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Abstract: The minimum toe clearance (MTC) results from the coordination of all bilateral lower limb
body segments, i.e., a redundant kinematic chain. We tested the hypothesis that repeated exposure to
trip-like perturbations induces a more effective covariation of limb segments during steady walking,
in accordance with the uncontrolled manifold (UCM) theory, to minimize the MTC across strides.
Twelve healthy young adults (mean age 26.2 ± 3.3 years) were enrolled. The experimental protocol
consisted of three identical trials, each involving three phases carried outin succession: steady
walking (baseline), managing trip-like perturbations, and steady walking (post-perturbation). Lower
limb kinematics collected during both steady walking phases wereanalyzed in the framework of the
UCM theory to test the hypothesis that the reduced MTC variability following the perturbation can
occur, in conjunction with more effective organization of the redundant lower limb segments. Results
revealed that, after the perturbation, the synergy underlying lower limb coordination becomes
stronger. Accordingly, the short-term effects of the repeated exposure to perturbations modify the
organization of the redundant lower limb-related movements. In addition, results confirm that the
UCM theory is a promising tool for exploring the effectiveness of interventions aimed at purposely
modifying motor behaviors.

Keywords: minimum toe clearance; walking; uncontrolled manifold; repeated exposure; perturbation;
tripping

1. Introduction

The minimum toe clearance (MTC) is the distance between toe and ground, as assessed
when the time course of the toe’s vertical displacement reaches the relative minimum
during the mid-swing phase of a gait cycle [1]. At this critical time, if the trajectory of the
swinging foot is abruptly interrupted by an obstacle (i.e., tripping), the overall dynamic is
challenged and the consequent lack of balance can result in a fall. The MTC is purported to
be a measure of the risk of tripping [1–4]. Accordingly, understanding how humans control
MTC is of paramount importance to designing suitable strategies to decrease fall risk [2,3].

Earlier literature demonstrated that MTC average and variability across strides reflect
the individual’s attitude to controlling the toe clearance while walking. In more detail, a
lower MTC average results from an increased cognitive workload [5,6], while reduced MTC
variability documents a more precise neuromuscular control of the toe clearance [3,7,8]. In
one of our recent works, we extended previous findings to reveal that repeated exposure to
a series of trip-like perturbations modifies MTC average and variability towards a more
conservative (i.e., lower MTC average) and more precise (i.e., lower MTC variability)
neuro-muscular control strategy [9].
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In this study, we further investigated the short-term effects of repeated exposure to
trip-like perturbations on steady walking, to provide a more in-depth analysis of inter-
segmental coordination. From a kinematic viewpoint, MTC is the result of suitable coordi-
nation of all lower limb body segments, from the foot of the trailing limb to the contralateral
one. Noticeably, this kinematic chain is redundant because the number of available de-
grees of freedom (DoFs), i.e., the orientation of all body segments, is far larger than the
controlled variable (i.e., the vertical distance between toe and ground). Therefore, different
configurations of lower limb segments can result in the same MTC.

According to this evidence, we tested the hypothesis that amore precise control of the
toe clearance (reduced MTC variability) after the perturbation occurs in conjunction with a
more effective covariation of the redundant lower limb segments. To test this hypothesis,
we adopted the uncontrolled manifold (UCM) theory [10,11]. This approach relies on
the analytical relationship between the redundant DoFs of the musculoskeletal system
(i.e., the orientation of lower limb segments), also named elemental variables, and the task
performance, representing the putative controlled variable (the MTC; see Section 2.3 for
further details). We hence tested the hypothesis that the variability across repetitions of
elemental variables is mostly limited to a set of solutions that minimises the homologous
variability of the task performance.

2. Materials and Methods

The dataset used in this study is a subset of that collected in our previous work [9],
and refers to 12 of 14 recruited subjects. Data concerning 2 subjects were discarded because
the 3D track of their anterior-iliac spines were missed for long periods (i.e., tens of seconds).
Therefore, it was not possible to accurately estimate hip joint position.

The following subsections will briefly recapitulate the procedures and methods already
described elsewhere [9,12].

2.1. Participants, Experimental Setup, and Protocol

Twelve healthy young adults (7 M/5 F; mean ± standard deviation; age: 26.2 ± 3.3;
height: 1.72 ± 0.09; mass: 64.4 ± 8.7 kg) were enrolled inthis study. They were asked to
walk on a treadmill at their preferred speed (0.90 ± 0.08 m/s), either in steady conditions
or while managing unexpected trip-like perturbations.

The experimental setup consisted of a treadmill equipped with a mechatronic platform,
hosting two nylon ropes connecting both feet with its main frame through a couple of
compliant springs (Figure 1) [9,13]. The rope connecting the right foot ran through a cam-
based braking mechanism and could be stopped to interrupt the forward movement of the
right foot during the mid-swing phase, thus emulating a trip. To minimize inter-subject
variability, each perturbation was triggered at the heel strike of the contralateral foot.
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The experimental protocol consisted of three identical trials (A, B, and C) each ac-
counting for three sub-phases occurringin succession: i. steady walking on the treadmill
for about 2 min (baseline); ii. managing 30 unexpected trip-like perturbations delivered
at random every 3–20 strides; iii. steady walking for about 2 min (post-perturbation).
To prevent proactive adjustments due to external cues, participants listened to music via
headphones and did not know when the perturbations were to be delivered. For safety
purposes, the treadmill was equipped with handrails, which participants were instructed
to grasp only in cases of unrecoverable lack of balance. Otherwise, they were not allowed
to use the handrails during the experimental session.

The study protocol was approved by the Local Ethics Committee. Enrolled subjects
provided written, informed consent before starting experimental sessions.

2.2. Data Collection and Processing

The 3D trajectory of 25 lower limb body landmarks was recorded at 100 Hz by using a
six-camera, motion capture system (Vicon 512 Bonita 10 Motion Analysis System, Oxford,
UK; Figure 2). Collected kinematics was pre-processed according to the following pipeline:
i. gap filling, if any; ii. zero-lag, low-pass filtering (Butterworth, 4th order) with a cut-off at
10 Hz.
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Figure 2. On the left panel, half (right side) body marker set is reported as follows: 1. middle
point between posterior iliac spines; 2. anterior iliac spine; 3. prominence of the greater trochanter
external surface; 4. lateral epicondyle of the femur; 5. medial epicondyle of the femur; 6. head of the
fibula; 7. lateral malleolus; 8. and medial malleolus; 9. 5th metatarsal head; 10. 1st metatarsal head;
11. calcaneus; 12. marker rigidly attached to a wand over midfemur; 13. marker rigidly attached to a
wand over midshaft of the tibia. On the right side, the 7-segments kinematical model is reported.
Axes xlab, ylab, and zlab refer to the lab-related reference frame.

The 3D trajectory of the markers on the right foot were used to identify the following
time events: the heel strike and the toe off, as maximum and minimum elevation of
the limb axis, in compliance with previous literature [14,15]; the time instant during the
swing phase corresponding to the local minimum of 1st metatarsal head (tMTC). For each
subject in each trial (A, B, and C) and each sub-phase (baseline and post-perturbation), the
mean and the standard deviation of the MTC across collected strides (MTCav and MTCSD)
were computed.

Kinematics as assessed at tMTC were also used to implement the UCM analysis.

2.3. UCM Implementation

The UCM approach aims at testing the hypothesis that available DoFs, also referred to
as elemental variables, covary across repetitions to minimize the variability of the controlled
variable, namely task performance [10,11,16]. In the framework of this study, we used seg-
mental angles rather than joint angles as elemental variables according to the evidence that
segmental angles covary during numerous walking-related tasks [17–21] while joint angles
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do not [22], under the assumption of planar approximation of locomotion. To test the
hypothesis that the redundant DoFs represent an adaptable source of solutions to ensure a
stable MTC (i.e., task performance) across strides, the inter-stride variability of elemental vari-
ables is split in two components: i. the former defines a domain of segmental orientations
leading to the same MTC value across strides; ii. the latter defines an orthogonal domain
accounting for all solutions that do modify the MTC across strides. When the variability
of elemental variables is mostly confined to the former domain, namely the uncontrolled
manifold, it is possible to conclude that the orientation of lower limb segments is function-
ally organized across strides to minimize the MTC inter-stride variability (i.e., MTCSD).
Noticeably, the average number of strides collected across subjects and trials was 25 ± 2 in
accordance with earlier findings [23].

The algorithm adopted to implement the UCM analysis resembles that reported in
our previous works [12,24]. Briefly, a 3D kinematics model of lower limbs, accounting
for seven body segments (feet, shanks, thighs, and pelvis) and six spherical joints (hips,
knees, and ankles) was developed, as shown in Figure 2. The location of each joint was
estimated as follows: the ankle joint coincided with the middle point between medial
and lateral malleolus; the knee joint coincided with the middle point between medial and
lateral epicondyle of the femur; the hip joint coincided with the acetabulum whose location
was computed as described elsewhere [25], based on the markers on anterior iliac spines
and middle point between posterior iliac spines. The orientation of each body segment was
estimated in terms of azimuth and elevation angles (spherical coordinates) from the x-axis
of the lab-related reference frame. The trigonometric model relating elemental variables
(elevation and azimuth angles of lower limb body segments) and task performance, i.e., the
MTC of the right foot, was developed according to the Equation (1):

MTC = AHz =
7

∑
m=1

Lm·cos(εm)·sin(αm) (1)

where:

• AHz coincides with the MTC;
• Lm, εm, and αm refer to length, elevation, and azimuth angles of the m body segment;
• m = 1, 2, . . . , 7 refers to the ordered series of body segments, from the left foot to the

right one.

The Jacobian matrix (J) of the function in Equation (1), relating small changes in the
elemental variables (i.e., ε1, α1, . . . , εm, and αm) to task performance (i.e., MTC), was hence
computed. J was calculated around the mean configuration of segmental angles across
strides (i.e., ε1, α1, . . . ,εm, and αm). Then, its null space (N(J)) was estimated as a linear
approximation of the UCM, i.e., when the deviation of segmental angles from the mean
configuration is confined into the N(J), the MTC does not change, and viceversa. After that,
the deviation of elemental variables from their mean values across strides was calculated
and projected onto and orthogonal to the UCM (namely, DVUCM and DVORT, respectively).
Finally, the variances across strides of these projections onto and orthogonal to the UCM,
(namely σ2

UCM and σ2
ORT) were computed across strides and normalised per degree of

freedom of each subspace. The ratio between variance components was computed as a
synthetic synergy index (the greater the Ratio, the stronger the synergy of the underlying
lower limb coordination).

2.4. Statistical Analysis

Mean and standard deviation were used as descriptive statistics to refer to the central
tendency and dispersion of all independent variables (i.e., MTCav, MTCSD, σ2

UCM, σ2
ORT and

Ratio). A two-way repeated measures Analysis of Variance (ANOVA) was implemented
to investigate the main and interaction effects of factors trials (three levels: A, B, and C)
and sub-phase (two levels: baseline and post-perturbation) on the outcome variables. The
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one-sample t-test was carried out to test the hypothesis that the mean of the Ratio is equal
to 1, for each trial and each sub-phase.

Significance for all statistical tests was set at p < 0.05. Data analysis was carried out
using Matlab R2020a (The MathWorks, Inc., Natick, MA, USA).

3. Results

Table 1 reports both the descriptive statistics and outcomes of the statistical analysis
for all independent variables.

Table 1. Independent variables (mean ± standard deviation) as assessed across experimental conditions and outcome of the
statistical analysis. Acronyms pT; pSp, pint represent the outcome of the statistical analysis in terms of p-values with respect
to factors trial (three levels: A, B, and C), sub-phase (two levels: baseline and post-perturbation), and their interaction,
respectively. p-values are reported in bold when significant (p < 0.05).

Variable
Trial A Trial B Trial C

p-Values
Baseline Post-pert. Baseline Post-pert. Baseline Post-pert.

MTCav (mm) 34.8 ± 9.1 31.1 ± 10.2 33.1 ± 10.0 30.9 ± 8.9 32.6 ± 8.3 31.1 ± 8.6
pT = 0.966
pSp = 0.001
pint = 0.197

MTCSD (mm) 3.4 ± 1.0 3.1 ± 1.0 3. 3 ± 1.4 3.0 ± 0.7 3.4 ± 1.1 3.1 ± 0.9
pT = 0.602

pSp = 0.012
pint = 0.795

σ2
UCM (rad2) 0.16 ± 0.24 0.19 ± 0.18 0.11 ± 0.14 0.16 ± 0.17 0.13 ± 0.18 0.18 ± 0.18

pT = 0.841
pSp = 0.159
pint = 0.972

103 × σ2
ORT (rad2) 0.08 ± 0.04 0.11 ± 0.08 0.14 ± 0.22 0.13 ± 0.15 0.11 ± 0.15 0.09 ± 0.06

pT = 0.498
pSp = 0.712
pint = 0.769

10−3 × Ratio (adim) 1.58 ± 2.06 2.92 ± 3.73 1.56 ± 2.45 2.15 ± 3.23 1.65 ± 2.62 2.86 ± 4.14
pT = 0.881

pSp = 0.015
pint = 0.926

The results confirmed that both MTCav and MTCSD significantly (pSp < 0.05) decreased
after the repeated exposure to perturbation [9]. With regards the outcome of the UCM
analysis, both before and after the perturbation, σ2

UCM > σ2
ORT (i.e., Ratio > 1; p < 0.05). In

addition, due to the perturbation, σ2
UCM increased, albeit without statistical significance

(pSp = 0.159), whereas σ2
ORT remained almost constant. These variations led to a significant

growth of the Ratio (pSp = 0.015). Neither the effect of the factor trials nor that of the
interaction between factors trials and sub-phases were noticed for all independent variables
(i.e., pT > 0.05 and pint > 0.05 for all comparisons).

4. Discussion

This study investigated the short-term effects of the repeated exposure to trip-like
perturbations on inter-segmental coordination during steady walking, as a follow-up
analysis of a dataset collected for one of our recent works [9]. Here, we tested the hypothesis
that, due to perturbation, a more precise control of the toe clearance (reduced MTCSD)
can occur, in conjunction with more effective organisation of the redundant lower limb
segments, in accordance with the UCM theory. The results confirmed that, after the
perturbation, the synergic covariation of segmental orientation further stabilises the MTC
variability across strides.

As an initial result, this study demonstrates that lower limb intersegmental coordina-
tion while walking is functionally structured to minimise the inter-stride MTC variability
in accordance with the UCM theory (Ratio > 1). Notably, previous authors have dealt
with different performance variables related to the swinging foot, such as mediolateral
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footpath trajectory [26–29], or whole 3D footpath [12,24], and reported slightly discordant
outcomes [12]. Our findings, in conjunction with previous ones [12,24,26–29], suggest that
the central nervous system may aim at individually and flexibly stabilising the inter-stride
variability of footpath components (e.g., mediolateral, vertical) during different periods
of the swing phase. This hypothesis deserves to be further investigated to gain a more
general understanding concerning the organisation of inter-stride variability of lower limb
body segments during the swing phase.

The main result is related to the decrease in MTCSD and suggests that the strength
of the kinematic synergy underlying MTC stabilisation across strides further increases
after the perturbation (se Ratio in Table 1). In our previous work, we argued that the
post-perturbation reduction inMTCav and, especially, MTCSD would reflect a volitional
strategy to achieve a more effective compensatory step in case of forthcoming perturba-
tions [9]. The results reported in this study further extend this conclusion, suggesting
that the participants could proactively modify the coordination of all segments belonging
to both the trailing and the leading limbs. This evidence confirms that the UCM theory
is a promising tool for exploring the effectiveness of interventions aimed at purposely
modifying motor behaviours, as also documented in earlier studies [12,24,30]. In addition,
they suggest that the short-term effects of the repeated exposure to perturbations may
involve a modified interaction between the bilateral neural structures leading lower limb-
related movements. Further in-depth investigations are required to explore the relationship
between the outcome of the UCM analysis and the neural control of bipedal locomotion.

Limits of the Study

One of the main limits of this study consisted of the small number of enrolled subjects
(i.e., twelve healthy young adults) resulting in a limited strength of the statistical findings.
However, it should be noticed that the outcomes of the statistical analysis that reached
the significance (Table 1) were typically far from the threshold (i.e., p = 0.05). Accordingly,
we can confidently conclude that results can be considered robust enough. Another limit
is that findings reported in this study are related to young healthy adults and cannot be
generalized to other groups of individuals, such as elderly people or people affected by
neuro-muscular diseases. In this respect, we believe that further and specific analysis are
required to investigate the effects of the proposed intervention on people belonging to
other populations.

5. Conclusions

This study shows that lower limb inter-segments coordination while walking is func-
tionally structured to minimise the inter-stride variability of the MTC in accordance with
the uncontrolled manifold (UCM) theory. In addition, after repeated exposure to trip-like
perturbations, the intersegmental coordination underlying the MTC stabilisation across
strides becomes stronger, as assessed by the ration between variance components. Future
research in motor control theory based on the UCM is expected to investigate more exten-
sively the relevance of the single components of the 3D foot trajectory during the swing
phase, and the relationship between highlighted coordinative strategy and neural control
of locomotion.
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