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Abstract: Industry 4.0 is focused on the task of creating Smart Factories, which require the automation
of traditional industrial processes and the fully connection and integration of different systems and
devices. However, despite the wide availability of tools and technology, developing intelligent
applications in the industry framework remains a complex and expensive task. This paper proposes
a lightweight, extensible and scalable framework called IoT Helper to facilitate the adoption of
IoT and IIoT solutions both in industry and domotics. The framework is designed to be highly
flexible and declarative in nature, thus allowing for a wide range of configurations with minimal
user efforts. To emphasize the practical applicability or our proposal, we present two real-life use
cases where the framework was successfully adopted. We also investigate a crucial aspect of these
applications, i.e., what level of scalability can be achieved with a lean generic framework based
on inexpensive components such as ours. Comprehensive experimental results show the excellent
cost-to-performance ratio of our solution. We consider this to be an important contribution because it
paves the way for a more widespread adoption of IIoT-enabling technologies in industry.

Keywords: embedded-system control; edge computing; Internet of Things; open-source software;
smart manufacturing

1. Introduction

Industry 4.0, or the fourth industrial revolution [1], brings smart factories at the center
of the technology spectrum. A smart factory integrates different systems to enable machine–
machine and human–machine cooperation. A key enabling technology in this framework
is the so-called Internet of Things (IoT) or, even better, its industrial counterpart, called
Industry Internet of things (IIoT) [2,3].

IoT and IIoT differ in several respects, as we discuss in Section 2, but they share two
fundamental aspects that motivate this work.

On the one side, IoT and IIoT architectures share the common feature of potentially
generating big data, i.e., very large quantities of data that need to be collected, processed
and analyzed often in near real-time, thus imposing strict requirements in terms of timing,
frequency of operations and throughput. In fact, these architectures are considered as
paradigmatic sources of Big Data [4]. Therefore, it is crucial that frameworks conceived for
these tasks are able to scale to such large volumes of data.

On the other side, we notice that in both in the larger context of IoT applications and
in the more specific one of industrial IoT there is a strong need for generic tools that allow
for quick integration of existing machinery. This is true in domotics, where very often
appliances are not IoT–enabled and, therefore, require tools that can bridge the gap towards
the goal of integration and remote control. However, it is especially true in industry. In
fact, the following is true:
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• Industrial machinery is not always equipped with sensors and/or actuators. Even
when some sensors/actuators are available, they may not exhaust the needs of all
possible IIoT scenarios.

• When sensors are available, they tend to be quite expensive and often difficult to
configure.

• Finally, industrial sensors are usually not cloud-enabled and, therefore, fail to meet
the Big Data requirements discussed above.

As a consequence, IIoT applications tend to be complex, monolithic projects with high
investments and increased design time. To facilitate the adoption of these technologies, we
believe that for both IoT and IIoT there is a strong need for lean, generic solutions that may
scale nicely up to Big Data scenarios. In this paper, we propose such a solution.

1.1. Contributions

We present an easy-to-go framework called IoT Helper that allows for quick prototyp-
ing in terms of IoT/IIoT-enabled applications. The main contributions made by IoT Helper
are the following:

• We introduce a new framework for monitoring and controlling embedded devices.
The framework is based on a generic architecture that can be used with many classes
of sensors and actuators. Thus, the framework can be effectively used to facilitate the
development of intelligent applications in domotics and industry.

• The system requires minimum configuration and virtually no application logic in
order to remotely access the data and control devices. As a consequence, application
developers can focus on the development of higher-level applications that use data
collected by IoT Helper in order to gain insights.

• IoT Helper is cloud-enabled by default. It is based on a publish-and-subscribe proto-
col for decoupling the production of data from its consumption and may leverage
public-cloud platforms in order to scale to very large volumes of data. At the same
time, coherently with its agile inspiration, the framework also allows for on-premise
deployments that can be preferred in some scenarios due to data protection and
privacy concerns.

• Declarative configuration and architectural flexibility are achieved by means of an
abstract representation of the components of the frameworks, i.e., the embedded
hardware, sensors, actuators, message endpoints and message formats. This concep-
tualization, described in more detail in the following sections, is a crucial component
of our implementation.

• Finally, IoT Helper is based on inexpensive, open-source components from the Arduino [5]
platform. This significantly lowers costs and adoption times and concretely fosters a
more agile approach to IoT and IIoT. In this paper, we discuss how the choices made
in designing the framework help users to quickly prototype working solutions and
to test them. Then, after initial tests are completed, a final development phase of the
missing app components can be started. During this phase, Arduino also allows for
industrializing the production of embedded devices for the production phase, thus,
further lowering costs.

• In the paper we present two concrete application scenarios: The first one is a typical
domotics application for controlling the fan of a fireplace extractor chimney. The
second one is a complex industrial application with respect to monitoring welding
pliers of a robot arm. In addition to these, we report comprehensive experimental
results to study the scalability of our framework. In fact, one of the main questions we
intend to investigate in this paper is what level of scalability can be achieved with a
lean generic framework based on inexpensive components such as ours. We consider
the answer to this question an important contribution of the paper because it proves
that IIoT-enabling techologies can now be considered as a commodity; therefore, users
may be more ambitious in experimenting with their usage.
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1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
introduces the logical architecture. In Section 4, we present two real use cases where we
deployed our solutions, and we describe the real architecture adopted for each of them.
Section 5 presents scalability experiments where we show that low-profile embedded
systems could scale from low throughput scenarios to high throughput scenarios. Finally,
Section 6 concludes the paper.

2. Related Work

There is a vast number of proposals to address the class of applications discussed in
this paper [6,7]. In this section, we classify first the relevant technologies and then propose
a comparison of our proposal to other solutions on the market.

Embedded Systems Modularity, interoperability and real-time orientation are considered
as primary requirements for smart factories [8]. Modularity is important because each
subsystem is designed to perform highly specific tasks, but, at the same time, it should be
able to be combined with other subsystems in order to extend its actions. Interoperability
is mandatory in order for different subsystems to exchange information among each other.
Real-time data analysis is crucial in order to quickly change production configurations and
to react to events.

In this framework, Embedded Systems [9] play a central role in order for achieving
a configurable and programmable architecture. Embedded systems are programmable
modules typically based on low-end hardware that allow one to easily receive raw data
from sensors and generate actions with the actuators. Data received by the sensors represent
the inputs that the system can read. The outputs of the system are the commands sent to
the actuators to generate actions. Thus, an embedded system can be observed as a generic
program that manages inputs and outputs and can be easily configurable.

Arduino (https://www.arduino.cc/, (accessed on 15 October 2021)) is a highly ex-
tensible embedded system used in most laboratory experiments with a wide range of
usages [5,10,11] that is also characterized by very low costs in the range of USD 30 or even
less. A more recent alternative is Espruino (https://www.espruino.com/, (accessed on 15
October 2021)). Espruino is as equally inexpensive as Arduino with respect to higher-end
solutions and introduces a number of interesting features, namely the use of the JavaScript
programming language in place of C/C++ and an improved Integrated Development
Environment with a nice graphical editor for code. Espruino is largely compatible with
Arduino shields. Tasmota (https://tasmota.github.io/, (accessed on 15 October 2021)) is
another alternative, based on ESP hardware, similarly to Espruino.

Higher-range devices include Raspberry Pi (https://www.raspberrypi.org/, (accessed
on 15 October 2021)). Raspberry PI devices provide more flexibility with respect to Arduino-
like ones both in terms of operating system, programming language and extensibility. They
also have higher prices.

Our proposed architecture is agnostic of the hardware so that a variety of embedded
system can be used. In our deployed version, we used Arduino because the primary goals
of this paper is to investigate scalability issues on inexpensive hardware. However, we
have an almost complete port of the framework for Raspberry Pi, and porting to Espruino
is planned as future work.

Classification of application scenarios and architectures. Most of the proposed solutions
are domain-specific, ranging from performance evaluation of employees [12] and supply-
chain management [13] to production monitoring [14] using SOA [15] architectures. Early
efforts have been made to generalize environmental monitoring applications [16]. Indeed,
IIoT [2] differs from IoT in two several respects:

• The main goal of IIoT is the interconnection of industrial machinery rather than
human-to-machine interaction;

https://www.arduino.cc/
https://www.espruino.com/
https://tasmota.github.io/
https://www.raspberrypi.org/
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• IIoT assumes the presence of a structured, centralized network in which most of the
nodes—i.e., machines—are fixed and known in advance; therefore, there is little to no
focus on extensible network architectures in which peers may freely join and leave;

• IIoT is usually deployed in mission-critical scenarios in which data integrity and
preservation are a primary concern.

Industry networks [3] are composed of edge nodes, i.e., the peripheral nodes where
sensors and actuators are located. Edge nodes are the ones that produce data. In addition
to edge nodes, intermediary nodes manage a small portion of the produced data. Typically,
such intermediate nodes are specialized in task-specific analyses. Finally, centralized
nodes are responsible for collecting and processing the dataset in order to derive useful
information from it.

Based on where data are processed, it is possible to have three types of network
architectures [17]:

• The first type is the traditional on-premise or cloud-based architecture where data from
edges nodes are directly processed and managed in servers, either locally or in the
cloud. This category of solutions that is still the most widely adopted suffers from
latency problems in real-time applications with very-high volumes of data due to
the latency of sending the data to servers [17] and, therefore, might be unsuitable for
some scenarios in which data must be processed in real time.

• The alternative is edge computing, where data are processed and consumed directly in
edge nodes. This solves the latency problem but incurs other limitations. In fact, edge
nodes suffer from low or limited resources that limit computational power.

• A further alternative is fog computing where computational tasks are demanded to
intermediary nodes in the network. Edge nodes produce data. Intermediary nodes
pre-process and consume data for real-time analysis and then send processed data to
the cloud for further analysis or storage.

A flexible IIoT framework should not be based on a fixed network architecture, but it
should be flexible enough to accommodate for mixed approaches and take advantages or
the pros of each of them.

In this paper, we concentrate primarily on on-premise and cloud-based scenarios
for several reasons. First, these still represent the most frequent case in both IoT and
IIoT. Second, edge computing and fog computing impose both higher costs due to the
need of more capable embedded systems and higher complexity in coding and debugging.
However, the main reason is of a methodological nature. Our study aims at measuring the
trade-offs between hardware costs and scalability. In order to measure scalability, we need
to be able to assess the capability of the architecture in order to generate data at the edge
node and to process them at the servers. In an edge computing scenario, the embedded
hardware not only collects data but also needs to process them. Therefore, the overall data
collection and processing rate depends on the complexity of edge computations.

Communication Protocols. Multiple protocols [18] were proposed to address the problem
of communicating among modules of an IoT/IIoT application. Broadly speaking, it is
possible to group protocols into two main categories, as described below.

• Client-Server protocols work in a point-to-point fashion and require direct commu-
nication between modules. To provide an example, in order to obtain the reading
of a sensor, a client app needs to contact the embedded hardware directly through
the network. The main ones are XMPP and CoAP. XMPP (Extensible Messaging and
Presence Protocol) is based on the exchange of XML messages. It is widely used in
device-to-people communication such as control remote devices. CoAP (Constrained
Application Protocol) relies on REST messages. It is used on low power consumption
devices and is recommended in scenarios with a low number of messages exchanged.
These protocols are easier to implement since they do not require the introduction of
mediators within the architecture but show serious limitations in terms of flexibility
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and scalability in real-time applications [19,20]. On the one side, they introduce signif-
icant overhead in those cases in which multiple application modules—e.g., different
instances of a mobile–client app—need to communicate with the base embedded
system. On the other side, the case where real-time sensors generate volumes of data
at a pace that applications cannot handle is very frequent due to the need to store
values and to process and render them for users.

• An alternative is represented by Publish and Subscribe (P&S) protocols such as AMQP or
the most widely used MQTT, the Message Queue Telemetry Transport protocol. P&S
architectures systems exchange messages through middleware components called
message brokers, where publishers push messages and subscribers read them. This
obviously incurs more complexity in setting up the overall architecture, but it solves
the problem of point-to-point protocols. In fact, brokers decouple the generation of
messages from their actual handling, thus allowing for much higher scalability. MQTT
exchanges messages using TCP. A permanent connection between the clients and
the broker is established to exchange those messages through queues or channels.
MQTT is widely used in data communication scenarios such as data collection. AMQP
(Advanced Message Queuing Protocol) adds a security layer based on TLS. It is often
used for data analysis.

To tackle the proliferation of protocols and to render nteroperability between different
systems, Open Mobile Alliance (OMA) proposed a new protocol, OMA Lightweight M2M
(OMA-LwM2M), that introduces a middle layer between servers and clients deployed on
the IoT devices. Recently, OMA-LwM2M also supports P&S using MQTT.

Comparison to Other Solutions. As discussed, many alternatives exist on the market both
in terms of embedded devices, protocols and server or cloud-based solutions. Many of
them require coding specific application logic for the problem at hand. On the contrary, as
it will be discussed in the following sections, a distinguished feature of our approach is
that the framework can be configured in a declarative manner by specifying sensors, i.e.,
input values, and actuators, i.e., actions to be performed on the hardware without any line
of code.

ThingWorx (https://www.ptc.com/it/products/thingworx/, (accessed on 15 October
2021)) and Cumulocity IoT (https://www.softwareag.cloud/site/product/cumulocity-iot.
html, (accessed on 15 October 2021)) are examples of cloud-based platforms for collecting
and processing data gathered by smart embedded devices. However, they do not provide
services in terms of declarative configuration of devices—each embedded devices needs to
be configured offline by the user before connecting it to the plaform—or fast development
of client solutions.

Two proposals that share common goals are Greengrass and Brainboxes. We discuss
these proposals and how they compare to ours in the following.

Greengrass (https://aws.amazon.com/it/greengrass/, (accessed on 15 October 2021))
is a framework for developing IoT applications on the AWS cloud platform. It leverages
the low-level IoT provided within AWS IoT. In essence, in order to develop a Greengrass
application, users need to configure the embedded devices and join them to the project.
Then, they can use Greengrass commands to monitor and collect data from devices. This
can also be performed with an edge-approach by pushing code to embedded devices. A
range of protocols and connectors for different hardware are provided.

The BB400 from Brainboxes (http://www.brainboxes.com/, (accessed on 15 October
2021)) is a commercial, ready-to-use solution for industrial IIoT apps. The BB400 is powered
by a custom Raspberry Pi device integrated with an Arduino board for digital and analog
sensor and actuator control. It has a number of features specifically designed for industrial
environments, such as a protective case for high temperature and a UPS battery. The box is
configured with a proprietary firmware that provides similar features to IoT Helper: (i) it
allows for a declarative configuration of sensors and actuators without the need of writing

https://www.ptc.com/it/products/thingworx/
https://www.softwareag.cloud/site/product/cumulocity-iot.html
https://www.softwareag.cloud/site/product/cumulocity-iot.html
https://aws.amazon.com/it/greengrass/
http://www.brainboxes.com/
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code; (ii) it supports the MQTT protocol; and (iii) it offers a high level interface to ease the
development client code.

Both Greengrass and BB400 are similar to our approach in many respects, but there
are some significant differences. The main ones are the following:

• Greengrass requires the adoption of the AWS cloud platform, while our framework
can also be deployed on-premise; this is an important requirement in many industrial
applications in which security and data protections are primary concerns.

• On the contrary, BB400 provides several connectors and also allows for configuring
on-premises architectures. Still, while IoT Helper uses a declarative approach to
define inputs and outputs and hides the complexity of the underlying architecture
(message format, topics, MQQT brokers and so on), leaving the user to focus on
the client side only, the Brainboxes framework requires the user to explicitly define
the communication flow between the edge node and the server using Node-RED, a
browser-based visual flow editor based on JavaScript.

• One clear difference is represented by the computing power of the required embed-
ded devices: Greengrass relies on the Java platform and, therefore, needs at least a
Raspberry Pi device; BB400 uses a Debian Linux distribution and, therefore, runs
on a combination of both a Raspberry Pi and and Arduino. In both cases, costs are
higher than those incurred by our framework. In fact, a BB400 device is one order of
magnitude more expensive than our solution. Since it is typically needed to configure
many of these devices, often in the order of the dozens, these differences in costs may
be significant.

• Another important aspect is that there is no available data about scalability of these
platforms. On the contrary, a major goal of this paper is to investigate the scalability
limit that can be reached with inexpensive hardware. In fact, we consider this one of
the main contributions of the paper.

To summarize, these products are more suited for higher-end apps with complex
edge-based logic and significantly larger budgets, but they may be unsuitable for rapid-
prototyping of IIoT scenarios where great flexibility is required to design, implement and
test the app in the early stages before committing to a larger investment. On the contrary,
we consider IoT Helper as an ideal solution for this purpose, thus, nicely complementing
the offer of solutions on the market.

3. System Architecture

This section introduces the IoT Helper extensible architecture for monitoring and con-
trolling embedded devices. The flexibility of the approach allows for a very straightforward
integration of such devices into cloud-computing architectures easily, but it can also be used
in fog-computing or even edge-computing solutions, as discussed in Section 2.

Figure 1 shows the core of our proposed architecture. It is composed of the following:

• An Embedded System that acts as the main controller of sensors and actuators deployed
in the solution;

• A Configuration Module that allows users to configure and customize the various
sensors and actuators;

• A Generic Firmware to manage operations, also called commands on connected devices;
• A Message Broker module that decouples the embedded system from external proces-

sors in order to scale up to large volume of data.

At the core of the Embedded System is the Arduino module. Indeed, any sensors or
actuators can be plugged into an Arduino shield. Moreover, it is possible to re-engineer the
shield to customize the hardware to the specific scenario with industrial components. One
of the cons of Arduino is the small memory size. Thus, the firmware that runs in the Flash
Memory should be minimal.
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To achieve high extensibility and improve usability, the Embedded System needs
to be easily configurable. We model sensors as generic inputs and actuators as generic
outputs. The list of the sensors and actuators defines the interface of the embedded system,
which can be observed as a black box. An external system that wants to communicate
with the Embedded System needs to know only its interface without knowing the actual
implementation, which might change over time. This approach, well known in other fields
such as software engineering, allows for the creation of loosely coupled systems.

Message 
Broker

Sensors and Actuators

Embedded System Configuration
Module

External Systems

Publish

Su
bscr

ibe
messa

ge
s

Publish

Subscribe

messages

Communication
Library

Quality Control 
System

Communication
Library

Predictive Maintenance
System

Generic
Firmware

Figure 1. System architecture. Data collection.

For example, suppose that we want to collect data from an analog temperature sensor
and to control the electrical relay of an air conditioner. The interface of the Embedded
System is an analog input temp, and a digital output ac. An external system, such as
a mobile application that wants to read the sensor and control the actuator, will send a
generic message “read input temp” or “change the output of ac to 1” without knowing any
details about the physical connections on the embedded system or the actual circuitry of the
sensors. As a consequence, we can change how the embedded system physically controls
air conditioning from an electrical relay to an infrared actuator, keeping the interface
unchanged without changing the user application.

The Configuration Module describes the inputs and the outputs managed by the
embedded system. Each input is represented by the following: (i) the type, i.e., if it is
analog or digital; (ii) a unique ID used in the firmware for controlling it; (iii) a description
that is useful for documentation and human interpretation; and (iv) the pin(s) where it is
connected to the embedded system. Each output is represented in the same manner as the
input; however, in addition, since it represents an actuator, we also store information about
the allowed values.

Table 1 contains a sample configuration. In this example, we have one temperature
sensor with the name “I1”. In addition, we have two actuators: a digital LED O1 that can
be switched on and off (values 0 or 1); and an analog fan controller O2 that accepts values
from 0 (off) to 6 (maximum speed).
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Table 1. Configuration example. I1 is a digital sensor, O1 is a digital actuator and O2 is an
analog actuator.

Type Typology Name Description Pin Values

Input Digital I1 Temperature Sensor 1

Output Digital O1 Initialization Complete LED 10 {0,1}

Output Analog O2 Fan Speed 12 {0–6}

The Configuration Module also allows for specifying network parameters in order
to connect the Embedded System, typically to a WiFi network. All of the configurations
are stored on file on an external SD card. For practical reasons, we provide a desktop
application with an easy-to-use user interface in order to specify configuration values.

The basic operations executed on the inputs and output are as follows: (a) read an
input value as the state of a sensor or actuator and (b) change the value of an output,
i.e., execute an action on an actuator. Generic Firmware executes such operations. It
implements the following commands:

• Read—read values of inputs I0 . . . In. For example, read temperature and humidity
values from the respective sensors.

• RepeatRead—read of inputs I0 . . . In each n milliseconds. This is useful when we need
continuous read operations with a fixed frequency. This command accepts a parameter
t representing time in milliseconds. This command is used to regularly collect data
from the Embedded System and allows one to minimize the number of requests sent
to the system.

• Write—change values of output O0 to v0, . . . On to vn. For example, switch the LED on
and set the speed of the fan to four.

• TimedWrite—change values of outputs after a fixed delay. For example, switch off the fan
in two hours.

The overall flow-chart of Generic Firmware is shown in Figure 2. When the sys-
tem starts, the Generic Firmware runs some initialization operations: (1) it reads the
configuration file, (2) it configures input and output pins, (3) it starts the WiFi connec-
tion, (4) it initializes the connection with the Message Broker and (5) it starts a timer for
timed commands.

Figure 2. Generic firmware flowchart.
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After initialization, Generic Firmware waits for commands and executes them. Each
command is received as a request message and generates a response, as discussed in
Section 3.1.

Generic Firmware is developed in a C dialect and is released as open source.
It is important to emphasize that the Firmware is designed to be completely generic,

i.e., it is agnostic of the specific sensors and actuators and can be configured to work with
any of these. Indeed, all application-specific logic is coded within the configuration and,
of course, in client applications. Client apps, either Web or mobile, embed all custom
logic and translate input and output values into the specific scenario. This has several
advantages: it makes it easy and relatively inexpensive to turn non-embedded devices and
machinery into IoT-enabled systems. At the same time, it enables quick prototyping of an
end-to-end solution. In fact, in the early stages, the client app can be simulated by using
generic clients, thus allowing users to easily test messages. Then, at later stages, once tests
have been completed and a decision to consolidate the solution has been made, real client
apps can be developed using high-level programming languages and platforms, such as,
for example, Java in decoupled manner from the embedded system. In Section 3.2, we
discuss the support library provided as part of the IoT Helper framework to simplify the
development of client apps.

The final model we discuss is the Message Broker. It handles the exchange of mes-
sages among client apps and the Embedded System, according to the formats described in
Section 3.1. Several communication models can be used to connect nodes in a distributed
environment. A simple one consists of a point-to-point approach, where the Embedded
System directly communicates with every external system. This model, however, presents
several limitations that might have a negative impact on the overall performance of the
architecture. In particular, the following limitations are listed:

• Performance issues: The number of messages is directly dependent on the number
of nodes in the architecture. Since in a common scenario several applications need
to communicate with the embedded system, the latter needs to be able to handle
multiple connections at the same time. This can be considered as the normal behavior
of high-end servers. However, an embedded system, such as Arduino or Raspberry
Pi, has limited concurrent capability. In such systems, every new connection will add
considerable overhead to the system, with a result of unacceptable response time,
especially in a real-time scenario;

• Network issues: In order to establish a direct connection, the embedded system must be
reachable from external applications. If we consider a common domotics scenario, the
embedded system will be connected to the local wireless network, and it can be easily
reached by any other devices connected to the same network. However, to be visible
to an external device, such as a smartphone connected through a mobile network, an
external public IP address is needed, and the routing table of the local network needs
to be properly configured. Both of this steps require complex operations that make
the adoption of the system in small or home environments burdensome.

To solve these problems, we adopt a Publish and Subscribe (P&S) communication
model [21]. The Message Broker stands at the core of this protocol by decoupling the
involved parties, i.e., the message sender (publisher) from the message receiver (subscriber).
The publisher and the subscriber, therefore, do not need to establish direct point-to-point
connection. We can either have multiple publishers that publish messages to one subscriber
or multiple subscribers that receive messages from one publisher at the same time. The
broker is responsible for message routing and distribution.

The main benefits of the P&S approach are that the embedded systems do not know
any other external application but communicates only with the message broker. Adding
new subscribers will not need to modify the publisher’s behavior when they join the
architecture. In addition, publishers and subscribers do not need to be online and ready
simultaneously. Still, the embedded system can publish new data as soon as they are ready
without waiting for the clients. This allows achieving better performance in real-time
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applications. Finally, the only component that needs to be reachable is the Message Broker.
This can be easily obtained by installing the module on a public server or by using a
cloud solution.

Message exchanges are performed using channels (also called queues or topics). A sub-
scriber asks the broker to be notified when a message is published in a channel. Publishers
send messages to channels. The Message Broker module acts as a register of all channels
and their subscribers and publishers.

Several different implementations of the P&S paradigm can be used to deploy the
Message Broker component. One of the most popular is the MQTT open standard [22], a
lightweight protocol designed to be efficient even on small micro-controllers. The protocols
run over TCP/IP, and messages are optimized to reduce network bandwidth. Popu-
lar open-source implementations of MQTTs include Mosquitto, HiveMQ, EMQX and
VerneMQ [23–25]. By using one of these implementations, a Message Broker can be de-
ployed on a local server, on virtual private server or even on a low budget device.

As an alternative to achieving higher scalability and reducing the maintenance cost
of this component, a cloud solution can be adopted. Some well-known software such
as service solutions includes PubNub (https://www.pubnub.com/, (accessed on 15 Oc-
tober 2021)), Google Cloud Pub/Sub (https://cloud.google.com/pubsub/, (accessed on
15 October 2021)) and Ably (https://ably.com/, (accessed on 15 October 2021)). Most of
them also support the MQTT protocol and, therefore, can be seamlessly used within our
framework.

In our architecture, we used two channels: (i) the data channel that manages read
operations, i.e., this channel is used to publish sensors data from the embedded system
to the broker; and (ii) the command channel that stores commands that come from external
systems or devices to the embedded system. In essence, from the point of view of the
embedded system, it registers itself as a subscriber to the data command channel because
it needs to receive messages, process them using Generic Firmware, and execute the
corresponding operations. Generic Firmware also registers itself as a publisher to the
data channel because it sends out input values. The Message Broker registers itself as a
publisher in the command channel because it dispatches messages to the embedded system
and registers itself as a subscriber to the data channel in order to receive data from the
embedded system. The complete architecture is depicted in Figure 1.

Any other external system, such as a database, a monitoring system or an anomaly
detection system, can be easily added to the data and command channels. The external
device registers itself as a publisher for the command channel and subscriber for the data
channel. In this manner, it can send messages to the embedded system and receive data
from the sensors. Of course, any other embedded systems can be plugged into the network
using the same mechanism.

3.1. Data Model

Communication between the embedded system and other devices differs depending
on the type of interaction. Data and command channels physically separate messages
exchanged by the systems. This brings significant advantages in terms of simplicity,
scalability and performance.

The command channel is the one used to send requests to sensors or actions to
the actuators. Data format contains the following: (1) the command typology and (2)
sensors/actuators involved. The format of a request is the following:

/COMMAND_NAME/LIST_OF_SENSORS_ACTUATORS&TOKEN

where

• COMMAND_NAME represents the requested action that we have already discussed, and
the values are read, repeatedRead, write and timedWrite;

• LIST_OF_SENSORS_ACTUATORS represents the name of sensors and actuators to which
we want to send the action. Sensors or actuators are separated by the special character
“&.” Moreover, the name used is the one used in the configuration step;

https://www.pubnub.com/
https://cloud.google.com/pubsub/
https://ably.com/
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• TOKEN represents a key to match different request–response pairs. Since communi-
cation is asynchronous, there is the need to correlate the response to the request. In
real-life scenarios, multiple clients might send requests simultaneously, and since they
will wait for the response on the same channel, they need to filter the response. For
this reason, in the request, the client generates a unique (or random) token that will be
included in the response.

Commands cannot be mixed, i.e., send read and write operations cannot be combined
at the same time. For example, we have the following commands:

#1 /READ/I1&I2&TOKEN=T001;
#2 /WRITE/O1=1&02=255&TOKEN=T002;
#3 /TIMEDWRITE/TIMER=100&O3=1&TOKEN=T018.

Command #1 represents a reading example from two sensors (I1 and I2) associated
with a unique token T001. For example, I1 and I2 could be, respectively, temperature and
humidity sensors. Command #2 represents a written example to two actuators (O1 and
O2). For each actuator, we specify the value to send. With respect to digital actuators, the
admitted values are zero or one (such as O1). For analog actuators, the admitted values
depend on the actuators themselves. O2 is an example of an analog actuator, and we send
a value of 255. Finally, command #3 represents a timedWrite operation on actuator O3. The
operation is executed after 100 seconds. For each of the above commands, a token identifies
the corresponding request generated from the client.

After command execution, the response is published on the data channel. The response
depends on the request type. If the command is a read type, then the response contains
raw data acquired by sensors. If the command is a write type, then the response contains
information about the received message.

For example, the following represents the response to command #1.

{‘‘data ’’:
{
‘‘I1’’: 23,
‘‘I2’’: 0.67

},
‘‘token ’’: ‘‘T001 ’’,
‘‘timestamp ’’: ‘ ‘20210506 T13:38:00’’

}

It contains the raw data from sensors I1 and I2. Raw data are wrapped in the block
“data.” In addition, it contains the token related to the request and the time when the
response is generated.

By executing command #2, we can receive a response such as the following.

{‘‘data ’’:
{

‘‘result ’’: ‘‘SUCCESS ’’
},

‘‘token ’’: ‘‘T002 ’’,
‘‘timestamp ’’: ‘ ‘20210506 T13:39:41’’

}

3.2. Support Library

External systems can be seen as clients that require services from the Embedded
System—acting as a server—through the Message Broker. Clients apps may be implemented
by using any high-level language or platform, such as Java Desktop applications, Android
or iOS mobile applications or low-level firmware. Software developers need to implement
messaging functionalities as described in Section 3.1 to and from the Message Broker.
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To ease the development of such clients, we designed and implemented a support
library in Java and Objective-C. This library offers a high-level interface to communicate
with the framework. The Application Level Interface (API) consists in three main com-
ponents: IClient, Command and PinValue. The UML class diagram [26] is reported in
Figure 3.

PubSubClient

void execute(Command c)

PubNubClient

void execute(Command c)

IClient

void execute(Command c)

MQTTClient

void execute(Command c)

PinValue

String id
Integer value

Command

String typeexecu tes  
1 * 1 *

Figure 3. Support Library UML class diagram.

The Command represents the action that the client wants to execute. A command is
identified by a type, which can be READ, REPEATED_READ, WRITE or TIMED_WRITE, and a list
of PinValue. In the case of a read request, each PinValue contains only the identifier of
the sensor, while the value will be populated after executing the command. For a write
command, the client needs to specify the identifier of the actuator and its new value. The
communication with the Message Broker is managed by the IClient interface that has
several implementations, one for each supported Message Broker. In the current version of
the library, we support MQTT and two SaaS cloud solutions, PubNub and Google Cloud
Pub/Sub. Using this library, clients will not have to create messages and parse responses,
and the integration with the embedded system will be simpler. In addition, the IClient
hides the asynchronous communication exposing a synchronous interface, which is usually
easier to handle. When the client performs the execute method, a request message with
a new token is sent to the appropriate topic and the execution flow is interrupted until a
message for that token is published on the response topic.

4. Use Cases

This section presents two real use cases: a small application for monitoring and
managing the fan of a fireplace extractor chimney and an industrial application used in the
ICOSAF project (PON R&I 2014–2020) to control a resistance spot welding process.

4.1. Fan Control Scenario

We deployed this app for a small factory that produces extractor chimneys. The final
goal was to turn their traditional chimneys into smart appliances by allowing remote
control from a mobile application. The deployed architecture is shown in Figure 4.

Changed on 1stJuly 21, at07:30

Generic
Firmware

Arduino Mega

cloud

Temp and Humidity
Sensors

Fan Speed Actuator

Figure 4. Fan control scenario architecture.

Since the product was designed to be used by final users, we had several conditions
to meet:
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• The additional hardware cannot be expensive in order to avoid a significant increase
in the market price of the chimney;

• The chimney needs to be accessible both at home, i.e., from the local WiFi network, or
from outside, i.e., from the internet;

• Configuration and installation steps need to be as easy as possible, without the need
of an IT expert.

Since the chimney has six fan speeds, we represented them as six actuators on the
Embedded System. In addition, we connected two sensors to monitor temperature and
humidity in the proximity of the chimney. This allows us to create simple rules to change
the speed of the fan based on the chimney status. For example, “turn on the chimney when
the temperature is higher than 28 ◦C.”

For the Embedded System, we used Arduino Mega 2560 because it has a good balance
between RAM size (256 KB) and price. To enable system discovery over the network, we
used the Zero Configuration Network protocol by using a Bonjour implementation for
Arduino (https://github.com/adafruit/Adafruit_CC3000_Library, accessed on 15 October
2021).

For the Message Broker, we opted for Software-as-a-Service (SaaS) solution, PubNub.
This provides two important benefits: (a) since it is based on cloud architecture, it of-
fers potentially unlimited scalability, and (b) it reduces the costs of dedicated hardware
and maintenance.

Finally, for the remote control, we implemented different client versions: a Java
desktop application and two mobile versions (one for Android devices (https://play.
google.com/store/apps/details?id=it.unibas.ardomotica, accessed on 15 October 2021)
and one for iOS devices). All of them were developed by using the supporting library,
allowing developers to send commands to the Embedded System without knowing any
technical details of the board and its physical connections or on the message format.

4.2. Quality Control Scenario

We also tested the effectiveness of the approach in an Industry 4.0 scenario. The
experiments were conducted with Centro Ricerche FIAT (CRF) within the activities of the
“Integrated Collaborative System for Smart Factory (ICOSAF)” Project.

The main goal of the experiment was to support quality assessment on Resistance
Spot Welding (RSW) used to assemble car body parts. A typical car contains more than
5000 welding spots of different materials and thicknesses. Assuring the quality of this
process is crucial to guarantee the solidity of the assembled vehicle. Several offline and
online tests were proposed to evaluate the quality of the final welded workpieces [27–29].

The quality control process starts with an operator that places a welded workpiece on
a custom workbench, as shown in Figure 5. This bench is designed so that all the welding
spots are reachable by a collaborative robot (cobot) provided with an ultrasound probe
that will read the dynamic resistance curves of the spots. Before starting the probe, it is
important to verify the correct placement of the workpiece. Since it has a very flexible and
uneven shape, it is hard to fasten with clamps. Reading data from a misplaced location
will generate dirty data that might negatively impact the quality check algorithm.

https://github.com/adafruit/Adafruit_CC3000_Library
https://play.google.com/store/apps/details?id=it.unibas.ardomotica
https://play.google.com/store/apps/details?id=it.unibas.ardomotica
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Figure 5. Quality control scenario.

To overcome this problem, we placed several digital position sensors in correspon-
dence with the contact points between the shape and the bench, as shown in Figure 6.
These sensors are then wired connected to an Arduino Mega 2560 that runs the generic
firmware described in the paper. The operator will check the sensors interacting with a
custom controlling software that will communicate with Arduino using our supporting
library. Using an HMI, the operator starts the process. The controlling software will
publish a READ command for all sensors to the Message Broker. After receiving the sensor
states, if all of them are evaluated as pressed, the cobot is started. The dynamic resistance
curves of the welding spots are then read and stored in order to be processed using quality
assessment techniques.

Position Sensors

Figure 6. Workbench enriched with position sensors.

From the architectural point of view, we adopted a hybrid approach by using edge
computing to control the sensors and the cobot while dynamic resistance curves are
processed on a cloud architecture.

Since the company has strict security policies, we cannot use a SaaS solution for the
Message Broker. However, thanks to the flexibility of our solution, we were able to deploy
a local Message Broker based on the MQTT protocol. The MQTT Broker was installed using
a docker image on a Raspberry Pi connected to the same local network of the Arduino. The
complete architecture is described in Figure 7.
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Generic
Firmware

Arduino Mega

Position Sensors
Cobot

Raspberry PI

Controlling
Software

cloud
Communication

Library

Quality Assessment
System

Figure 7. Quality control scenario architecture.

These scenarios prove that our architecture can be applied within a wide range of
cases and can not only be adopted to deploy rapid and affordable data collection in the
control scenario but also in industrial and commercial cases.

5. Experiments

In this section, we report a number of experimental results with IoT Helper. Given
the low cost and the limited hardware profile of the Arduino module, we are especially
interested in investigating two essential questions:

• Our first goal is to investigate the capability of IoT Helper to collect potentially large
volumes of data in real-time applications.

• Our second goal is to study scalability in terms of number of sensors, actuators and
clients that IoT Helper can handle.

To find answers to the previous questions, we conducted two main groups of experi-
ments in a controlled environment.

Pull-Mode Experiments: These experiments measure performance in a data-collection
scenario where a client application uses IoT Helper to collect increasingly high-volumes of
data from sensors. We measured the number of messages sent from the embedded system
to a client subscribed to the data channel.

We fixed seven different frequencies of data collection. Then, we measured the
number of the messages received by the client in a period of fixed time (10 min) with
different numbers of sensors. For each experiment, we have an expected number of messages,
corresponding to the total number of data items collected by the sensors in the time interval
and the actual number of messages received by the client. We report the comparison of these
two numbers to measure the effectiveness of IoT Helper.

For example, in the scenario with the frequency of one message per second, we expect
that after 10 min 600 data items have been collected ad published on the channel. If the
actual number of messages received by the client is lower than 600, IoT Helper is dropping
values and, therefore, generating errors.

Command-Mode Experiments: These experiments measure the performances of IoT
Helper in a scenario where clients send commands and receive data. Our goal is to
evaluate the number of clients and commands that the embedded system is able to
effectively handle.

We fixed the number of sensors and actuators plugged into the Arduino shield. We
then simulate four different scenarios with 2 to 5 clients. Clients sent both read and write
commands with different time intervals. We measured the average time of response of the
embedded system. We also measured the errors, i.e., messages lost or handled after 10 s.

This section is organized as follows: (i) First, we introduce the setting in which
experiments were conducted. (ii) Then, we discuss the results of Pull-Mode Experiments
and (iii) the Command-Mode Experiments, respectively. (iv) Finally, we conclude this
section by discussing some insights.
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5.1. Experimental Environment

To evaluate the performances of IoT Helper, we deployed the following architecture in
a controlled environment:

• The embedded system was based on an Arduino Mega 2560 shield that can be bought
on the Web for much less than 50 US dollars;

• We plugged several LEDs into the Arduino shield to simulate actuators and a series of
different sensors, analog and digital (temperature, potentiometer, photoresistor and
distance sensors), to collect data;

• The Message Broker was running locally on a docker MQTT image;
• We developed a Java application using the Support Library to simulate different

clients: clients that perform repeated read operations and clients that send commands
(read or write) periodically to the embedded system. The Java application also collect
and stores performance stats.

• We connected all nodes in a local WAN.

5.2. Pull-Mode Experiments

We performed six different experiments related to four different scenarios, as shown
in Table 2. Each scenario uses a different number of sensors and actuators:

• Scenario 1 contains only one sensor;
• Scenario 2 contains two sensors and two actuators;
• Scenario 3 contains three sensors and three actuators;
• Scenario 4 contains five sensors and five actuators;

We subscribed a Java application to receive data from IoT Helper for each scenario.
Each experiment tests all four scenarios for a total of 10 min with different acquisition
frequencies ranging from 0.1 data points collected per seconds (one data point every 10 s;
the slowest frequency) to 8 data points collected per second (one data point collected every
125 ms; the fastest frequency). Table 2 reports the total expected number of messages and
those actually received by the client app in the four scenarios. Note that for the purpose of
this experiment the number of clients is irrelevant since we are essentially measuring the
capacity of the embedded system to collect data and push messages in real time to the data
channel.

Table 2. Messages received for each scenario with different frequencies.

Freq. Expected Scenario 1 Scenario 2 Scenario 3 Scenario 4

0.1 msgs/s 60 60 60 60 60

0.2 msgs/s 120 120 120 120 120

1 msgs/s 600 598 597 596 595

2 msgs/s 1200 1195 1193 1189 1190

4 msgs/s 2400 2312 2313 2301 2292

8 msgs/s 4800 4632 4623 4580 4534

The results demonstrated that when messages are sent with low frequency, for ex-
ample, one message every 10 or 5 s (the first two rows in Table 2), all the messages are
completely handled, even with five sensors and five actuators. With higher frequencies, a
delay appears. All messages are sent and received eventually, but some of them occur after
the 10 min time frame of the experiment. This is due essentially to the limited processing
power of the Arduino Mega CPU, which was not able to dispatch data in real time.

Figure 8 shows the percentage of messages that were dispatched after the deadline.
As discussed, with low frequencies (0.1 and 0.2), there were no errors in any scenario. With
frequencies of one and two messages per second, the amount of errors is very limited (less
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than 1%) even in Scenario 4, with five sensors and five actuators; with higher frequencies,
the number of missed messages increases to 5%, especially in Scenario 4.

0%

1%

2%

3%

4%

5%

6%

0.1 0.2 1 2 4 8

Er
ro
rs

msgs/sec

Pull Mode Experiment

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 8. Pull-Mode experiment. Percentage of errors with respect to different frequencies and
different scenarios.

We emphasize that most typical data collection tasks generate data with frequencies
that are below 2 data points per second. Therefore, we can conclude that IoT Helper can be
effectively used in these cases.

5.3. Command-Mode Experiments

The purpose of this group of experiments is to study the capacity of IoT Helper to
handle multiple clients that send commands concurrently. Moreover, in this case, we
considered four scenarios with different numbers of clients:

• Scenario 1 with two concurrent clients;
• Scenario 2 with three concurrent clients;
• Scenario 3 with four concurrent clients;
• Scenario 4 with five concurrent clients.

We varied the frequency with which clients generate commands from 0.1 commands
per second to 8 commands per second, as in Pull-Mode experiments in Section 5.2.

To measure performance, we measured the transaction time of each command, i.e.,
the time in ms between the creation of the request by a client and the reception of the
corresponding response notifying that the command had been completed with success by
IoT Helper. Then, we calculated the mean among all the messages. We call an error a trans-
action that does not complete, i.e., the command is sent but execution is not acknowledged.
For each test, we also report errors in percentage. The results are shown in Figure 9, which
also reports error ratios.
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Figure 9. Command -mode experiment. Average response time with different clients and different
frequencies of requests. We report errors, if any, near each scenario.

With low frequencies, such as one message every 10 or 5 s, the average transaction time
is in the range of 40–50 ms, and no errors occur. When frequencies increase, transaction
times also increase, and errors begin to appear. However, we notice that IoT Helper was
able to handle all transactions without errors and an average transaction time below 100 ms
in all scenarios up to the frequency of 2 commands per second. This, again, is a remarkable
result considering the limited processing power of the Arduino CPU and confirms the
practical applicability of the framework in many industrial scenarios.

5.4. Discussion

Based on the experimental results reported in the previous sections, we believe that
we can provide answers to the questions we intended to investigate.

First of all, our experiments show that IoT Helper performs very well as long as
message frequency does not exceed two message per second. In these tasks, even with a
relatively high number of sensors to read (up to five in our experiments) or concurrent
clients sending commands (also up to five in our experiments), the system performed very
well, with very limited delay in data acquisition, low average transaction times to handle
commands and no errors.

We consider the 2 msg/s limit to be very promising. In fact, it is definitely adequate
to handle the initial design and fast-prototyping phases of any applications. In addition
to this, we notice that many applications in Industry 4.0, even real-time ones, still require
handling frequencies that are below this limit; therefore, we may conclude that IoT Helper
may be a solution in these cases even in a production environment.

Performance degrades when frequencies rise above two messages per second, or the
number of concurrent clients increases above five. Notice, however, that these are quite
different problems. In fact, handling a larger number of clients can be easily performed
by deploying multiple copies of IoT Helper, each of which receives commands from a
portion of the clients. Given the relatively inexpensive nature of the framework, this can be
considered as a practical solution to the problem of increasing clients.

Handling very high-frequency acquisitions is more complex. If applications are non-
mission critical, i.e., a small percentage of data points (in the order of 5%) can be dropped
without impacting the overall functionality of the system, IoT Helper can still be a solution.
On the contrary, for real-time mission-critical applications with zero-drop requirements,
more powerful embedded systems are required in place of Arduino shields.
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6. Conclusions

We introduced IoT Helper, a lightweight, generic framework for IoT and IIoT applica-
tions. As discussed in the paper, the main contribution of IoT Helper consists in the generic
architecture that allows users to quickly prototype smart applications both in domotics
and industrial scenarios. We introduced two such scenarios in which the framework has
been tested with success and reported experimental data that show how, despite the high
flexibility and low costs that come with the framework, it was able to handle a large volume
of data and scale up nicely to real-time applications.

IoT Helper was conceived to simplify data collection, and it fits nicely into data
analytics application scenarios. We believe that an interesting direction to extend the
framework would be to integrate basic analytics features into the firmware in order to
enrich and improve the generation of indicators during usage and possibly predictions
based on simple machine learning models in order to push analytics to the edge of the
architecture. This would have clear benefits in terms, for example, of anomaly detection
and robustness of the solution.
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