)) has a unique unstable fixed point ψN∗(> 0) in the interval [ψN1, ψN2].

Item 1 is proved.
Next, under the conditions that Theorem 2 holds, the following is the case.
In the case of k = T, it is easy to check the following properties.
(1) 0 < DhT1 < 1, DhT2 < −1, and 0 < DhT3 < 1 hold from Corollary 1. (2) hT(ψT1) >

ψT2 because hT(ψT1)− ψT2 > 0 holds in the case of E > bp(1 + ξ + R
r ) + bp

(η−1)(r−ζ)(1+R)
2r .

(3) ψT1 > hT(ψT2) because ψT1 − hT(ψT2) > 0 holds in the case of E < bp(η + ξ +
(1−(η−1)ζ)R

r )− bp
(η−1)(r−ζ)(1+R)

2r .

In the case of k = N, it is easy to check the following properties: (1) 0 < DhN1 < 1,
DhN2 < −1, and 0 < DhN3 < 1 hold from Corollary 1. (2) hN(ψN1) > ψN2 because
hN(ψN1)− ψN2 > 0 holds in the case of E > bp(ξ + Rζ−r

r ). (3) ψN1 > hN(ψN2) because

ψN1 − hN(ψ2) > 0 holds in the case of E < bp(ξ − η(Rζ−r)
r ).

Therefore, there exists interval Ikψ = [hk(ψk2), hk(ψk1)]⊃ [ψk1, ψk2] such that hk(ψk2) <
ψk1 < ψk2 < hk(ψk1). Furthermore, in the interval [hk(ψk2), ψk1] ⊂ Ikψ, hk has a positive
slope Dhk1 such as 0 < Dhk1 < 1. In the interval [ψk1, ψk2] ⊂ Ikψ, hk has negative slope
Dhk2 such as Dhk2 < −1. In the interval [ψk2, hT(ψk1)] ⊂ Ikψ, hk has positive slope Dhk3
such as 0 < Dhk3 < 1.

Then, hk(ψk1)− hk(hk(ψk1)) = hk(ψk1)− (hk(ψk2)+Dhk3(hk(ψk1)−ψk2)) > hk(ψk1)−
(hk(ψk2) + (hk(ψk1)− ψk2)) = ψk2 − hk(ψk2) > 0 holds because hk(hk(ψk1)) = hk(ψk2) +
Dhk3(hk(ψk1) − ψk2) < hk(ψk2) + (hk(ψk1) − ψk2) holds. In the similar way above,
hk(hk(ψk2)) − hk(ψk2) = hk(ψk1) − Dhk1(ψk1 − hk(ψk2)) − hk(ψk2) > hk(ψk1) − (ψk1 −
hk(ψk2))− hk(ψk2) = hT(ψk1)−ψk1 > 0 holds because hk(hk(ψk2)) = hk(ψk1)−Dhk1(ψk1−
hk(ψk2)) > hk(ψk1) − (ψk1 − hk(ψk2)) holds. Therefore, it is confirmed that hk(ψk1) =
maxx∈Ikψ

hk(x) and hk(ψk2) = minx∈Ikψ
hk(x). Thus hT(Ikψ) ⊂ Ikψ holds.

Item 2 is proved.
Finally for any ψ0 ∈ Ikψ, clearly hk(ψ0) ∈ Ikψ. for any ψ0 ∈ (−∞, ψk1), hk(ψ0) > ψ0

from Equation (A1) or Equation (A3). hj
k(ψ0) ∈ (−∞, ψk1), j(> 0) ∈ Z is a monotonically

increasing sequence. Therefore, for any ψ0 ∈ (−∞, ψk1), there exists jth iterate of hk such
that hj

k(ψ0) ∈ Ikψ, j(> 0) ∈ Z . In the similar way for any ψ0 ∈ (ψk2, ∞), hk(ψ0) < ψ0

from Equation (A2) or Equation (A4). hj
k(ψ0) ∈ (ψk2, ∞), j(> 0) ∈ Z is a monotonically

decreasing sequence. Therefore, for any ψ0 ∈ (ψk2, ∞), there exists jth iterate of hk such
that hj

k(ψ0) ∈ Ikψ, j(> 0) ∈ Z . Item 3 is proved. The proof is now complete.

Proof of Theorem 3. To prove theorem 3, we follow Devaney or Aoki’s line for “ϕ has a
homoclinic point” implying Definition 1 in [15,21]. First of all, we introduce the following
definitions, propositions, and notations that are used throughout the proof:

Definition A1 (Devaney [15]). Σ2 = {s = (s0s1s2 . . .)| sj = 0 or 1}.

Σ2 is called the sequence space on the two symbols 0 and 1. Elements of Σ2 are infinite
sequences of integers, such as (000 . . .) or (0101 . . .). We may make Σ2 into a metric space
as follows. For two sequences s = (s0s1s2 . . .) and t = (t0t1t2 . . .), define the distance
between them by d(s, t) = ∑∞

i=0
|si−ti |

2i . Since |si − ti| is either 0 or 1, this infinite series is
dominated by the geometric series ∑∞

i=0
1
2i = 2; therefore, it converges.

Definition A2 (Devaney [15]). The shift map σ : Σ2 → Σ2 is given by σ(s0s1s2 . . .) =
(s1s2s3 . . .).

The shift map simply “forgets” the first entry in a sequence, and shifts all other entries
one place to the left. Clearly, σ is a two-to-one map of Σ2, as s0 may be either 0 or 1.
Moreover, in the metric defined above, σ is a continuous map.
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Proposition A1 (Devaney [15]). d(s, t) is a metric on Σ2.

Proposition A2 (Devaney [15]). Let s, t ∈ Σ2 and suppose si = ti for i = 0, 1, . . . , n. Then,
d(s, t) ≤ 1

2n . Conversely, if d(s, t) < 1
2n , then si = ti for i = 0, 1, . . . , n.

Proposition A3 (Devaney [15]). σ : Σ2 → Σ2 is continuous.

Definition A3 (Devaney [15]). The itinerary of x is a sequence S(x) = s0s1s2 . . . where sj = 0
if f j(x) ∈ I0, sj = 1, if, f j(x) ∈ I1.

Thus, the itinerary of x is an infinite sequence of 0s and 1s. That is, S(x) is a point
in the sequence space Σ2. We think of S as a map from Λ to Σ2. This map has several
interesting properties.

Let J ⊆ I0 or J ⊆ I1 be a closed interval. Let f−n(J) = {x ∈ I0 ∪ I1| f n(x) ∈ J, n ≥ 1}.
f 0(J) = J. Since item A1 above holds, f−n(J) exists as the preimage of J under func-
tions f n(x).

Let Is0s1 ...sn = ∩0≤k≤n f−k(Isk )
= ∩0≤k≤n( f k(I0 ∪ I1) ∩ Isk ) = {x ∈ I0 ∪ I1|x ∈ Is0 , f (x) ∈ Is1 , f 2(x) ∈ Is2 , . . . , f n(x)

∈ Isn} = Is0 ∩ f−1(Is1) ∩ . . . ∩ f−n(Isn) = Is0 ∩ ( f (I0 ∪ I1) ∩ Is1) ∩ . . . ∩ ( f n(I0 ∪ I1) ∩ Isn).
f−1(J) consists of two closed subintervals, one in I0 and one in I1. Hence, f−1(I0 ∪ I1)

consists of four disjoint closed subintervals, two in I0 and two in I1. Similarly, in general,
f−n(J) consists of 2n closed subintervals, 2n−1 in I0 and 2n−1 in I1. Hence, f−n(I0 ∪ I1)
consists of 2n+1 disjoint closed subintervals, 2n in I0 and 2n in I1. Then, the sequence
Is0s1 ...sn is not empty. We have ∩0≤k≤n f−k(I0 ∪ I1) = ∩0≤k≤n( f k(I0 ∪ I1) ∩ (I0 ∪ I1)) =
∩0≤k≤n f k(I0 ∪ I1) = ∪s0s1 ...sn=0,1 Is0s1 ...sn . First, we consider the properties of the sequence
Is0s1 ...sn . Note that Is0s1 ...sn = Is0 ∩ f−1(Is1s2 ...sn) and Is0s1 ...sn = Is0s1 ...sn−1 ∩ f−n(Isn) ⊂
Is0s1 ...sn−1 hold. We may assume that Is1s2 ...sn is a nonempty subinterval so that, by the
observation above, f−1(Is1s2 ...sn) consists of two closed intervals, one in I0 and one in I1.
Hence, Is0 ∩ f−1(Is1s2 ...sn) is a single closed interval. Is0s1 ...sn forms a nested sequence of
nonempty closed intervals because Is0s1 ...sn = Is0s1 ...sn−1 ∩ f−1(Isn) ⊂ Is0s1 ...sn−1 .

Therefore, we conclude that ∩0≤n≤∞ Is0s1 ...sn is nonempty closed, set and Λ is also
nonempty closed set such that Λ = ∩0≤n≤∞ f n(I0 ∪ I1) = ∩0≤n≤∞ f−n(I0 ∪ I1) = ∪s0s1 ...=0,1
(∩0≤n≤∞ Is0s1 ...sn).

Secondly, we show that S is one to one. Let x, y ∈ Λ and suppose S(x) = S(y). Then,
for each n, f n(x) and f n(y) lie on the same interval I0 or I1. This implies that f is monotone
on the interval between f n(x) and f n(y). Consequently, all points in this interval remain
in I0 ∪ I1 when we apply f . Now, |D f | > K > 1 at all points in this interval; thus, as in
item A2, each iteration of f expands this interval by a factor of K. Hence, the distance
between f n(x) and f n(y) grows without bound, so these two points f n(x) and f n(y) must
eventually lie on I0 and I1 (or I1 and I0), respectively. This contradicts the fact that they
have the same itinerary.

Thirdly, to see that S is onto, let s = (s0s1s1 . . .). We must produce x ∈ Λ with S(x) = s.
Note that if x ∈ ∩0≤n≤∞ Is0s1 ...sn , then x ∈ Is0 , f (x) ∈ Is1 , etc. Hence, there exists x ∈ Λ
such that S(x) = (s0s1s1 . . .). This proves that S is onto. Observe that x ∈ ∩0≤n≤∞ Is0s1 ...sn

consists of a unique point because S is one to one. In particular, we have that diameter of
Is0s1 ...sn tending to 0 as n→ ∞.

Furthermore, to prove the continuity of S, we choose x ∈ Λ and suppose that
S(x) = (s0s1s2 . . .). Let ε > 0. Pick n so that 1/2n < ε. Consider the closed subinter-
vals It0t1 ...tn defined above for all possible combinations t0t1 . . . tn. These subintervals
are all disjoint, and Λ is contained in their union. These are 2n+1 such intervals, and
Is0s1 ...sn is one of them. Hence, we may choose δ such that |x − y| < δ and y ∈ Λ im-
plies that y ∈ Is0s1 ...sn . Therefore, S(y) agrees with S(x) in the first n + 1 terms. Thus, by
Proposition A2, we have d(S(x), S(y)) ≤ 1

2n < ε. This proves the continuity of S. Since Λ
is compact (bounded closed sets) and S is continuous and one to one, S−1 is also continuous.
Thus, S is a homeomorphism.
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Finally, to prove that S ◦ f = σ ◦ S, i.e., S provides an equivalence between the
dynamics of f on Λ and σ on Σ2. Let x0 ∈ Λ and suppose that S(x0) = (s0s1s2 . . .). Then,
we have x0 ∈ Is0 , f (x0) ∈ Is1 , f 2(x0) ∈ Is2 and so forth. However, the fact that f (x0) ∈
Is1 , f 2(x0) ∈ Is2 , etc., says that S( f (x0)) = (s1s2s3 . . .), so S( f (x0)) = σ(S(x0)), which is
what we wanted to prove. The proof is now complete.

Proof of Theorem 4. LetR be the set of real numbers. Under the conditions that Theorem 4
holds, it is easy to check the following properties: (1) the break points − (k1−n1)k1

n1−1 (< 0)

and − (k2−n1)k1
n1−1 (< 0) are given by the solutions of {x ∈ R|H1(x) = k1} and {x ∈

R|H1(x) = k2}, respectively. (2) The break points of H(xn): k1 and k2 are also the
break points of H2(xn). (3)The break points k2 − k2(k2 − k1) and k2(1 − k1) + k2

1 are
given by the solutions of {x ∈ R|H2(x) = k2} and {x ∈ R|H2(x) = k1}, respec-
tively. (4) 0 < k1 < k2 − k2(k2 − k1) < k2(1− k1) + k2

1 < k2 holds because k2 − (k2(1−
k1) + k2

1) = k1(k2 − k1) > 0, k2(1− k1) + k2
1 − (k2 − k2(k2 − k1)) = (k2 − k1)

2 > 0 and

k2 − k2(k2 − k1)− k1 = (1− k2)(k2 − k1) > 0 hold. (5) The break points k2 +
k1(1−k2)

n2
and

k2 +
k2(1−k2)

n2
are given by the solutions of {x ∈ R|H3(x) = k1} and {x ∈ R|H3(x) = k2},

respectively. (6) k2 < k2 +
k1(1−k2)

n2
< 1 < k2 +

k2(1−k2)
n2

holds because k2 +
k2(1−k2)

n2
− 1 =

(1− k2)(
k2
n2
− 1) > 0 and 1− (k2 +

k1(1−k2)
n2

) = (1− k2)(1− k1
n2
) > 0 hold.

Furthermore, |DH1H1| < 1 because 0 < (1− n1), k1 < 1 and 1− n1 < k1. |DH2H2| >
1 because 0 < k1, k2 < 1, k1 < k2, and 0 < k2 − k1 < 1. |DH3H3| < 1 because 0 <
(1− k2), n2 < 1 and k2 < 1− n2. |DH3H1| = |DH1H3| < 1 because 1− n1 < k1 and
k2 < 1− n2. |DH3H2| = |DH2H3| > 1 because 0 < k2− k1 < 1, and n2 > (k2− k1)(1− k2).
|DH1H2| = |DH2H1| > 1 because 0 < k2 − k1 < 1 and 1− k1(k2 − k1) > n1. The proof is
now complete.

Proof of Theorem 5. Under the conditions of Theorem 5, Theorem 4 holds. In the fol-
lowing, H2(Ψ) is given by the map of Theorem 4. Then H2(k2 − k2(k2 − k1)) = 0,
H2(k2(1− k2) + k2

1) = 1, and [0, 1] = {Ψ|H2(Ψ) = H2H2(Ψ), Ψ ∈ I0}. Therefore, clearly
I0 ∪ I1 ⊂ H2(I0).

∣∣DH2(Ψ)
∣∣ > 1 also holds for Ψ ∈ I0 because

∣∣DH2(Ψ)
∣∣ = |DH2H2(Ψ)| >

1. H2(k2 +
k1(1−k2)

n2
) = 1, H2(1) = k2−n2

k2−k1
, and [ k2−n2

k2−k1
, 1] = {Ψ|H2(Ψ) = H2H3(Ψ), Ψ ∈ I1}.

Therefore, I0 ∪ I1 ⊂ H2(I1) holds because k2 − k2(k2 − k1) >
k2−n2
k2−k1

holds.
∣∣DH2(Ψ)

∣∣ > 1
also holds for Ψ ∈ I1 because

∣∣DH2(Ψ)
∣∣ = |DH2H3(Ψ)| > 1. Thus, item 1 is proved.

Next to prove the item 2, it is sufficient that H2 is considered as the map f in Theorem 3.
Under the item 1 condition, H2 is satisfied with the condition of Theorem 3. The item 2 is
also proved. The proof is now complete.
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