
applied  
sciences

Article

A Theoretical Analysis of Magnetic Particle Alignment in
External Magnetic Fields Affected by Viscosity and
Brownian Motion

Andrej Krafcik 1,* , Peter Babinec 2 , Oliver Strbak 3 and Ivan Frollo 1

����������
�������

Citation: Krafcik, A.; Babinec, P.;

Strbak, O.; Frollo, I. A Theoretical

Analysis of Magnetic Particle

Alignment in External Magnetic

Fields Affected by Viscosity and

Brownian Motion. Appl. Sci. 2021, 11,

9651. https://doi.org/10.3390/

app11209651

Academic Editor: Kamil Gareev

Received: 27 September 2021

Accepted: 13 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences,
Dubravska Cesta 9, 841 04 Bratislava, Slovakia; ivan.frollo@savba.sk

2 Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics,
Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia; babinec@fmph.uniba.sk

3 Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
Mala Hora 4, 036 01 Martin, Slovakia; oliver.strbak@centrum.cz

* Correspondence: andrej.krafcik@savba.sk

Featured Application: Iron oxide nanoparticles with highly nonlinear magnetic behavior are
attractive for biomedical applications, including biosensing using the rotational freedom of particles
for detection of biomarkers for cancer cells and for contrast enhancement in magnetic resonance
imaging (MRI). Hyperthermia therapy has been used for cancer therapy, and magnetic particle
imaging (MPI) is a promising new imaging modality that can spatially resolve the concentration
of nanoparticles. For the success of the technology, understanding the nanoparticle rotation
mechanism is necessary. The presented computational model can be used in the study of magnetic
particle alignment phenomena as the non-Markovian process with memory in the external force
field as part of generalized Langevin theory. It can elucidate the significance of each kind of
torque in this phenomenon, or can serve as the estimator of the characteristic time of magnetic
particle alignment in a wide range of magnitudes of the external magnetic flux density field. Our
results, therefore, have far-reaching implications for understanding and advancement of these
emerging biomedical technologies.

Abstract: The interaction of an external magnetic field with magnetic objects affects their response
and is a fundamental property for many biomedical applications, including magnetic resonance and
particle imaging, electromagnetic hyperthermia, and magnetic targeting and separation. Magnetic
alignment and relaxation are widely studied in the context of these applications. In this study, we
theoretically investigate the alignment dynamics of a rotational magnetic particle as an inverse
process to Brownian relaxation. The selected external magnetic flux density ranges from 5µT to 5 T.
We found that the viscous torque for arbitrary rotating particles with a history term due to the inertia
and friction of the surrounding ambient water has a significant effect in strong magnetic fields (range
1–5 T). In this range, oscillatory behavior due to the inertial torque of the particle also occurs, and the
stochastic Brownian torque diminishes. In contrast, for weak fields (range 5–50µT), the history term
of the viscous torque and the inertial torque can be neglected, and the stochastic Brownian torque
induced by random collisions of the surrounding fluid molecules becomes dominant. These results
contribute to a better understanding of the molecular mechanisms of magnetic particle alignment in
external magnetic fields and have important implications in a variety of biomedical applications.

Keywords: magnetic particle alignment rotational dynamics; viscous torque; stochastic Brownian
torque; stochastic integro-differential equations; simulations

1. Introduction

When subjected to an external magnetic field, a magnetic particle will respond with
translational motion in the gradient magnetic field and its self-rotation, or rotation of its
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magnetic moment, to the direction of the external magnetic field as it is applied in various
cases of biomedical applications widely studied experimentally and theoretically [1–10].
These latter effects are simply denoted as magnetic alignment and are inverse processes to
Brownian and Néel relaxation [11,12].

Both magnetic alignment and relaxation are important in, for example, magnetic
particle contrast imaging and quantification in magnetic resonance and particle imag-
ing [8,9,13–15], electromagnetic hyperthermia [6,7,16,17], theranostics [18–20], magnetore-
laxometry [10,21,22], and navigation in the geomagnetic field [23–27]. Magnetic particle
alignment at the nano- and micro-scale requires a complex approach for simulating a
wide range of possible strengths of an acting external magnetic field. However, to our
knowledge, such a study does not currently exist.

If we restrict only the particle rotating (as a whole with a magnetic moment) to the
direction of an external homogeneous magnetic field, the particle experiences a magnetic
torque that can be easily described analytically [28].

An object moving or rotating in a viscous ambient fluid experiences an action against
its movement due to the internal friction of the ambient fluid. Such a fluid on the surface of
the object moves with the object with the same velocity as its surface, i.e., it fulfills the no-
slip boundary condition. The velocity of the layers of the fluid parallel to the object surface
decreases with increasing distance between the layer and particle surface due to the internal
friction of the fluid [29]. If the object is a sphere rotating about its axis with an arbitrary
angular velocity, the torque felt by the sphere due to the internal friction of the fluid and its
inertia adds an integral term for the whole history and development of angular acceleration
to the quasi-steady viscous torque, as shown previously [30]. This integral history term is
analogous to the Basset history force [31,32] (such a non-local Basset force was studied by
our group recently as the correction of the magnetic particle separation dynamics in [5]).
This term has its origin in the vortices of an ambient fluid around an arbitrary rotating
sphere. The viscous torque is denoted as ~Tv(t), i.e., an “arbitrary viscous torque”.

Furthermore, when a spherical particle is sufficiently small, it experiences the stochas-
tic effect of the Brownian motion of ambient fluid molecules [33], which depends on its
temperature. This contribution to the overall torque is denoted as the ~TB(t), i.e., a stochastic
Brownian torque.

In most studies [34–36], the history acceleration term of the arbitrary viscous torque,
inertia, and especially stochastic Brownian torques, are assumed to be negligible, and a
simple viscous torque (a quasi-steady term, γω = 8πηR3ω, for a sphere of radius R rotating
with angular velocity ω in an ambient viscous fluid with dynamic viscosity η [37]) are
considered, as in [17,25,33]. Alternatively, the thermal disturbance of magnetic alignment
through the rotational diffusion model can be analyzed [38,39]. Particularly, the borderline
from ballistic to diffusion behavior should be considered [40].

Therefore, in this study, our aim was to develop a complex model of the magnetic
alignment of a single magnetic particle in an external homogeneous magnetic field. Origi-
nally, a quiescent ambient viscous fluid, together with consideration of the arbitrary viscous
torque with the history acceleration term, as well as the stochastic Brownian torque for a
defined temperature. The rotational movement of the sphere can then be modeled by a
Langevin-like equation with a stochastic fluctuating torque due to random impulses from
the many neighboring fluid molecules (similar to the Langevin equation in [41,42]), with a
modified viscous torque through the use of the history term (see, for example, [43–45]).

The description of such a system is far from trivial. The stochastic term brings white
noise to the model, which is mostly discontinuous and has infinite variations [46]. We
consider not only a simple system of ordinary differential equations (ODEs) but also
stochastic integro-differential equations (SIDEs), which do not possess a simple analytic or
numerical solution. Recently, we showed in [5,47,48] how to approach a similar system
of integro-differential equations (IDEs) containing a non-local Basset acceleration history
term numerically, with a variable timestep order of one, quadrature scheme. However,
the current situation is more complex because the stochastic term brings the additional
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difficulty of solving the current system of SIDEs with a similar method. Therefore, we use
an approach arising from the simple finite difference method of Euler [49].

The computer source codes developed in this research are available as the
Supplementary Materials.

2. Materials and Methods
2.1. Physical Model

If we consider a spherical magnetic particle with radius R, mass density ρp, and norm
of magnetic moment µp, initially perpendicularly rotated to an external homogeneous
magnetic field with flux density ~B0 ≡ B0~i, i.e., ~µp(0) ≡ µp~j, located in a viscous ambient
fluid with mass density ρ, dynamic viscosity η, and kinematic viscosity ν ≡ η/ρ, then the
rotational movement of the particle (alignment to the direction of the external magnetic
field) can be described with a system of differential equations (DEs):

~~Ip ·
d~ω(t)

dt
= ~µp × ~B0 + ~Tv(t) + ~TB(t), (1)

where~~Ip is the moment of inertia tensor of the spherical particle, which for simple rotation
about the particle axis reduces to the scalar Ip = 2

5 mpR2 and ~ω ≡ ω~k is the angular velocity
of the rotational movement of the spherical particle. Unit vectors~i,~j, and~k form the basis
of a Cartesian coordinate system. mp = Vpρp is the weight of the magnetic particle and Vp
is its volume. The first term on the right-hand side of Equation (1) is the magnetic torque
exerted by the external homogeneous magnetic field ~B0 on the particle with magnetic
moment ~µp = µp(cos ϕ~i− sin ϕ~j). The second term in Equation (1) is the viscous torque of
the viscous ambient fluid on the rotating spherical particle. The final term in Equation (1)
is the random Brownian torque exerted on the spherical particle.

Due to the axial symmetry of the rotational movement of the spherical particle (~ω ‖~k),
the system of DEs (1) becomes a scalar differential equation:

Ip
dω(t)

dt︸ ︷︷ ︸
inertial

= µpB0 sin ϕ︸ ︷︷ ︸
magnetic

+ Tv(t)︸ ︷︷ ︸
viscous

+ TB(t)︸ ︷︷ ︸
Brownian

, (2)

which together with:

dϕ(t)
dt

= −ω(t), (3)

and initial conditions:

ϕ(0) =
π

2
rad, ω(0) = 0 rad/s, (4)

define the rotational alignment of the spherical particle with magnetic moment µp in
the external homogeneous magnetic field with flux density B0 and viscous fluid with
thermodynamic temperature T.

The viscous torque ~Tv(t) = Tv(t)~k exerted on the spherical particle for arbitrary
angular velocity ω(t) can be expressed according to [30]:

Tv(t) ≡ −γω(t)︸ ︷︷ ︸
quasi-steady

− γ

3
√

π

t∫
−∞

K(t− τ)
dω(τ)

dτ
dτ

︸ ︷︷ ︸
history acceleration torque︸ ︷︷ ︸

arbitrary viscous torque

, (5)
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where γ ≡ 8πηR3 is the Stokes coefficient of the viscous torque and:

K(t− τ) ≡ R√
ν(t− τ)

−
√

π exp
(

ν(t− τ)

R2

)
erfc

(√
ν(t− τ)

R

)
(6)

is a kernel function. This brings a challenge to the solution of the system of DEs (2)–(3)
with initial conditions (4), due to the history integral term in equation (5) over the whole
evolution of the angular acceleration of the particle in time, known as the history accelera-
tion torque.

Moreover, the fluctuating Brownian torque is a stochastic term generated with random
impulses from the neighboring fluid molecules and its mathematical representation yields
the properties of the Gaussian white noise phenomenon W(t), i.e., in the first moment
〈W(t)〉 = 0 (zero mean) and in the second 〈W(t)W(t + τ)〉 = δ(τ) (uncorrelation) [41],
where 〈. . . 〉 represents an ensemble average and δ(τ) is the Dirac delta function. The
stochastic Brownian torque can then be expressed as:

TB(t) ≡
√

2kBTγW(t), (7)

where kB and T are the Boltzmann constant and thermodynamic temperature, respectively.
The studied problem is not only the system of ODEs but also the system of SIDEs.

2.2. Solution

To solve the system of SIDEs (2)–(7), we used the first-order integration method, gen-
eralizing the Euler method for stochastic differential equations (finite difference approach).

For memory integral integration in the arbitrary viscous torque evaluation of the
acceleration torque, an order one quadrature scheme, similar to those presented in [50], is
generally used. However, in contrast, we have used a different kernel function (6) arising
from the definition of viscous torque equation (5). The integral occurring in this equation
can be transcribed using integration by parts:

t∫
t0

K(t− τ)
dω(τ)

dτ
dτ + K(t− t0)ω(t0) =

d
dt

t∫
t0

K(t− τ)ω(τ)dτ. (8)

Now, we can divide the time span by the sequence of n− 1 constant timestep intervals
h = τi+1 − τi for i = 1 to n− 1, where τ1 = t0 and τn = t, which gives:

d
dt

t∫
t0

K(t− τ)ω(τ)dτ =
d
dt

n−1

∑
i=1

τi+1∫
τi

K(t− τ)ω(τ)dτ ≡ d
dt

n−1

∑
i=1

Ii(t). (9)

If we now examine the simplest case, a linear approximation, the calculation leads to an
order one quadrature scheme. By approximating ω(τ) linearly in the interval τ ∈ [τi, τi+1]:

ω(τ) = ω(τi) +
ω(τi+1)−ω(τi)

h
(τ − τi) +O(h2), (10)

we obtain:

Ii(t) ≡
τi+1∫
τi

K(t− τ)ω(τ)dτ =
[
ω(τi) +O(h2)

] h∫
0

K(t− τi − τ)dτ +
ω(τi+1)−ω(τi)

h

h∫
0

τK(t− τi − τ)dτ. (11)

The integrals in Equation (11), with kernel function (6), can be computed analytically
to yield:
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Ii(t) ≈ ω(τi)
√

π
R2

ν

[
exp

ν(t− τi − τ)

R2 erfc

√
ν(t− τi − τ)

R

]h

τ=0

+

+
ω(τi+1)−ω(τi)

h

[
2R3

ν3/2

√
t− τi − τ +

√
π

(
R4

ν2 +
R2

ν
τ

)
exp

ν(t− τi − τ)

R2 erfc

√
ν(t− τi − τ)

R

]h

τ=0

, (12)

if higher orders of h, than the first, are omitted.
A method that considers the stochastic term (7) in the solution of stochastic differential

equations (SDEs), using a finite difference approach was shown in [42] and also used
in [33]. The approach utilizes a discrete sequence of random numbers Wi that mimics the
properties of W(t) and is stationary with zero mean, as well as having to fulfill 〈W(t)2〉 = 1
for each value of t, which in a discrete sequence sense means that 〈(Wi∆t)2〉/∆t = 1, i.e.,
the Wi has variance 1/∆t. Furthermore, because W(t) is uncorrelated, we assume Wi and
Wj to be independent for i 6= j, i.e., we use a sequence of uncorrelated random numbers
with zero mean and variance 1/∆t. The realization of a such sequence is as simple as:

Wi =
wi√
∆t
≡ wi√

h
, (13)

where wi is a Gaussian random number with zero mean and unit variance. For the timestep
∆t, we used the standard notation h, as used above. The discrete stochastic Brownian
torque value in the i-th timestep is then given by:

TB,i ≡
√

2kBTγ

h
wi. (14)

In a discrete sense, the solution for the n-th step of the angle and angular velocity can
be expressed using the finite difference method as:

ϕn =
2Ip + γh
Ip + γh

ϕn−1 −
Ip

Ip + γh
ϕn−2 −

µpB0h2

Ip + γh
sin ϕn−1 −

h2

Ip + γh
Tacc,n −

√
2kBTγh

3
2

Ip + γh
wn, (15)

ωn = − ϕn − ϕn−1

h
, (16)

where the history acceleration torque fulfills in the n-th step:

Tacc,n = − γ

3
√

π

[
−K(t− t0)ω(t0) +

Sn − Sn−1

h

]
(17)

with Sn ≡
n−1
∑

i=1
Ii(t) and Sn−1 is the Sn from the previous step.

3. Results and Discussion

We simulated the rotational alignment of a spherical MyOne 1.0µm microparticle [Ther-
moFischer Scientific, Waltham, MA USA, Dynabeads™, MyOne™, available online: https:
//www.thermofisher.com/order/catalog/product/65012?SID=srch-srp-65012 (accessed on
31 May 2018)] in an external homogeneous magnetic field and water as an ambient viscous
fluid, with its parameters shown in Table 1.

https://www.thermofisher.com/order/catalog/product/65012?SID=srch-srp-65012
https://www.thermofisher.com/order/catalog/product/65012?SID=srch-srp-65012


Appl. Sci. 2021, 11, 9651 6 of 13

Table 1. Values of parameters used in simulations.

Parameter Symbol Value Unit

Finite timestep h 10−8 s
Boltzmann constant kB 1.3807× 10−23 J K−1

Thermodynamic temperature T 293.15 K
Fluid a dynamic viscosity η 10−3 Pa s
Fluid mass density ρ 1000 kg m−3

Fluid kinematic viscosity ν η/ρ m2 s−1

Magnetic flux density norm B0 5× 10−6, . . . , 5 T
Particle b diameter 2R 10−6 m
Particle mass density ρp 1 792 kg m−3

Particle volume Vp
4
3 πR3 m3

Particle weight mp Vpρp kg
Particle moment of inertia Ip

2
5 mpR2 kg m2

Particle saturation magnetization Msp 43.0× 103 A m−1

Particle magnetic moment c µp 2.25× 10−14 A m2

Stokes coefficient γ 8πηR3 kg m2 s−1

a Water as an ambient fluid. b Parameters of commercially available magnetic particle MyOne 1 µm (ThermoFis-
cher Scientific, Waltham, MA USA, Dynabeads™, MyOne™). c Magnetic moment calculated as µp = MspVp.

3.1. Comparison of Models

Simulations were performed for four different combinations of the considered effects
and these were denoted as four different models, as shown in Table 2, where the abbreviated
notation of each model is explicitly defined. The magnitude of the external homogeneous
magnetic flux density field B0 was used for each model with a scale of 5µT to 5 T. The
obtained results are shown in Figure 1.

Table 2. Model notation with specified torques involved in simulations.

No. Torques Involved Notation

(i) inertial, magnetic, quasi-steady viscous, stochastic Brownian SDE a

(ii) inertial, magnetic, arbitrary viscous, stochastic Brownian SIDE b

(iii) inertial, magnetic, quasi-steady viscous, no stochastic Brownian ODE c

(iv) inertial, magnetic, arbitrary viscous, no stochastic Brownian IDE d

a Stochastic differential equations. b Stochastic integro-differential equations. c Ordinary differential equations.
d Integro-differential equations.

From the solutions shown in Figure 1, a strong dependence for the speed of magnetic
particle alignment on the magnitude of the magnetic flux density acting on the particle can
be seen. For strong fields, the process of magnetic alignment is rapid and slowed down
with decreasing B0.

Strong magnetic fields acting on the magnetic particles in water as the ambient fluid
at a temperature of 293.15 K cause rapid magnetic particle alignment with a characteristic
timescale of the order of microseconds. In weaker fields, this time rises significantly by
approximately one order of magnitude with each decreasing order of magnitude of the
external magnetic flux density field.

It can be seen that the time evolution of the angle and angular velocity for the strongest
B0 field and for all modeled combinations of considered effects exhibit characteristic
oscillations and nearly exponential decaying behavior. With a decrease in the magnetic flux
density B0 field, the oscillations disappear even though the almost exponential decaying
behavior persists.

For the SDE and SIDE models, weakening the external B0 fields stochastic Brownian
torque results in a random pattern in the evolution of the angle and angular velocity with
the appearance of stochastic jumps, firstly for ω(t) and also for ϕ(t) for the weakest B0
fields (see Figure 1e–g).
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Figure 1. Comparison of all considered models of rotational magnetic particle alignment for B0 from 5 T down to 5µT in panels
(a–g), respectively. In the weakest B0 fields (panels (e–g)), premature stopping of simulations for SIDE and IDE models occurs
due to a math range error in the numerical evaluation of the f (x) = exp(x) function occurring in the kernel function (6).
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3.2. Strong B0 Field Limit Case

For the strong magnetic flux density field limit case, the time evolution of ϕ(t) and
ω(t) in Figure 1a,b is shown, and it is clear that the viscous history acceleration torque
as part of the arbitrary viscous torque starts to have a significant effect. The involvement
of the history acceleration torque term in the SIDE and IDE models results in a reduction
in the amplitude of the angle and angular velocity at the early stage of alignment in
comparison with the SDE and ODE models. For B0 = 5 T (Figure 1a), this correction of the
ϕ(t) amplitude caused by the history acceleration torque is a few percent. The correction of
the ω(t) amplitude is >10%. Furthermore, the stochastic Brownian torque effect is minimal
and, for the temperature considered, can be neglected.

For a better illustration of the significance of each torque in the strong B0 field limit for
the complex SIDE model (i.e., inertial, magnetic, arbitrary viscous, and stochastic Brownian
torques) during the whole time evolution, see Figure 2.

0 0.2 0.4 0.6 0.8 1
t [s] 10-6

-8

-6

-4

-2

0

2

4

6

8

10

12

to
rq

ue
 [N

 m
]

10-14 B
0
 = 5000 mT, T = 293.15 K, h = 10-9 s

inertial
magnetic
viscous quasi-steady
viscous history acceleration
stochastic Brownian

Figure 2. Time evolution of each kind of torque for the strong B0 field limit generated with the SIDE
model. For comparison, see the time evolution of ϕ(t) and ω(t) in Figure 1a.

The observed oscillatory character of the ϕ(t) and ω(t) time evolution in the strongest
B0 field has its origin in the involvement of the inertial torque in the description of the
models. In contrast, its diminishment, for instance, at a low Reynolds number limit, results
in a loss of this oscillatory behavior.

As much as the usual inertia contribution, the non-local Basset force is usually negligi-
ble at the macroscopic observation time scales considered in standard tracking experiments,
but its effects have been shown to be prominent at short time-scales in [51,52]. This finding
is an analogue to the behavior of our studied system with the non-Basset kernel of the
history acceleration torque for arbitrary rotating sphere.

3.3. Weak B0 Field Limit Case

The simulations for the SIDE and IDE models and for weaker B0 fields were prema-
turely stopped due to excessively high values of exponents in the expression for the kernel
function for the arbitrary viscous torque (history acceleration torque). Therefore, in the
weakest B0 fields, we only focused on the models without the history acceleration torque.
In this weak B0 field limit case, Figure 1f,g, the stochastic Brownian torque effect rises and
starts to dominate. In contrast, even the viscous history acceleration torque (part of the
arbitrary viscous torque) is numerically unreachable; its effect is minimal and can therefore
be neglected.
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The manifestation of stochastic behavior for the time evolution of angle ϕ(t) is only
visible for the weakest magnetic flux density fields. Even for the time evolution of the
angular velocity ω(t), it occurs for the medium magnitudes of the magnetic field. The
stochasticity of ϕ(t) will also be visible for the same values of B0 as for the stochastic
behavior of ω(t) in the case of omitting the inertial torque from the models (low Reynolds
number limit, not shown here). This discrepancy only disappears in the case of times
significantly longer than the inertial time τinertial ≡ Ip/γ = 0.03µs, when both the time
evolution of the angle for models with the inertial torque and without it are jagged because
the microscopic details are not resolvable. Otherwise, the time evolution of the angle for
the model with the inertial torque is smoothed [42].

The zero mean and uncorrelation of stochastic Brownian impulses to the magnetic
particle are clearly visible in the averaged time evolution of ϕ(t) for an ensemble of
N = 1000 samples of rotational magnetic particle alignment, as shown in Figure 3a for the
SDE model, meaning that the evolution replicates the time dependence of ϕ(t) of the single
ODE model. Furthermore, its region of variance, defined with lines of mean± std, does
not change with the size of the finite timestep h (see Figure 3b).

a b
Figure 3. (a) Time evolution of ϕ(t) for N = 103 samples of the SDE model, i.e., inertial, magnetic, quasi-steady viscous,
and stochastic Brownian torques in the weak B0 field limit (timestep h = 10−5 s). (b) Comparison of time evolution of mean
and std values of ϕ(t) averaged over N = 104 samples of the SDE model for different finite timesteps h.

The stochastic Brownian torque term contribution to the overall dynamics of magnetic
particle alignment increases with the weakening external magnetic flux density field B0, as
discussed. This contribution will be even more visible for an increased thermodynamic
temperature of the ambient fluid, while the stochastic Brownian torque depends on the
square root of the thermodynamic temperature, Equation (7).

3.4. Characteristic Time of Magnetic Particle Alignment

The time evolution of ϕ(t) for the simplest model, the ODE model, involving the
inertial, magnetic, quasi-steady viscous, and no stochastic Brownian torques, was used as
the input data for the least-square minimization fit using a fitting function:

ϕ(t) =
π

2
exp

(
− t

τchar

)
(18)

with the founded parameter τchar for each B0. The obtained fits with estimated values of
parameter τchar are shown in Figure 4a–g. This parameter τchar has the meaning of time
t when the angle ϕ(t) reduces to the value of π

2e and, therefore, can be denoted as the
characteristic time of magnetic particle alignment. The obtained fits from simulations are
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in good agreement for the whole range of concerned B0, except for its strong limit case
(B0 = 5000 mT case in Figure 4g).
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Figure 4. Least-square minimization fit of time evolution ϕ(t) for the simplest ODE model using function (18) and obtained
estimates of characteristic time of magnetic particle alignment for each value of B0 in the range from 5µT to 5 T shown in
panels (a–g), respectively; and the (h) least-square minimization fit of the characteristic time dependence on magnetic flux
density norm τchar(B0) using Equation (19).

The estimated values of τchar for each B0 were further used to find the expression of
their dependence. The following fitting function was used:

τchar(B0) =
C
B0

. (19)

Parameter C was found from the least-square minimization fit with the value
C = 0.169µs T (see Figure 4h).

3.5. Limitations

To summarize, a complex theoretical model of rotational magnetic particle alignment
for external homogeneous magnetic flux density magnitudes B0 from 5µT to 5 T in water
as an ambient viscous fluid at room temperature has been presented. It has been shown
that the significance of the arbitrary viscous torque history term increases in the strong
B0 limit. In contrast, in the weak B0 field limit, it diminishes, and the stochastic Brownian
torque effect starts to manifest. In addition, the characteristic time of magnetic particle
alignment for the entire scale of B0 magnitudes has been estimated.
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The presented models bring several simplifications and limitations to the studied
system, as discussed below.

The weakening of the B0 field causes prolongation of the time needed for rotational
magnetic particle alignment. This implies increasing the argument of the exponential
function in the kernel function definition with the lowering of B0, which is limited in the
numerical realization of the f (x) = exp(x) function. The solution of this problem is simple.
The effect of the history term in the weak field is minimal and diminishes, so we do not
need to solve the whole problem (SIDE model) in the weak B0 limit and can neglect it and
focus only on the solution of the SDE model.

Due to the non-locality of the history acceleration torque, the stochastic Brownian
torque should be not mathematically represented as a Gaussian white random process
in Langevin theory [53], but instead as a “colored” one [45]. However, the correlation
in the time of the random process, due to the neglection of the history term in the weak
B0 limit, when the stochastic Brownian torque effect manifests, diminishes. Therefore,
the stochastic Brownian torque can be considered as a zero-mean uncorrelated random
process. In reality, the system memory can affect the “color” of the Brownian random
process [45,51]. The external forces can also affect the memory of the system and thermal
force as it was discussed, for example in [54–58]. A solution of the studied problem in this
way is still missing.

The particle magnetic moment of the considered models comes from the assumption
of its constant value, which in reality is not fulfilled, while the used particle is paramagnetic.
Therefore, the involvement of a magnetic moment saturation process in future models will
be convenient.
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