
applied
sciences

Article

Fast Performance Modeling across Different Database Versions
Using Partitioned Co-Kriging

Rong Cao *, Liang Bao, Shouxin Wei, Jiarui Duan, Xi Wu, Yeye Du and Ren Sun

����������
�������

Citation: Cao, R.; Bao, L.; Wei, S.;

Duan J.; Wu X.; Du Y.; Sun, R. Fast

Performance Modeling across

Different Database Versions Using

Partitioned Co-Kriging. Appl. Sci.

2021, 11, 9669. https://doi.org/

10.3390/app11209669

Academic Editor: Arcangelo

Castiglione

Received: 3 September 2021

Accepted: 13 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
baoliang@mail.xidian.edu.cn (L.B.); imshouxin@gmail.com (S.W.); jrdapril@163.com (J.D.);
xiwu@stu.xidian.edu.cn (X.W.); 13700293619@163.com (Y.D.); laura1628@163.com (R.S.)
* Correspondence: 18700939602@163.com

Abstract: Database systems have a large number of configuration parameters that control functional
and non-functional properties (e.g., performance and cost). Different configurations may lead to
different performance values. To understand and predict the effect of configuration parameters
on system performance, several learning-based strategies have been recently proposed. However,
existing approaches usually assume a fixed database version such that learning has to be repeated
once the database version changes. Repeating measurement and learning for each version is expensive
and often practically infeasible. Instead, we propose the Partitioned Co-Kriging (PCK) approach that
transfers knowledge from an older database version (source domain) to learn a reliable performance
prediction model fast for a newer database version (target domain). Our method is based on the
key observations that performance responses typically exhibit similarities across different database
versions. We conducted extensive experiments under 5 different database systems with different
versions to demonstrate the superiority of PCK. Experimental results show that PCK outperforms six
state-of-the-art baseline algorithms in terms of prediction accuracy and measurement effort.

Keywords: database; version; performance modeling; co-kriging; transfer

1. Introduction

Database systems are increasingly becoming more configurable [1,2]. The large num-
ber of configuration parameters can directly influence the functional and non-functional
properties of database systems [3,4]. Performance (e.g., latency, throughput, and requests
per second) is one of the most important non-functional properties as it directly affects
user experience [5]. Appropriate configurations can improve the performance for database
systems [2,6]. For example, the throughput difference between the best and worst configu-
rations for Cassandra can be as high as 102.5% for a given workload [7]. To distinguish the
optimal configuration, users are interested in knowing the consequences of changing the
configuration parameters that are available to them. However, the exponentially growing
configuration space and complex interactions among configuration parameters make it
difficult to understand the performance of the system [8,9].

In recent years, learning-based approaches have become the mainstream to solve this
problem. These methods often collect the performance measurements of only a limited set
of configurations (called samples), then build a performance model with these samples, and
use the model to predict the system performance of the unseen configurations [7,10–14]. In
this way, performance can be predicted before a variant of the database system is configured
and deployed.

Existing approaches usually focus on the performance modeling problem under a
constant environment, including fixed hardware [11,14], workload [9,10], and database
version [2,7]. We will concentrate on performance modeling for a newer database version
in this work. In practice, previous performance prediction models often lead to high
prediction error once the database version changes [15]. A new performance prediction

Appl. Sci. 2021, 11, 9669. https://doi.org/10.3390/app11209669 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11209669
https://doi.org/10.3390/app11209669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209669?type=check_update&version=2

Appl. Sci. 2021, 11, 9669 2 of 18

model may need to be learned from scratch to meet the prediction accuracy requirements.
However, the demand for high quality samples in learning-based methods contradicts the
need for rapid acquisition of a new performance prediction model. Specifically, researchers
often need a large number of samples to build a good performance prediction model [16].
However, the collection of samples requires a lot of time and resources [6,10], which makes
the construction of the new performance model time-consuming and laborious.

Fortunately, performance models typically exhibit similarities across different database
versions [17]. We introduce the concept of transfer learning into performance modeling
for database systems. Similar to humans that learn from previous experience and transfer
the knowledge learned to accomplish new tasks easier [18], here, knowledge about perfor-
mance behavior observed in an older database can be reused effectively to learn models for
a newer database with a lower cost. The problem is to identify the transferable knowledge
and make use of them to ease learning of performance models.

In this paper, we propose a co-kriging-based performance prediction method to
efficiently learn models by reusing information gained previously when database version
changes. The challenge is to predict system performance with high accuracy while utilizing
a small sample in target domain. As it takes time and effort to configure the database
system and collect performance measurement data, it is desirable that the sample size is
kept minimum. Co-kriging allows data on an auxiliary variable to be used to make up
for an insufficient amount of data in undersampled case [19]. We regard the performance
responses in older (source) and newer (target) database systems as the auxiliary variable
and primary variable, respectively. The measurement data in source can facilitate building
an accurate performance model in target by co-kriging with a small sample in target.

Further, Partitioned Co-Kriging (PCK) is proposed to better satisfy the assumption of
co-kriging method. The assumption of co-kriging method is that the performance response
is stationary [20]. The accuracy of performance model can increase obviously by applying
co-kriging in several regions which performance responses are smooth. The partition of
these smooth regions is regarded as transferable knowledge, and it can be obtained by
clustering the measurement data in source domain.

In a nutshell, we regard the partition of smooth regions and the measurement data
in source as transferable knowledge. Furthermore, the PCK is presented to make use of
the transferable knowledge to fast construct performance models in target. Finally, we
demonstrate that our PCK approach will enable accurate performance predictions by using
only a small number of measurements in target domain. We evaluate our approach on five
different database systems: MySQL, PostgreSQL, SQLite, Redis, and Cassandra.

In summary, our work makes the following contributions.

• We perform a proof of concept that transferring the knowledge across different
database versions using PCK can facilitate the fast performance modeling for a newer
database version.

• We verify the feasibility and validity of PCK through extensive experiments under
different categories of database systems with different versions. Experimental re-
sults show that our proposal outperforms six state-of-the-art baseline algorithms by
30.73–60.83% on average.

2. Related Work

Researchers make an effort to understand the relationship of parameters and per-
formance. Several performance prediction models [3,5,10–14,21–23] and tuning strate-
gies [6,16,24–31] have been proposed to explore the relationship and recommend good
configurations further.

Performance Prediction for Databases. The performance prediction methods fall
into two major categories: analytical prediction models and learning-based prediction
models. The first class of approaches require an in-depth analysis of the constraints
on system performance, and the analysis models are given accordingly [24–26]. The
latter class of approaches train prediction models using machine learning techniques,

Appl. Sci. 2021, 11, 9669 3 of 18

including GP regression [2,6,27,32], neural networks [7,10,28,29], CART [3,5,11–14], Fourier
Learning [21,22], and so on.

Existing approaches usually assume a fixed environment such that the modeling/tuning
process has to start from the scratch once the environment changes, which exacerbates the
performance modeling problem. Therefore, transferring knowledge across environments
to assist the modeling/tuning task has become a hot area of research in recent years.

Knowledge Transfer for Performance Prediction. The most relevant research to this
paper is to transfer performance prediction models across environments.

To cope with the workload changes, OtterTune [2,32] reuses past experience to reduce
the tuning cost for a new application. Rafiki [7] includes workload characteristics and the
most impactful parameters directly in its surrogate model.

Valov et al. [33] analyzed different hardware platforms to understand the similarity
on performance prediction. A simple linear regression model is used to transfer knowledge
from a related environment to a target environment. Differently, there is another kind of ap-
proach that reuses source data with the hope to capture correlation between environments
using learners such as GP Models [34].

Further, it is worth exploring why and when transfer learning works for performance
modeling. Jamshidi et al. [17] combine many statistical and machine learning techniques
to study this research question. Javidian et al. [35] exploit causal analysis to identify the
key knowledge pieces that can be exploited for transfer learning.

Jamshidi et al. [15] propose a sampling strategy L2S, which is inspired by the research
results in [17]. L2S extracts transferable knowledge from the source to drive the selection
of more informative samples in the target environment.

Moreover, transfer learning can only be useful in cases where the source environment
is similar to the target environment. BEETLE [36] focuses on the problem of whence to
learn. A racing algorithm is applied to sequentially evaluate candidate environments to
discover which of the available environments are best suited to be a source environment.

In this paper, we concentrate on transferring knowledge across different database
versions. There are few relevant researches on this issue at present. The studies on
version change scenario is the least among the three main environment change scenarios.
The exploratory analysis [17] and causal analysis [35] give us insights into performance
prediction across environment change, but no transfer scheme is given in these studies.
BEETLE [36] places emphasis on identifying suitable sources to construct transfer learner.
Other work [15,34] has made some discussion about the version change scenario, but they
have not conducted in-depth research and experimental verification on this issue.

3. Problem Overview
3.1. Problem Statement

In this paper, we focus on building an accurate performance model rapidly with
a small amount of samples for a database system in a newer database version. For a
given database and a specific workload, our object is to enable the reuse of previous
performance measurements in an older database version to facilitate the performance
prediction in a newer version. In order to formalize this problem concisely, we introduce
some mathematical symbols to represent related concepts.

Configuration. A configuration of a database system is represented as a set
x = (c1, c2, · · · , cn), where ci indicates the i-th configuration parameter of the database
system and n is the number of configuration parameters. The configuration parameters
can either be (1) an integer variable in the valid configuration bound of the parameter, (2) a
categorical variable or a Boolean variable. The configuration space is a Cartesian product
of all configuration parameters X = Dom(c1)× · · · × Dom(cn), where Dom(ci) is the valid
range of each parameter.

Performance model. Performance (e.g., throughput or latency) is an essential non-
functional property of database systems. Different configurations may lead to different
performance values. We treat the performance as a black-box function, which describes

Appl. Sci. 2021, 11, 9669 4 of 18

how configuration parameters and their interactions influence the system performance.
Given a database system A and a workload W with configuration space X, a performance
model is a black-box function f : X → R that maps each configuration x ∈ X of A to the
performance of the system.

Sample. Due to the large configuration space and expensive measurement cost,
researchers usually propose to measure the performance values of a limited number of
configurations (called sample), then construct a performance model from these data to
predict the performance values of any new configuration. We run a database A in a certain
version v ∈ V on various configurations xi ∈ X, and record the resulting performance
values yi. The training data for learning a performance model for system A with version v
are Dtr = (xi, yi), i = 1, 2, · · · , m, where m is the number of performance measurements.
The database in an older version is called source domain, while the database in a newer
version is called target domain. SS and ST indicate the samples in source and target,
respectively.

The object is to learn a reliable performance model f̂ (x) in target domain. Specifically,
we aim to minimize the prediction error over the configuration space:

arg min
x∈X

pe = | f̂ (x)− f (x)|. (1)

The difficulty of this problem is to use only a small sample while still be able to predict
the performance of other unseen configurations with a high accuracy. In this paper, we
import the measurements in source domain to help constructing a reliable performance
prediction model in target domain. Thus, the inputs to this problem are a large number of
samples from the source and a small number of samples from the target, while the output
is a reliable performance model in target, as described in Figure 1.

Source Sample

Target Sample

Subject DatabaseWorkload
Performance

Model

Figure 1. Problem overview of performance modeling across different database versions.

3.2. Key Observations

Generally, performance values are expected to differ in different database versions
for a given configuration. Fortunately, performance models typically exhibit similarities
across different database versions in the configuration space. An experiment is carried
out to verify this observation, and the results are shown in Figure 2. We randomly select
100 valid configurations in MySQL, and obtain the performance measurements in both 5.5
and 8.0 versions, which are indicated by source and target, respectively. On the bases of the
experimental results and some previous researches [17,34], we accept that the performance
responses in source domain and target domain are similar in configuration space when
database version changes.

The second key observation is that the performance response of a database system
is reasonably smooth within a certain range, and it changes dramatically when some key
parameters change. Intuitively, we expect that for nearby input points x1 and x2 in the
smooth range, their corresponding output points y1 and y2 to be near-by as well. However,

Appl. Sci. 2021, 11, 9669 5 of 18

on the contrary, the performance responses of different regions vary greatly. The similar
observations have been found in former studies [2,8].

Figure 2. Performance models exhibit similarities across different database versions.

3.3. Assumptions and Limitations

In reality, the correlations are quite strong in some version change situations, while
for others, the correlations are extremely weak or even nonexistent. We assume that the
strength of the correlation is related to the details of upgrades between versions. In some
version update cases, the optimization features that are determined by the configuration
options may undergo a substantial revision between different versions because algorithmic
changes may significantly improve the way how the optimization features work. Nonethe-
less, some version updates do not influence the internal logic controlled by configuration
parameters, thus the correlation remain strong in these cases. We focus on the latter case
because that is the majority in database version update cases.

In addition, the number of configuration parameters changes as the database version
updates. Some parameters are added and some are forbidden in the upgraded database
version. We currently focus on the unchanged parameter from version to version for
simplicity, and defer the problem of taking parameter change into consideration when
transferring knowledge across different database versions as future work.

4. Partitioned Co-Kriging Based Performance Prediction
4.1. Overview

Our goal is to construct an accurate performance prediction model using a small
sample in target domain. To overcome the challenge of insufficient sample, we reuse
prior information that we can get from source domain to learn a performance model more
efficiently. The foundation of our method is that performance responses in source and
target have high correlations. Thus, the large samples in source can be applied to build
a performance model in target. The performance prediction is realized by the co-kriging
method.

The assumption of co-kriging method is that the performance response is stationary. In
practice, the performance response of database is not stationary in the entire configuration
space, but it is relatively smooth in different regions. Based on this characteristic, we
propose to learn performance prediction models within each region. Therefore, we first
need to solve the partition problem: how to divide the entire configuration space into
several smooth regions?

Appl. Sci. 2021, 11, 9669 6 of 18

Generally, there are only sparse samples in target due to the high cost in collecting
the samples. The small samples provide too little information to perform the partitioning
task. In contrast, the sample in source is usually readily available. As a consequence, we
use the concept of relatedness between source and target to address the problem. The
partition of configuration space can be achieved by clustering with the adequate samples
from source domain. The prediction accuracy can be improved effectively by using this
partition scheme.

Figure 3 illustrates the performance prediction process for unseen configurations in
target. The input of PCK method incorporates performance measurements from both
source and target. We use random sampling method to generate a small number of samples
in target, while a large number of samples are available in source. According to the
database performance characteristics, we consider dividing the entire configuration space
into several smooth regions by clustering the sufficient performance measurements in
source. With the region information of source samples, each target sample can determines
its region by Euclidean distance. A target sample adopt the region information of a source
sample which has the nearest Euclidean distance with it. Subsequently, we can learn
corresponding performance models in different regions using all the samples and the
partition information in configuration space. Finally, we can estimate the performance
value for any unseen configuration with this performance prediction model.

Random

Sampling

Database

Execution

NT Samples

NS Samples Clustering
K-Clustered

Samples

Cluster 1:

Source & Target Samples

Partition

Cluster 2:

Source & Target Samples

Cluster K:

Source & Target Samples

...

Co-kriging

Co-kriging

Co-kriging

Unseen Configurations

Performance Predictions

Updated database

Older database

Partitioned

Co-Kriging

Figure 3. Overview of partitioned co-kriging approach.

In summary, we propose an innovative way of fast performance modeling in updated
databases (newer database versions) using co-kriging. It makes use of the large number of
source samples in two ways: (1) the abundant and easily accessible source samples can
be reused to facilitate the construction of an accurate performance model, and (2) they
can further provide partition information about the smooth region in configuration space
due to the correlation of source and target, thus improve the prediction accuracy of the
co-kriging-based prediction model.

4.2. Performance Prediction with Partitioned Co-Kriging

Using the above-mentioned prediction process, we now discuss the PCK method in
Algorithm 1.

Random sampling. We collect training data in target domain by running a subject
database with updated version on various configurations and record the resulting perfor-
mance values. The selected configurations are generated by random sampling (RS) strategy,
as it can effectively search for a large configuration space, especially when configuration
parameters are not equally important [37] (line 1).

Clustering. The partition of configuration space is achieved by clustering the adequate
source samples (line 2). We use a well-studied technique, called k-means [38], to cluster
the source samples into meaningful groups. The goal of the k-means algorithm is to
divide M points in N dimensions into K clusters so that the within-cluster sum of squares is
minimized. M is the number of the source samples. N equals to the number of configuration

Appl. Sci. 2021, 11, 9669 7 of 18

parameters add one; it means that we consider not only each configuration parameter, but
also its performance value in clustering. This is because we aim to identify the different
smooth regions. K clusters correspond to K different regions.

Algorithm 1 PCK(A, W, P, CB, SS, K, VM, CU).

Input: A: the subject database; W: workload; P: configuration parameters; CB: configu-
ration bounds; SS: the available samples in source domain; K: the number of clusters;
VM: variogram model; CU : the unseen configurations in target domain.

Output: PU : performance predictions of the unseen configurations in target domain.
1: ST ← RS(NT , A, W, P, CB);
2: K-clustered SS ← k−means(SS, K);
3: K-clustered ST ← partition(ST , K-clustered SS);
4: K-clustered CU ← partition(CU , K-clustered SS);
5: for each ci ∈ CU do
6: pi ← co− kriging(SS, ST , ci, VM) in corresponding cluster;
7: end for
8: return PU ;

One of the drawbacks of using k-means is that we have to specify the number of
clusters (K) before starting. On the one hand, the accuracy of prediction models can be
increased by clustering different smooth regions. On the other hand, K should not be
selected too large because of the small sample in target. Otherwise, the sample size in each
region will be too small to learn a reliable prediction model. In conclusion, choosing K is a
trade-off, and we are going to explore this problem in our experiments.

Partition. After the clustering is complete, we get K smooth regions in configuration
space. Then, K performance prediction models can be constructed using co-kriging. The
input of co-kriging includes not only the source samples in the cluster, but also the target
samples in corresponding region. In target domain, the region of a sample is determined
by the Euclidean distances with source samples. In order to facilitate the co-kriging-based
performance prediction in next step, the samples in both source and target are partitioned
using the clustering results (line 3–4).

Co-kriging. Kriging, a regression method, is a minimum variance unbiased linear
estimator and has received wide use for ore reserve estimation applications in mining [20].
Kriging utilizes the spatial correlation, of the variable of interest with itself, to determine
the weights in an optimal manner. Co-kriging is the logical extension of ordinary kriging
to situations where two or more variables are spatially interdependent and the one whose
values are to be estimated is not sampled as intensively as the others with which it is
correlated [19]. Its advantage is that when the primary variable is difficult or expensive to
obtain, the co-kriging method adopts the auxiliary variable that is easier to obtain and is
correlated with the primary variable to predict the primary variable, thus improving the
prediction accuracy (line 6).

When the auxiliary variable is readily available and changes smoothly, such variable
can be introduced into the co-kriging method as an auxiliary influencing factor. In this
work, we employ co-kriging method to predict the performance of new configuration in
an updated database version (target). Introducing the performance response in an older
database version (source) as an auxiliary variable is conducive to the prediction result. In
the application of co-kriging, a first step is to model the variogram for each variable as well
as a cross-variogram for the two variables. Under the second-order stationary hypothesis,
its expectation is

E[Z2(x)] = m2. (2)

The cross-variogram is

γ12(h) = E[Z1(x + h)− Z1(x)][Z2(x + h)− Z2(x)]. (3)

Appl. Sci. 2021, 11, 9669 8 of 18

Thus, the interpolation formula of co-kriging method is

Z∗2 (x0) =
N1

∑
i=1

λ1iZ1(x1i) +
N2

∑
j=1

λ2jZ2(x2j). (4)

where Z∗2 (x0) is the performance prediction value of configuration x0 in target; Z2(x2j)
indicates the performance measurement of each configuration in target; λ2j is the weight
coefficient for performance measurement of each configuration in target; Z1(x1i) is the
performance measurement of each configuration in source; λ1i is the weight coefficient for
performance measurement of each configuration in source; N1, N2 refer to the sample size
of source and target, respectively; and N1 > N2.

Two Lagrange multipliers u1 and u2 are introduced for derivation:

N1

∑
i=1

λ1iγ11(x1i−xI)+
N2

∑
j=1

λ2jγ21(x2j−xI)+u1=γ21(x0−xI),

N1

∑
i=1

λ1iγ21(x1i−xJ)+
N2

∑
j=1

λ2jγ22(x2j−xJ)+u2=γ22(x0−xJ),

i = 1, 2, · · · , N1, j = 1, 2, · · · , N2,
N1

∑
i=1

λ1i = 0,
N2

∑
j=1

λ2j = 1. (5)

where γ11 and γ22 are the variograms of Z1 and Z2, separately. γ12 and γ21 are the cross-
variograms for the two variables, and γ12 = γ21.

By solving linear Equation (5), the weight coefficients (λ1i, i = 1, 2, · · · , N1; λ2j,
j = 1, 2, · · · , N2) and two Lagrange multipliers u1 and u2 can be obtained. Thus, the
performance estimation of any configuration in the configuration space can be acquired
from Equation (4).

Performance prediction. Given any unseen configuration in target, we first identify
the region where it belongs according to the clustering results. The performance of the
configuration is then predicted by co-kriging method using the samples and variogram
model in this region, as described in Algorithm 1 (lines 5–8).

5. Experimental Evaluation

We have implemented the PCK and other algorithms, and conducted extensive ex-
periments in diverse databases. The source code and the data can be found in the online
repository: https://github.com/xdbdilab/PCK. In this section, we first describe our ex-
periment setup, and then present the experimental results to prove the efficiency and
effectiveness of the proposed approach.

5.1. Experimental Settings

Subject databases, versions, and benchmarks. We carried out an investigation into
the subject systems of researches on configuration tuning for database systems [2,6–10,14,
16,28,29,31,39–44], and chose five widely used database systems to evaluate PCK approach:
MySQL (https://www.mysql.com/ (accessed on 25 September 2020)), PostgreSQL (https:
//www.postgresql.org/ (accessed on 26 September 2021)),SQLite (https://www.sqlite.o
rg/ (accessed on 26 September 2021)), Redis (https://redis.io/ (accessed on 11 October
2020)), and Cassandra (http://cassandra.apache.org/ (accessed on 13 October 2020)).
MySQL is an open-source relational database management system (RDBMS). PostgreSQL
is an open-source object-relational database management system (ORDBMS). SQLite is an
open-source embedded RDBMS. Redis is an open-source in-memory data structure store.
Cassandra is an open-source column-oriented NoSQL database management system. In
this experiment, we choose two (PostgreSQL, SQLite, and Cassandra) or three (MySQL,

https://github.com/xdbdilab/PCK
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://redis.io/
http://cassandra.apache.org/

Appl. Sci. 2021, 11, 9669 9 of 18

Redis) representative versions for convenience. The time gaps among these releases of
three database are about five years for PostgreSQL, nearly a half year for SQLite, about
five and a half years for Cassandra, and approximate three years for MySQL and Redis.
In addition, we use sysbench (https://github.com/akopytov/sysbench (accessed on 25
September 2020)) for MySQL, pgbench (https://www.postgresql.org/docs/11/pgbench.h
tml (accessed on 26 September 2021)) for PostgreSQL, a customized workload for SQLite,
YCSB [45] for Cassandra, and Redis-Bench (https://redis.io/topics/benchmarks (accessed
on 11 October 2020)) for Redis.

Parameters. For each database system, we use domain expertise to identify a subset
of parameters that are considered critical to the performance, as in [2,9,10]. Reducing the
number of considered parameters can reduce the search space exponentially, and numerous
existing approaches [9,12] also adopt this manual feature selection strategy. Note that even
with only these parameters, the search space is still enormous, and exhaustive search
is infeasible. Table 1 summarizes the database systems and versions, along with the
benchmarks, the numbers of selected parameters, and performance metrics, respectively.

Table 1. Subject databases and versions, benchmarks, parameters, and performance metrics.

Subject Database Category Subject Versions Benchmark # of Selected Parameters Performance

MySQL RDBMS 5.5, 5.7, 8.0 sysbench 10 Latency (ms)
PostgreSQL ORDBMS 9.3, 11.0 pgbench 9 Transactions per second
SQLite Embedded DB 3.31.1, 3.36.0 Customized 8 Transactions per second
Redis In-memory DB 4.0.1, 5.0.0, 6.0.5 Redis-Bench 9 Requests per second
Cassandra NoSQL DB 2.1.0, 3.11.6 YCSB 28 Throughput (MB/s)

Running environment. In order to avoid interference in collecting samples from
different subject database systems, we conduct experiments on different servers and
computer. In addition, we ensure a consistent running environment for different versions
of the same subject system. The running environments for different subject databases
systems are listed as follows.

MySQL, PostgreSQL: The physical server is equipped with two 2-core Intel(R)
Core(TM) i5-4590 CPU @3.30GHZ processors, 4GB RAM, 64GB disk, and running CentOS
6.5 and Java 1.8.0.

SQLite: The computer is equipped with a Intel(R) Core(TM) i5-4460 CPU @3.20GHZ
processors, 8GB RAM, 1TB disk, and running Windows 10 and Java 1.8.0_291.

Redis: The cloud server is equipped with two 2-core Intel(R) Xeon(R) Platinum 8163
CPU @2.50GHz processors, 4GB RAM, 53.7GB disk, and running CentOS 7.6 and Java
1.8.0_261.

Cassandra: The physical server is equipped with two 4-core Intel(R) Xeon(R) CPU
E5-2683 V3 @2.00GHz processors, 32GB RAM, 86GB disk, and running CentOS 6.5 and
Java 1.8.0_211.

Baseline Algorithms. To evaluate the performance of PCK approach, we compare
it with six state-of-the-art algorithms: DeepPerf [10], CART [3], Finetune [46], DDC [47],
Model-shift [33], and Ottertune [2]. We provide a brief description for each algorithm as
follows.

DeepPerf and CART establish performance prediction models in target domain di-
rectly. They consider the performance prediction problem as a nonlinear regression problem
and apply different machine learning methods, namely Deep Neural Network (DNN) and
the Classification and Regression Trees (CART) technique, to find this nonlinear model.

Finetune and DDC are two widely used transfer learning schemes. Finetune is a
network-based transfer learning method. It freezes the partial network that pre-trained in
the source domain, and transfers it to be a part of DNN which used in target domain. DDC
is a mapping-based transfer learning, which maps instances from the source and target
into a new data space.

https://github.com/akopytov/sysbench
https://www.postgresql.org/docs/11/pgbench.html
https://www.postgresql.org/docs/11/pgbench.html
https://redis.io/topics/benchmarks

Appl. Sci. 2021, 11, 9669 10 of 18

Model-shift approach shifts the model that has been learned in the source to predict
the system performance in the target using linear regression models. CART is applied to
build performance prediction models in source domain.

Ottertune is a transfer learning approach that exploits source samples to learn a
performance model in the target. The Gaussian Process (GP) model is used to learn a
performance model that can predict unobserved response values.

5.2. Evaluation of Prediction Accuracy

Data collection. We use the random sampling strategy to generate a set of configu-
rations for each database and test them on the database system with given workloads on
different versions to get the performance measurements. A configuration–performance
pair is regarded as a sample. The numbers of samples for MySQL, PostgreSQL, SQLite,
Redis, and Cassandra are 294, 300, 280, 323, and 1129, respectively. The collection of all
source samples serves as auxiliary training data. In the target domain, a subset of these
samples is selected randomly for training dataset; the remaining samples serve as the
testing dataset.

Evaluation metric. Holdout validation is employed to compare the prediction accu-
racy between different methods. We use the training dataset and auxiliary training data
to generate a performance model for each method, and then use this model to predict
performance values of configurations in the testing dataset. We select Mean Relative Error
(MRE) as a metric for evaluating prediction accuracy, which is computed as follows:

MRE =
1
N

N

∑
i=1

|ai − pi|
ai

× 100 (6)

where N is a total number of configurations in the testing dataset, and ai and pi represent
the actual performance value and predicted performance value, respectively. We choose
this metric as it is widely used to measure the accuracy of prediction models [5,10,33,34].

Performance results. We run PCK method and six baseline algorithms for five subject
database systems independently. The size of training dataset in target domain is set to
c× n, where c is the number of selected configuration parameters for each subject database
system (which is shown in the column # of selected parameters of Table 1), and n ranges
from 1 to 15. To evaluate the consistency and stability of the approaches, for each sample
size of each subject database system, we repeat the random sampling, training and testing
process 5 times. We then show and compare the mean of the MREs obtained with the
7 different approaches for each sample size. The experiment results of five subject database
systems for larger version changes are listed in Tables 2–6, respectively.

As expected, our proposed method has achieved better performance than all other six
algorithms. Specifically, for five subject database systems, PCK outperforms all other six
baseline algorithms: 24.99–53.18% improvement over DeepPerf, 14.20–51.19% improve-
ment over CART, 4.42–46.58% improvement over Finetune, 25.26–53.13% improvement
over DDC, 9.34–50.03% improvement over Model-shift, and 46.80–69.42% over Ottertune.
The improvement percentages are shown in Figure 4. For the sake of simplicity, the data in
Figure 4 is obtained by averaging the MRE data of different sample sizes in each subject
database system.

Table 2. MRE comparison among different approaches for MySQL (version 5.5–8.0).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 21.829 24.653 21.446 22.757 23.050 23.234 21.508 21.313 20.849 21.033 15.444 19.558 16.970 16.493 17.168
CART 23.281 22.511 16.529 19.268 18.071 13.550 13.899 12.642 12.086 13.035 12.651 11.144 9.665 12.937 10.359
Finetune 14.532 13.854 13.320 12.640 12.649 13.376 13.610 14.906 14.467 12.527 14.550 13.703 14.050 14.037 13.087
DDC 19.255 25.563 26.350 21.325 21.912 22.096 24.017 18.917 19.936 19.174 19.285 19.935 17.632 15.661 16.233
Model-shift 15.848 16.171 11.314 11.248 12.902 10.128 11.342 10.224 10.697 11.064 11.419 10.822 10.217 11.198 11.246
Ottertune 16.846 19.041 18.605 21.737 19.475 19.258 19.293 18.322 19.081 18.945 17.393 19.100 17.991 17.379 16.504
PCK 12.399 12.177 10.222 10.734 10.747 10.922 9.618 9.268 9.645 9.273 9.303 9.230 9.183 9.280 9.197

Appl. Sci. 2021, 11, 9669 11 of 18

Table 3. MRE comparison among different approaches for PostgreSQL (version 9.3–11.0).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 9.637 6.384 4.997 3.835 3.577 3.525 3.209 3.219 3.276 3.12 3.031 2.828 2.816 2.828 2.819
CART 3.19 3.023 3.232 3.128 3.039 3.065 2.839 2.932 2.99 2.905 2.961 2.886 2.868 2.831 2.807
Finetune 2.778 2.767 2.838 2.677 2.725 2.591 2.729 2.763 2.783 2.522 2.595 2.552 2.621 2.61 2.593
DDC 7.415 5.619 4.507 3.749 3.385 3.382 2.968 2.928 3.095 2.943 2.767 2.756 2.714 2.809 2.757
Model-shift 2.718 2.603 2.645 2.991 2.858 2.932 2.75 2.676 2.902 2.831 2.799 2.674 2.798 2.886 2.745
Ottertune 11.934 9.289 9.373 7.792 6.812 6.431 5.127 4.76 4.486 4.173 3.824 3.574 3.312 3.274 3.217
PCK 2.634 2.616 2.593 2.590 2.606 2.585 2.568 2.576 2.572 2.570 2.573 2.568 2.558 2.564 2.167

Table 4. MRE comparison among different approaches for SQLite (version 3.31.1–3.36.0).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 9.109 2.846 2.249 1.945 2.007 2.007 1.857 1.917 1.841 1.799 1.736 1.711 1.606 1.544 1.56
CART 1.692 1.793 1.932 1.686 1.795 1.575 1.623 1.593 1.516 1.632 1.573 1.578 1.535 1.541 1.522
Finetune 2.39 2.271 1.876 1.722 1.801 1.692 1.754 1.66 1.64 1.67 1.539 1.584 1.547 1.517 1.567
DDC 5.452 2.873 2.286 2.058 1.819 1.926 1.91 1.806 1.673 1.713 1.861 1.633 1.692 1.628 1.705
Model-shift 1.593 1.352 1.724 1.471 1.708 1.519 1.61 1.57 1.596 1.565 1.655 1.572 1.598 1.55 1.577
Ottertune 8.804 8.768 8.621 7.754 7.501 6.283 6.271 5.755 5.509 5.161 4.445 3.944 3.664 2.718 2.09
PCK 1.208 1.101 1.058 1.052 1.028 1.033 1.012 1.024 1.010 1.016 1.000 0.997 1.002 1.001 0.999

Table 5. MRE comparison among different approaches for Redis (version 4.0.1–6.0.5).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 10.405 7.598 6.304 5.608 5.873 6.060 5.947 5.482 5.727 5.552 5.341 5.135 5.355 5.187 5.294
CART 6.270 5.499 5.560 5.964 5.763 5.408 5.198 5.384 6.024 5.832 5.876 5.443 5.878 5.776 5.700
Finetune 4.790 5.721 5.227 4.779 5.331 5.007 5.451 4.931 5.150 4.664 4.638 4.780 4.796 4.667 4.666
DDC 9.688 7.430 6.805 5.377 5.847 5.292 5.562 5.711 5.229 5.417 5.549 5.442 5.415 5.248 5.084
Model-shift 4.682 4.643 4.927 5.460 5.314 5.024 5.342 5.061 5.279 5.280 5.217 5.127 5.013 5.110 4.960
Ottertune 31.177 16.059 11.747 11.413 10.210 9.895 10.033 9.929 10.089 9.111 9.168 8.769 8.299 8.222 7.718
PCK 3.278 3.083 2.931 2.877 3.036 2.889 2.886 2.879 2.889 2.868 2.873 2.877 2.867 2.870 2.867

Table 6. MRE comparison among different approaches for Cassandra (version 2.1.0–3.11.6).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 25.608 24.309 24.907 25.054 24.571 25.485 25.249 24.674 24.507 24.125 24.274 24.451 24.114 24.105 24.219
CART 23.452 23.868 23.432 23.187 23.509 23.197 23.718 23.410 23.277 23.236 23.325 23.207 23.668 23.547 23.800
Finetune 22.369 21.408 21.742 22.306 21.454 21.770 20.984 21.282 21.503 21.465 21.113 21.622 21.340 21.554 21.443
DDC 26.090 24.983 24.865 24.938 24.103 24.390 24.333 24.385 24.702 24.362 24.157 24.356 23.959 24.671 24.206
Model-shift 23.307 22.721 22.923 22.66 23.196 23.039 22.883 23.086 22.971 22.860 22.914 22.868 22.912 22.900 22.987
Ottertune 36.852 32.771 30.581 30.592 29.660 29.379 29.003 28.677 28.792 28.450 28.333 28.266 27.925 28.056 27.732
PCK 11.832 11.222 11.555 11.381 11.406 11.306 11.512 11.464 11.511 11.477 11.463 11.397 11.482 11.437 11.474

D e e p p e r f C A R T F i n e t u n e D D C M o d e l - s h i f t O t t e r t u n e0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

MR
E i

mp
rov

em
ent

 (%
)

 M y S Q L
 P o s t g r e S Q L
 S Q L i t e
 R e d i s
 C a s s a n d r a

Figure 4. MRE improvement of PCK compared with six baseline algorithms.

Appl. Sci. 2021, 11, 9669 12 of 18

DeepPerf tackles the performance prediction problem directly by training a perfor-
mance model with DNN. Further, Finetune and DDC are two DNN-based transfer learning
approaches. The above experimental results show that the MRE results of PCK are better
than these three DNN-based performance modeling methods. It is because that training a
high-performance DNN often requires a large amount of training data, but we can only
provide a small sample due to the high cost of performance measurement.

In another aspect, we find out that the two DNN-based transfer learning methods
in most cases perform higher prediction accuracy than simple DNN-based performance
prediction model in five database systems. Similarly, the Model-shift approach transfers the
CART-based performance model in the source to the target using linear regression models,
and it also achieves better MRE than CART. This observation verifies the effectiveness of
transfer learning on performance prediction task.

The validity of above-mentioned transfer learning methods proves that there exists
a correlation between the source and target. Our proposed PCK method aims to take
advantage of this correlation to build a high-performance prediction model in target
domain. In the experiment results, the PCK achieves higher prediction accuracy compared
with other four transfer learning method under almost all the sample sizes.

From another point of view, PCK requires a much smaller number of target samples to
reach the same standard of prediction accuracy, compared with other baseline approaches.
It means that PCK outperforms six baseline algorithms not only in terms of prediction
accuracy, but also in terms of measurement effort.

To further verify our conclusion, we conduct the similar experiments across different
version changes. The MRE comparison among different approaches for MySQL and Redis
under different version change scenarios (version 5.5–5.7, 5.7–8.0 for MySQL, and version
4.0.1–5.0.0, 5.0.0–6.0.5 for Redis) are listed in Tables 7–10, respectively. Experimental results
confirm that the PCK outperforms the state-of-the-art baselines in terms of prediction
accuracy and measurement cost in almost all experimental settings in this paper.

Table 7. MRE comparison among different approaches for MySQL (version 5.5–5.7).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 23.382 9.871 12.726 11.228 7.129 9.979 8.657 11.102 6.753 9.426 8.412 9.59 10.216 10.35 10.188
CART 5.894 7.346 10.773 8.867 9.343 6.282 9.692 7.313 7.324 6.977 6.874 6.681 6.202 5.336 5.266
Finetune 7.018 6.408 5.473 5.665 5.822 5.011 4.897 5.149 4.644 5.357 3.908 4.81 4.726 4.048 3.823
DDC 13.168 9.108 8.034 14.538 9.597 13.554 11.181 9.321 10.081 10.472 10.152 10.928 9.201 10.797 8.821
Model-shift 5.587 5.627 12.67 5.461 6.82 8.996 6.34 4.789 7.892 9.289 5.382 9.685 5.586 5.871 10.351
Ottertune 18.722 17.439 15.247 18.019 16.598 15.49 15.321 14.539 19.944 21.559 15.15 19.487 19.186 13.52 18.009
PCK 2.658 2.368 2.646 2.573 2.639 2.594 2.616 2.659 2.552 2.544 2.594 2.556 2.504 2.547 2.523

Table 8. MRE comparison among different approaches for MySQL (version 5.7–8.0).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 16.05 14.429 14.079 15.59 16.058 14.952 15.827 15.063 15.694 16.011 15.847 15.171 15.283 16.054 16.123
CART 14.216 15.69 15.623 15.188 14.899 14.761 14.673 15.138 14.829 15.332 14.804 15.179 15.111 14.978 15.068
Finetune 11.484 11.893 11.596 12.333 12.052 11.973 12.393 11.949 12.068 12.029 12.23 12.277 12.291 12.262 12.21
DDC 12.338 14.678 15.911 15.801 15.371 15.87 15.262 15.743 15.239 15.53 15.51 16.239 15.431 15.362 15.826
Model-shift 15.19 14.767 14.529 14.161 14.14 14.306 13.889 14.123 14.087 14.105 13.985 13.948 14.121 14.079 14.219
Ottertune 26.182 20.683 18.483 16.688 17.756 13.857 14.196 14.553 11.754 12.433 11.537 11.065 10.648 10.298 9.311
PCK 10.522 10.392 10.355 10.487 10.256 10.332 10.326 10.301 10.272 10.295 10.331 10.359 10.319 10.303 9.997

Table 9. MRE comparison among different approaches for Redis (version 4.0.1–5.0.0).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 9.058 5.308 4.421 3.654 2.879 2.442 2.014 2.118 2.143 2.037 1.854 1.737 1.81 1.761 1.821
CART 1.533 1.553 1.556 1.543 1.451 1.538 1.624 1.534 1.455 1.483 1.524 1.533 1.496 1.465 1.519
Finetune 1.561 1.756 1.653 1.577 1.555 1.558 1.516 1.521 1.513 1.52 1.491 1.485 1.539 1.458 1.446
DDC 8.308 6.838 4.144 3.133 2.28 2.291 2.063 2.068 2.004 1.728 1.748 1.88 1.834 1.824 1.704
Model-shift 1.561 1.66 1.531 1.558 1.602 1.529 1.547 1.55 1.554 1.562 1.528 1.555 1.502 1.534 1.549
Ottertune 36.173 15.021 9.428 7.813 8.428 7.331 7.361 6.491 6.146 5.836 5.603 5.279 5.18 4.906 4.496
PCK 1.322 1.32 1.314 1.313 1.284 1.261 1.275 1.202 1.161 1.113 1.088 0.999 0.904 0.911 1.01

Appl. Sci. 2021, 11, 9669 13 of 18

Table 10. MRE comparison among different approaches for Redis (version 5.0.0–6.0.5).

Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

DeepPerf 10.168 4.634 4.533 3.752 2.413 2.436 2.092 1.805 1.87 1.879 1.718 1.732 1.601 1.641 1.612
CART 1.266 1.391 1.259 1.416 1.349 1.311 1.298 1.32 1.308 1.31 1.334 1.257 1.271 1.323 1.362
Finetune 1.781 1.588 1.495 1.457 1.534 1.528 1.451 1.339 1.407 1.303 1.347 1.306 1.335 1.317 1.272
DDC 8.53 6.708 3.56 2.529 2.61 1.861 2.113 1.907 1.973 1.838 1.654 1.717 1.61 1.646 1.601
Model-shift 1.196 1.425 1.41 1.406 1.372 1.163 1.243 1.271 1.378 1.302 1.346 1.264 1.337 1.283 1.33
Ottertune 27.598 12.593 9.313 9.703 8.023 7.651 7.166 6.636 6.768 6.597 5.941 5.592 5.433 5.01 4.565
PCK 0.711 0.648 0.641 0.64 0.636 0.636 0.635 0.634 0.634 0.635 0.634 0.633 0.633 0.632 0.631

5.3. Trade-Off on Choosing K

In this part, we will discuss the trade-off on choosing the number of clusters (K), and
illustrate the influence of different K values on the prediction accuracy. In order to explore
this problem, we systematically vary the value of K from 1 to 10 in each subject system and
we measure the prediction accuracy in each case. Taking MySQL (version 5.5–8.0) as an
example, the experiment results are shown in Table 11.

Our results, in Table 11, indicate that PCK achieves the highest prediction accuracy for
almost all sample sizes when K equals to 3 in MySQL. The MRE of PCK decreases when K
increases appropriately. This demonstrates that clustering different smooth regions could
help boost the performance of prediction model. However, the prediction accuracy will not
continue to grow when K exceeds a certain threshold, such as 3 in the above example. This
is due to the insufficient target samples. If a large K is chosen in PCK, the available target
sample in each region will be too little to learn a reliable performance model. Consequently,
the choice of K is the key to whether the PCK method can achieve high prediction accuracy.

Table 11. MRE comparison with different K for MySQL.

Cluster Size
Sample Size 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n

1 15.044 12.459 12.017 12.191 12.138 12.042 12.119 12.192 12.166 12.237 12.285 12.187 12.199 12.303 12.246
2 14.272 14.492 12.353 10.992 11.229 10.969 10.314 10.285 10.454 10.515 10.429 10.445 10.364 10.357 10.337
3 12.399 12.177 10.222 10.734 10.747 10.922 9.618 9.268 9.645 9.273 9.303 9.2304 9.183 9.280 9.197
4 14.247 14.326 11.447 11.927 11.372 10.819 10.606 10.524 10.207 10.735 10.251 10.239 10.019 10.100 9.981
5 16.045 13.674 12.458 11.943 12.435 11.119 10.381 10.569 11.027 10.347 10.097 10.010 10.084 10.027 9.931
6 16.070 13.497 12.611 11.596 11.941 11.295 11.491 11.129 11.732 10.668 10.818 10.776 10.166 10.695 10.298
7 15.287 15.504 13.382 13.005 12.271 11.748 11.547 12.520 11.918 11.731 11.631 11.924 11.408 11.821 11.858
8 15.300 14.245 13.270 11.910 12.629 11.490 11.636 11.928 11.258 11.040 11.284 10.901 10.944 10.785 10.732
9 15.464 14.066 12.943 12.756 12.254 12.332 11.842 11.601 11.929 10.984 10.949 10.999 11.042 10.920 10.892

10 17.349 14.897 13.553 13.476 12.945 12.484 11.818 11.894 11.514 12.064 10.908 11.383 11.270 10.762 10.811

In order to further verify the necessity of PCK, we compare the MRE in different
clusters (K = 3) with the MRE without clustering (K = 1) in MySQL, the result is shown
in Figure 5. We observe that the MRE without clustering is higher than the MRE in three
different clusters in almost all sample sizes. Finally, the optimal prediction accuracy is
achieved in this case (K = 3). In addition, PCK achieves the best prediction performance in
Redis (version 4.0.1–6.0.5) and PostgreSQL (version 9.3–11.0) when K = 2, and K = 1 in
Cassandra (version 2.1.0–3.11.6), K = 4 in SQLite (version 3.31.1–3.36.0), respectively. The
reason for the small K in Cassandra is its larger configuration space, thus the insufficient
measurements may lead to inaccurate partitioning.

Appl. Sci. 2021, 11, 9669 14 of 18

1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 1 0 n 1 1 n 1 2 n 1 3 n 1 4 n 1 5 n
0
2
4
6
8

1 0
1 2
1 4
1 6

MR
E

S a m p l e s i z e

 K = 3 , c l u s t e r 1 K = 3 , c l u s t e r 2
 K = 3 , c l u s t e r 3 K = 1

Figure 5. MRE comparison in different cluster (K = 3).

6. Discussion
6.1. Prediction Accuracy

Experimental results on five different database systems are shown in Tables 2–6,
respectively. Our PCK method achieved better prediction accuracy than all the baseline
algorithms. The MRE reduction of PCK over six state-of-the-art baseline algorithms rages
from 30.73% to 60.83% on average. The reason for this result is that PCK can leverage
the transferable knowledge in source to facilitate the performance modeling in target.
The existence of transferable knowledge is based on the strong correlation between the
performance responses of different versions.

We conducted experiments in different version change scenarios of the same subject
database system, and the results confirmed this fact. The MRE comparisons of PCK among
different version change scenarios for MySQL (as shown in Tables 2, 7, and 8) and Redis (as
shown in Tables 5, 9, and 10) indicate that the smaller the version changes, the higher the
prediction accuracy achieved by PCK. This result is intuitive because the smaller version
change often means a stronger correlation between source and target.

In addition, an appropriate value of K can guarantee the high prediction accuracy
achieved by PCK, as demonstrated in Table 11. The trade-off of choosing the value of K
mainly lies in the tradeoff between the precise partition of configuration space and the
insufficient samples in target. The optimal K is usually small because of the limited samples
in target, thus it can be obtained simply through a few experiments.

6.2. Measurement Effort

In this paper, we assume that a number of available performance measurements in
the source are available, while in the target there is a lack of samples. This is reasonable
because the source database has been running for a relative long time and has been deeply
studied by database administrators. Thus, we can obtain sufficient samples at a low cost
and avoid the overhead of collecting a large number of samples in source. Therefore,
the measurement effort in this paper refers specifically to performance measurements in
the target. Experimental results on five different database systems show that PCK can
achieve better performance prediction accuracy with less samples in target. To reach the
same standard of prediction accuracy, almost all the baseline algorithms require more than
15 times of performance measurements in target compared with our PCK method. These
results suggest that PCK can effectively decrease the measurement cost in performance
prediction tasks across different database versions.

6.3. Effectiveness of Transfer Learning

We select DeepPerf and CART as baselines to verify the effectiveness of transfer
learning. These two approaches establish performance prediction models in target domain
directly. We also evaluate the performance of transfer learning schemes based on DeepPerf
and CART given the measurements of source database. Finetune and DDC are two widely

Appl. Sci. 2021, 11, 9669 15 of 18

used transfer learning schemes, and we use these two schemes on the basis of DeepPerf in
this paper. Similarly, Model-shift approach uses linear regression models to shift the CART
model that has been learned in the source to predict the performance of the system in the
target.

Experimental results confirm the effectiveness of transfer learning. Among all the ex-
perimental settings (namely different database systems, different version change scenarios,
and different sample sizes) in this paper, the probabilities that the transfer learning-based
approaches perform better than the directly learning approaches are 99.3% for Finetune,
61.5% for DDC, and 74.8% for Model-shift, respectively. In other words, Finetune and
DDC perform higher prediction accuracy than DeepPerf, meanwhile, Model-shift approach
obtains better predication performance than CART under most conditions. Therefore, utiliz-
ing the transferable knowledge across environments is a promising direction to contribute
to learning faster, better, and less costly performance models.

7. Conclusions and Future Work

The current approaches target a specific database version where one needs to learn
a performance model from scratch for a newer database version. In this paper, we target
the use case when the database version updates. We proposed PCK, a fast performance
modeling strategy, which is orthogonal to the previously proposed modeling method. By
exploiting knowledge pieces from source via both clustering and co-kriging, our proposed
PCK approach significantly improves prediction accuracy and reduces excessive measure-
ment effort of performance modeling. Experimental results on five different database
systems show that PCK can achieve better performance prediction accuracy with fewer
data in target. The MRE reduction of PCK over six state-of-the-art baseline algorithms rages
from 30.73% to 60.83% on average. To achieve the same prediction accuracy, PCK can save
more than 15 times of measurements in target compared with other approaches. Further-
more, the experimental results verify the effectiveness of transfer learning on performance
prediction task.

Currently, PCK is suitable for the version change scenarios that the correlation of
performance responses remains strong. It is possible to introduce a scheme to identify
whether the correlation is strong or weak after the database version changes, and this
will be one of our future work. Besides, our proposed method focuses on the unchanged
parameter in source and target. In the future, we will continue to improve the PCK to take
parameter changes (added and forbidden parameters) into consideration when transferring
knowledge across different database versions. Note that PCK is proposed for the database
version change scenarios. However, there are varying use cases, namely different kinds of
environmental changes, such as workload change and hardware change scenarios. We will
explore the usability of PCK and its variants in other environmental change scenarios, this
is also an interesting future issue.

Author Contributions: Conceptualization, L.B. and R.C.; methodology, L.B. and R.C.; software, S.W.
and J.D.; validation, S.W., X.W., Y.D. and R.S.; formal analysis, R.C., L.B. and S.W.; investigation,
S.W., X.W., Y.D. and R.S.; resources, L.B.; data curation, S.W., X.W., Y.D. and R.S.; writing—original
draft preparation, R.C.; writing—review and editing, L.B. and J.D.; visualization, R.C. and J.D.;
supervision, L.B.; project administration, R.C. and X.W.; funding acquisition, L.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Key R&D Program of China under Grant
No. 2018YFC0831200, in part by National Natural Science Foundation of China under Grant No.
61202040 with Xidian University, in part by the Key R&D Program of Shaanxi under Grant No.
2019ZDLGY13-03-02, in part by Natural Science Foundation of Shaanxi Province, China under Grant
No. 2019JM-368, and in part by the Key R&D Program of Hebei under Grant No. 20310102D.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2021, 11, 9669 16 of 18

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here:
https://github.com/xdbdilab/PCK.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xu, T.; Jin, L.; Fan, X.; Zhou, Y.; Pasupathy, S.; Talwadker, R. Hey, You Have given Me Too Many Knobs!: Understanding and

Dealing with over-Designed Configuration in System Software. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, Bergamo, Italy, 30 August 2015–4 September 2015; pp. 307–319.

2. Van Aken, D.; Pavlo, A.; Gordon, G.J.; Zhang, B. Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017;
pp. 1009–1024.

3. Guo, J.; Czarnecki, K.; Apel, S.; Siegmund, N.; Wąsowski, A. Variability-aware performance prediction: A statistical learning
approach. In Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Silicon Valley, CA, USA, 11–15 November 2013; pp. 301–311.

4. Lu, J.; Chen, Y.; Herodotou, H.; Babu, S. Speedup your analytics: Automatic parameter tuning for databases and big data systems.
Proc. VLDB Endow. 2019, 12, 1970–1973. [CrossRef]

5. Guo, J.; Yang, D.; Siegmund, N.; Apel, S.; Sarkar, A.; Valov, P.; Czarnecki, K.; Wasowski, A.; Yu, H. Data-efficient performance
learning for configurable systems. Empir. Softw. Eng. 2018, 23, 1826–1867. [CrossRef]

6. Duan, S.; Thummala, V.; Babu, S. Tuning database configuration parameters with iTuned. Proc. VLDB Endow. 2009, 2, 1246–1257.
[CrossRef]

7. Mahgoub, A.; Wood, P.; Ganesh, S.; Mitra, S.; Gerlach, W.; Harrison, T.; Meyer, F.; Grama, A.; Bagchi, S.; Chaterji, S. Rafiki:
A middleware for parameter tuning of nosql datastores for dynamic metagenomics workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA, 11–15 December 2017; pp. 28–40.

8. Bao, L.; Liu, X.; Wang, F.; Fang, B. ACTGAN: Automatic Configuration Tuning for Software Systems with Generative Adversarial
Networks. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San
Diego, CA, USA, 11–15 November 2019; pp. 465–476.

9. Zhu, Y.; Liu, J.; Guo, M.; Bao, Y.; Ma, W.; Liu, Z.; Song, K.; Yang, Y. Bestconfig: Tapping the performance potential of systems via
automatic configuration tuning. In Proceedings of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24–27
September 2017; pp. 338–350.

10. Ha, H.; Zhang, H. Deepperf: Performance prediction for configurable software with deep sparse neural network. In Proceedings
of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019;
pp. 1095–1106.

11. Nair, V.; Menzies, T.; Siegmund, N.; Apel, S. Faster discovery of faster system configurations with spectral learning. Autom. Softw.
Eng. 2018, 25, 247–277. [CrossRef]

12. Sarkar, A.; Guo, J.; Siegmund, N.; Apel, S.; Czarnecki, K. Cost-efficient sampling for performance prediction of configurable
systems (t). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Lincoln, NE, USA, 9–13 November 2015, pp. 342–352.

13. Valov, P.; Guo, J.; Czarnecki, K. Empirical comparison of regression methods for variability-aware performance prediction. In
Proceedings of the 19th International Conference on Software Product Line, Nashville, TN, USA, 20–24 July 2015; pp. 186–190.

14. Nair, V.; Menzies, T.; Siegmund, N.; Apel, S. Using bad learners to find good configurations. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017; pp. 257–267.

15. Jamshidi, P.; Velez, M.; Kästner, C.; Siegmund, N. Learning to sample: Exploiting similarities across environments to learn
performance models for configurable systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista, FL, USA, 4–9 November
2018; pp. 71–82.

16. Zhang, J.; Liu, Y.; Zhou, K.; Li, G.; Xiao, Z.; Cheng, B.; Xing, J.; Wang, Y.; Cheng, T.; Liu, L.; et al. An end-to-end automatic cloud
database tuning system using deep reinforcement learning. In Proceedings of the 2019 International Conference on Management
of Data, Amsterdam, The Netherlands, 30 June 2019–5 July 2019; pp. 415–432.

17. Jamshidi, P.; Siegmund, N.; Velez, M.; Kästner, C.; Patel, A.; Agarwal, Y. Transfer learning for performance modeling of
configurable systems: An exploratory analysis. In Proceedings of the 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Urbana, IL, USA, 30 October–3 November 2017; pp. 497–508.

18. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
19. Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990,

4, 313–332. [CrossRef]
20. Myers, D.E. CO-KRIGING: Methods and alternatives. In The Role of Data in Scientific Progress; Glaeser, P.S., Ed.; Elsevier Science

Publisher: North-Holland, The Netherlands, 1985; pp. 425–428.

https://github.com/xdbdilab/PCK
https://github.com/xdbdilab/PCK
http://doi.org/10.14778/3352063.3352112
http://dx.doi.org/10.1007/s10664-017-9573-6
http://dx.doi.org/10.14778/1687627.1687767
http://dx.doi.org/10.1007/s10515-017-0225-2
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1080/02693799008941549

Appl. Sci. 2021, 11, 9669 17 of 18

21. Zhang, Y.; Guo, J.; Blais, E.; Czarnecki, K. Performance prediction of configurable software systems by fourier learning (t). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA,
9–13 November 2015; pp. 365–373.

22. Zhang, Y.; Guo, J.; Blais, E.; Czarnecki, K.; Yu, H. A mathematical model of performance-relevant feature interactions. In
Proceedings of the 20th International Systems and Software Product Line Conference, Beijing, China, 16–23 September 2016;
pp. 25–34.

23. Kolesnikov, S.; Siegmund, N.; Kästner, C.; Grebhahn, A.; Apel, S. Tradeoffs in modeling performance of highly configurable
software systems. Softw. Syst. Model. 2019, 18, 2265–2283. [CrossRef]

24. Narayanan, D.; Thereska, E.; Ailamaki, A. Continuous resource monitoring for self-predicting DBMS. In Proceedings of the 13th
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta,
GA, USA, 27–29 September 2005; pp. 239–248.

25. Tran, D.N.; Huynh, P.C.; Tay, Y.C.; Tung, A.K. A new approach to dynamic self-tuning of database buffers. ACM Trans. Storage
(TOS) 2008, 4, 1–25. [CrossRef]

26. Tian, W.; Martin, P.; Powley, W. Techniques for automatically sizing multiple buffer pools in DB2. In Proceedings of the 2003
Conference of the Centre for Advanced Studies on Collaborative Research, Toronto, ON, Canada, 6–9 October 2003; pp. 294–302.

27. Thummala, V.; Babu, S. iTuned: A tool for configuring and visualizing database parameters. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 1231–1234.

28. Tan, J.; Zhang, T.; Li, F.; Chen, J.; Zheng, Q.; Zhang, P.; Qiao, H.; Shi, Y.; Cao, W.; Zhang, R. ibtune: Individualized buffer tuning
for large-scale cloud databases. Proc. VLDB Endow. 2019, 12, 1221–1234. [CrossRef]

29. Li, G.; Zhou, X.; Li, S.; Gao, B. Qtune: A query-aware database tuning system with deep reinforcement learning. Proc. VLDB
Endow. 2019, 12, 2118–2130. [CrossRef]

30. Tan, Z.; Babu, S. Tempo: Robust and self-tuning resource management in multi-tenant parallel databases. Proc. VLDB Endow.
2016, 9, 720–731. [CrossRef]

31. Mahgoub, A.; Wood, P.; Medoff, A.; Mitra, S.; Meyer, F.; Chaterji, S.; Bagchi, S. SOPHIA: Online reconfiguration of clustered nosql
databases for time-varying workloads. In Proceedings of the 2019 USENIX Annual Technical Conference, Renton, WA, USA,
10–12 July 2019; pp. 223–240.

32. Zhang, B.; Van Aken, D.; Wang, J.; Dai, T.; Jiang, S.; Lao, J.; Sheng, S.; Pavlo, A.; Gordon, G.J. A demonstration of the ottertune
automatic database management system tuning service. Proc. VLDB Endow. 2018, 11, 1910–1913. [CrossRef]

33. Valov, P.; Petkovich, J.C.; Guo, J.; Fischmeister, S.; Czarnecki, K. Transferring performance prediction models across different
hardware platforms. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L’Aquila,
Italy, 22–26 April 2017; pp. 39–50.

34. Jamshidi, P.; Velez, M.; Kästner, C.; Siegmund, N.; Kawthekar, P. Transfer learning for improving model predictions in highly
configurable software. In Proceedings of the 2017 IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 22–23 May 2017; pp. 31–41.

35. Javidian, M.A.; Jamshidi, P.; Valtorta, M. Transfer learning for performance modeling of configurable systems: A causal analysis.
arXiv 2019, arXiv:1902.10119.

36. Krishna, R.; Nair, V.; Jamshidi, P.; Menzies, T. Whence to Learn? Transferring Knowledge in Configurable Systems using BEETLE.
IEEE Trans. Softw. Eng. 2020. [CrossRef]

37. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
38. Wong, J.A.H.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. 1979, 28, 100–108.
39. Siegmund, N.; Grebhahn, A.; Apel, S.; Kästner, C. Performance-influence models for highly configurable systems. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August–4 September2015; pp. 284–294.
40. Ishihara, Y.; Shiba, M. Dynamic Configuration Tuning of Working Database Management Systems. In Proceedings of the 2020

IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), Kyoto, Japan, 10–12 March 2020; pp. 393–397.
41. Zheng, C.; Ding, Z.; Hu, J. Self-tuning performance of database systems with neural network. In International Conference on

Intelligent Computing, Proceedings of the Intelligent Computing Theory, ICIC 2014, Taiyuan, China, 3–6 August 2014; Springer: Cham,
Switzerland, 2014; pp. 1–12.

42. Debnath, B.K.; Lilja, D.J.; Mokbel, M.F. SARD: A statistical approach for ranking database tuning parameters. In Proceedings of
the 2008 IEEE 24th International Conference on Data Engineering Workshop, Cancun, Mexico, 7–12 April 2008; pp. 11–18.

43. Kanellis, K.; Alagappan, R.; Venkataraman, S. Too many knobs to tune? towards faster database tuning by pre-selecting important
knobs. In Proceedings of the 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20), Virtual, 13–14
July 2020.

44. Mahgoub, A.; Medoff, A.M.; Kumar, R.; Mitra, S.; Klimovic, A.; Chaterji, S.; Bagchi, S. OPTIMUSCLOUD: Heterogeneous
Configuration Optimization for Distributed Databases in the Cloud. In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC 20), Virtual, 15–17 July 2020; pp. 189–203.

45. Cooper, B.F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Sears, R. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, Indianapolis, IN, USA, 10–11 June 2010; pp. 143–154.

http://dx.doi.org/10.1007/s10270-018-0662-9
http://dx.doi.org/10.1145/1353452.1353455
http://dx.doi.org/10.14778/3339490.3339503
http://dx.doi.org/10.14778/3352063.3352129
http://dx.doi.org/10.14778/2977797.2977799
http://dx.doi.org/10.14778/3229863.3236222
http://dx.doi.org/10.1109/TSE.2020.2983927

Appl. Sci. 2021, 11, 9669 18 of 18

46. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Proceedings of the
27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT
Press: Cambridge, MA, USA, 2014; Volume 2, pp. 3320–3328.

47. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014,
arXiv:1412.3474.

	Introduction
	Related Work
	Problem Overview
	Problem Statement
	Key Observations
	Assumptions and Limitations

	Partitioned Co-Kriging Based Performance Prediction
	Overview
	Performance Prediction with Partitioned Co-Kriging

	Experimental Evaluation
	Experimental Settings
	Evaluation of Prediction Accuracy
	Trade-Off on Choosing K

	Discussion
	Prediction Accuracy
	Measurement Effort
	Effectiveness of Transfer Learning

	Conclusions and Future Work
	References

