
applied
sciences

Article

Concept Drift Adaptation with Incremental–Decremental SVM

Honorius Gâlmeanu 1,2,* and Răzvan Andonie 3,4

����������
�������

Citation: Gâlmeanu, H.; Andonie, R.

Concept Drift Adaptation with

Incremental–Decremental SVM. Appl.

Sci. 2021, 11, 9644. https://doi.org/

10.3390/app11209644

Academic Editor: Byung-Gyu Kim

Received: 26 August 2021

Accepted: 11 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Mathematics and Computer Science, Transilvania University of Braşov, 500036 Braşov, Romania
2 Xperi Corporation, 500152 Braşov, Romania
3 Computer Science Department, Central Washington University, Ellensburg, WA 98926, USA;

andonie@cwu.edu
4 Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science,

Transilvania University of Braşov, 500036 Braşov, Romania
* Correspondence: galmeanu@unitbv.ro

Abstract: Data classification in streams where the underlying distribution changes over time is known
to be difficult. This problem—known as concept drift detection—involves two aspects: (i) detecting
the concept drift and (ii) adapting the classifier. Online training only considers the most recent
samples; they form the so-called shifting window. Dynamic adaptation to concept drift is performed
by varying the width of the window. Defining an online Support Vector Machine (SVM) classifier
able to cope with concept drift by dynamically changing the window size and avoiding retraining
from scratch is currently an open problem. We introduce the Adaptive Incremental–Decremental
SVM (AIDSVM), a model that adjusts the shifting window width using the Hoeffding statistical test.
We evaluate AIDSVM performance on both synthetic and real-world drift datasets. Experiments
show a significant accuracy improvement when encountering concept drift, compared with similar
drift detection models defined in the literature. The AIDSVM is efficient, since it is not retrained from
scratch after the shifting window slides.

Keywords: support vector machines; concept drift; incremental learning

1. Introduction

An important class of Machine Learning (ML) problems involves dealing with data
that have to be classified on arrival. Usually, in these situations, historical data become
less relevant for the ML task. Climate change forecasting is such an example. In the
past, elaborate models have predicted how carbon emissions impact the warming of the
environment quite well. However, given accelerated emission rates, the trends determined
from past data have changed [1]. Typically, for these problems, the underlying distribution
changes in time. There are many ML models that can approximate a stationary distribution
when the number of samples increases to infinity [2]. A classifier that considers its entire
history cannot be employed, since it will have poor generalization results, not to mention
the technical difficulties raised by keeping all data. This pattern of evolution—for which
intrinsic distribution of the data is not stationary—is called concept drift. As data evolve,
it may be because of either noise or change; the distinction between them is made via
persistence [3]. The concept drift models must combine robustness to noise or outliers with
sensitivity to the concept drift [2].

Methods for coping with concept drift are presented in several comprehensive
overviews [4–6]. An important topic is the embedding of drift detection into the learning
algorithm. According to Farid et al. [7], there are three main approaches: instance-based
(window-based), weight-based, and ensemble of classifiers. Window-based approaches
usually adjust the window size considering the classification accuracy rate, while weight-
based approaches discard past samples according to a computed importance. More recent
studies [8,9] divide stream mining in the presence of concept drift into active (trigger-based)
and passive (evolving) approaches. The active approaches update the model whenever a

Appl. Sci. 2021, 11, 9644. https://doi.org/10.3390/app11209644 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1957-3039
https://orcid.org/0000-0002-6015-3151
https://doi.org/10.3390/app11209644
https://doi.org/10.3390/app11209644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209644
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209644?type=check_update&version=2

Appl. Sci. 2021, 11, 9644 2 of 16

concept drift is detected, whereas the passive ones learn continuously, regardless of the
drift. It is not sufficient to detect the concept drift; one would have to adapt the current
model to the observed drift [6]. Some approaches retrain from scratch; they use distance-
based classifiers, such as k-NNs or decision trees, for which they define removal strategies.
Other approaches use an ensemble of models and discard the obsolete ones. Most of the
works only report the overall accuracy. However, at the drift point, the performance of a
model retrained from scratch drops, and it is followed by a slow recovery. This aspect is
seldom presented, even if recovery after drift is important, as discussed by Raab et al. [10].

SVM is known to be one of the most reliable ML models for non-linearly separable
input spaces. In current research trends, there are applications that inherently operate
under concept drift. An SVM has been applied recently in news classification [11]. Soil tem-
peratures were predicted by the use of a hybrid SVM whose parameters were tuned via
firefly optimization [12]. This problem presents inherent seasonality in both input features
and predicted outcome. A similar problem is that of land cover classification, approached
most recently in [13]. This study is based on satellite imagery; the main source of data is
the multi-temporal data acquired by the Sentinel-2 satellite. Drift is inherently present in
this data, due to their temporal nature. Another study that employs SVM classification is
one predicting COVID-19 incidence into three risk categories, based on features such as
number of deaths, mobility, bed occupancy or number of patients in the ICU [14]. As health
systems and the population adapts over time, these features may inherently be exposed
to concept drift. The study concludes that between the ConvLSTM and SVM, the former
performed better; this is not surprising, because a classic SVM is not designed for concept
drift. An SVM is also used in hybrid approaches in regression problems, such as predicting
the lead time needed for shipyards to arrange production plans [15], or modelling pan
evaporation [16], phenomena that could also present drift, given their temporal nature.

Some SVM models were especially adapted for concept drift handling [17–19]. How-
ever, adapting the window to the concept drift requires classifier retraining on the new
window, which is computationally inefficient. The SVM models in [17–19] do not consider
the presence of concept drift and assume stationary conditions for the input data. Defining
an online SVM classifier able to cope with concept drift by dynamically changing the win-
dow size and avoiding retraining from scratch is currently an open problem. We believe
that, considering the drift, the accuracy obtained by the SVM model has the potential
to improve.

The ability of the incremental–decremental SVM model to naturally adapt to concept
drift, combined with the power of the Hoeffding test (Hoeffding inequality theorem [20])
used for determining the obsolescence of past samples, gave us the raw inspiration for
our work.

Our contribution is the introduction of the Adaptive Incremental–Decremental SVM
(AIDSVM) algorithm, a generalization of the incremental–decremental SVM, capable of
dynamically detecting the concept drift and adjusting the width of the shifting window
accordingly. To our knowledge, our model is the first incremental SVM classifier using
dynamic adaptation of the shifting window. According to our experiments, it has the same
or better accuracy compared with common drift-aware classifiers on some of the most
common synthetic and real-world datasets. Experimental evidence shows that AIDSVM-
detected drift positions are close to the theoretical drift points. We provide the source code
of our algorithm on Github as a Python implementation (https://github.com/hash2100/
aidsvm, accessed on 2 October 2021).

The rest of the article is structured as follows. We present related work and the state
of the art in concept drift with adaptive windows in Section 2. To make the paper self-
contained, Section 3 summarizes notations and previous results we use in our approach:
the ADWIN principle of detecting concept drift based on the Hoeffding bound and the
incremental–decremental SVM. Section 4 introduces the AIDSVM algorithm. Experimen-
tal results on synthetic and real datasets are described in Section 5, where we compare

https://github.com/hash2100/aidsvm
https://github.com/hash2100/aidsvm

Appl. Sci. 2021, 11, 9644 3 of 16

our method with current approaches in concept drift. Section 6 summarizes the main
achievements of our work and discusses further possible extensions.

2. Related Work: Concept Drift with Adaptive Shifting Windows

In this section, we list some of the most recent concept drift models based on adaptive
windows, with a focus on SVM approaches.

Several models addressing concept drift on adaptive windows were proposed in
recent years. Detailed overviews are given by the work of Iwashita et al. [5], Lu et al. [6],
as well as Gemaque et al. [21]. The Learn++.NSE algorithm [22,23] and its fast version [24]
generate a new classifier for each received batch of data, and add the classifier to an existing
ensemble. The classifiers are later combined using dynamically weighted majority voting,
based on the classifier’s age. In [25], the adaptive random forest algorithm, used for the
classification of evolving data streams, combines batch algorithm traits with dynamic
update methods.

One of the seminal papers in this field is the Drift Detection Method (DDM) described
in [26]. It uses the classification error as evidence of concept drift. The classification error
decreases as the model learns the newer samples. The model establishes a warning level
and a drift level. When the classification error increases over the warning level, newer
samples are introduced into a special window. Once the error increases over the drift
level, a new model is created, starting from the samples from the special window. A
later extension, the Early Drift Detection Method (EDDM) [27], uses the distance between
two consecutive errors and its standard deviation instead of the simple error rate used in
the DDM. It also follows the same principle of comparing the error rate against warning
and drift thresholds. Both methods are designed to operate regardless of the incremental
learner used.

The Fast Hoeffding Drift Detection Method (FHDDM) [28] detects the drift point
using a constant-size sliding window. It detects a drift if a significant variation is observed
between the current and the maximum accuracy. The accuracy difference threshold is
determined using Hoeffding’s inequality theorem:

Pr(|X− E[X| ≥ εH]) ≤ δ , where εH =

√
1

2n
ln

2
δ

The FHDDM method is extended by maintaining windows of different sizes in the
Stacked Fast Hoeffding Drift Detection Method (FHDDMS) [29]. This is employed to
reduce detection delays. Extensive treatment of these two methods is shown in [30,31].

A very recent approach using the error rate is the Accurate Concept Drift Detection
Method (ACDDM) [32]. The author analyzes the consistency of prequential error rate using
Hoeffding’s inequality. At each step, the difference between the current error rate and the
minimum error date is determined. This is compared against the threshold given by the
Hoeffding inequality for a desired confidence level. The drift is detected when the error
rate difference is greater than the computed deviation:

ε ≤
√

1
2n

ln
1
δ

The ACDDM is evaluated using the Very Fast Decision Tree learning algorithm ([32],
Section 3).

Recently, SVMs were also used to address concept drift. ZareMoodi et al. [33] proposed
an SVM classification model with a learned label space that evolves in time, where novel
classes may emerge or old classes may disappear. For the modelling of intricate-shape class
boundaries, they used support-vector-based data description methods. Yalcin et al. [34]
used SVMs in an ensemble-based incremental learning algorithm to model the chang-
ing environments. Learning windows of variable length also appear in the papers of
Klinkenberg et al. [17] and Klinkenberg [18]. Klinkenberg’s methods use a variable width

Appl. Sci. 2021, 11, 9644 4 of 16

window, which is adjusted by the estimation of classification generalization error. At each
time step, the algorithm builds several SVM models with various window sizes, then it
selects the one that minimizes the error estimate. The appropriate window size is automati-
cally computed, and so is the selection of samples and their weights. While the methods
used by Klinkenberg et al. can be used online in applications, they are not incremental and
the SVMs must be retrained. Another approach proposes an adaptive dynamic ensemble
of SVMs which are trained on multiple subsets of the initial dataset [19]. The most recent
heuristic approach splits the stream into data blocks of the same size, and uses the next
block to assess the performance of the model trained on the current block [35].

3. Background: The Adaptive Window Model for Drift Detection and the
Incremental–Decremental SVM

To make the paper self-contained, we summarize in the following two techniques
incorporated in the AIDSVM method: the statistical test used for concept drift detection,
and the incremental–decremental SVM procedure used to discard the obsolete part of
the window.

3.1. Concept Drift with Adaptive Window

We use the ADWIN adapting window strategy to cope with concept drift. Details can
be found in the original paper [20].

During learning, past data, up to the current sample, are stored in a fixed-size window.
For every sample xi in the window characterized by its class yi, the trained model predicts
class ŷi; we compute the sample error ei which is 0 if yi = ŷi or 1 if the predicted label is
wrong. Given a set of samples, the prediction error ei is a random variable that follows a
Bernoulli distribution. The sum of these errors, for a set of samples, is a random variable
following a binomial distribution. If the width of the window is n, where xi (i = 1, . . . , n)
are the window samples, then the model error rate is the probability pi of observing 1 in the
sequence of ej errors (j = 1, . . . , i). Each pi is drawn from a distribution Di. In the ideal case
of no concept drift, all Di distributions are identical. With concept drift, the distribution
changes, as the error rate is expected to increase.

The ADWIN strategy successively splits the current window of n elements into two
“large enough” sub-windows. If these sub-windows show “different enough” averages of
their sample error, then the expected values corresponding to the two binomial distributions
are different. By incrementing the i value, the approach constructs all possible cuts of the
current window into two adjacent splits (W0, W1), where W0 has n0 samples x1, x2, . . . , xi
and W1 has n1 samples xi+1, . . . , xn. We have n = n0 + n1. As cuts are constructed, they
are evaluated against the following Hoeffding test:

Pr(|µ0 − µ1| ≥ εcut) ≤
δ

n
(1)

where µ0 and µ1 are the averages for the error values in W0 and W1, and δ ∈ (0, 1) is the
required global error. The scaling δ

n is required by the Bonferroni correction, since we
perform multiple hypothesis testing by repeatedly splitting the samples. The statistical
test checks whether the observed averages differ by more than a threshold εcut, which is
dependent on the window split size.

The null hypothesis H0 assumes that the mean µ has remained constant along all
the sufficient “large enough” cuts performed on the sliding window W. Parameter δ
tunes the test’s confidence; for example, a 95% confidence level is assimilated to δ = 0.05.
The statistical test for observing different distributions in W0 and W1 checks whether the
observed averages in both sub-windows differ by more than the threshold εcut. Given
a specified confidence parameter δ, it was shown in [20] that the maximum acceptable
difference εcut is:

Appl. Sci. 2021, 11, 9644 5 of 16

εcut =

√
1

2m
· ln 4

δ′
(2)

where:

m =
1

1/n0 + 1/n1
(the harmonic mean of n0 and n1), δ′ = δ

n (3)

However, this approach is too conservative. Based on the Hoeffding bound, it over-
estimates the probability of large deviations for small variance distributions, assuming
the variance is σ2 = 0.25, which is the worst-case scenario. A more appropriate test used
in [20] also takes the window variance into consideration:

εcut_adjusted =

√
2
m
· σ2

W · ln
2
δ′

+
2

3m
ln

2
δ′

(4)

In Equation (4), the square root term actually adjusts the εcut term relative to the
standard deviation, whereas the additional term guards against the cases where the window
sizes are too small.

An exemplification of these criteria is given in Figure 1. We considered a window
of 1000 simulated samples. For all samples xi inside the sliding window, we constructed
the error ei using several simulated Bernoulli distributions. Afterwards, we computed the
average error difference for each window split. A reference classifier with 85% accuracy,
with no drift, is simulated with a Bernoulli distribution of p = 0.15. We simulated 20 such
distributions. For drift simulation, we created 20 mixed distributions by concatenating
the first 700 samples from a Bernoulli distribution with p = 0.15, with the last 300 samples
from another Bernoulli distribution with p = 0.4. Thus, we simulated a sudden drop in
the classifier’s accuracy from 85% to 60%. Then, we obtained the test margins εcut and
εcut_adjusted from Equations (2) and (4) by successive splits of W0 and W1 for the shifting
window, imposing a limit of at least 41 samples (for statistical relevance). In Figure 1, it
can be seen that the two margins, εcut and εcut_adjusted, are somewhat similar. However, the
adjusted threshold (εcut_adjusted) is more resilient to false positives on smaller partitions,
and more conservative on larger ones.

Figure 1. Simulated thresholds for 20 random Bernoulli distributions with no concept drift (consistent
distributions, green) and with 20 drift mixed Bernoulli distributions (given in black). The drift point
is at sample 700, where the probability parameter changes from 0.15 to 0.4. Drift is detected at the
sample where the difference of the splits’ averages intersects the computed threshold ε.

Appl. Sci. 2021, 11, 9644 6 of 16

3.2. Kuhn–Tucker Conditions and Vector Migration in Incremental–Decremental SVMs

Among the SVM models suitable for adapting to drifting environments, the incremen-
tal SVM learning algorithm of Cauwenberghs and Poggio [36] (later extended in [37]) is
well equipped for handling non-linearly separable input spaces. By design, it is also able
to non-destructively forget samples, adapting its statistical model to the remaining data
samples. Retraining from scratch is thus avoided, and the model can learn/unlearn much
faster than a traditional SVM. An efficient implementation for individual learning of the
CP algorithm was analyzed by Laskov [38], along with a similar algorithm for one-class
learning. Practical implementation issues of the CP algorithm were discussed in [39,40].
The algorithm was also adapted for regression [41–43]. The incremental approach was
revisited more recently in [44], where a linear exponential cost-sensitive incremental SVM
was defined. In the following, Equations (5)–(14) are taken from [39]. Our AIDSVM method
is based on the CP algorithm. Therefore, we briefly review the theoretical framework, with
emphasis on the Kuhn–Tucker conditions and exact vector migration relations, which were
previously presented in [39] with full details.

For a set of samples xi with associated labels yi ∈ {−1,+1} (i = 1, . . . , N), a linear
SVM computes the separation hyperplane as a linear combination of the input samples
given by the function g(x) = wTx+ b, where the predicted label is given by ŷi = sign(g(xi)).

The optimal hyperplane is determined by the following optimization problem:

min
w

1
2
‖w‖2 + C

N

∑
i=1

ξi (5)

subject to yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N (6)

where C is the regularization constant tuning the constraints strength. We define the
penalty function h(xi) for data samples xi as:

h(xi) = yig(xi)− 1 = yi(wTxi + b)− 1 (7)

If xi is correctly classified, h(xi) would be positive; the variable associated with the
constraint, ξi, is zero in this case. Otherwise, if incorrectly classified, or on the right side of
the hyperplane, but at a smaller distance than the minimum margin 1

2‖w‖, the value h(xi)
becomes negative.

If sample xi is not classified correctly within a sufficient margin distance, h(xi) < 0 and
ξi > 0. However, Equation (5) enforces small ξi penalties. The C regularization parameter
tunes the trade-off between margin increase and correct classification.

Solving the constraint optimization problem makes use of the Kuhn–Tucker (KT)
conditions; two of them are relevant for the incremental–decremental approach:

λi[h(xi) + ξi] = 0 i = 1, . . . , N (8)

h(xi) + ξi ≥ 0 i = 1, . . . , N (9)

Applying the KT conditions also determines the separation hyperplane to be computed
as g(xi) = ∑N

j=1 λjyjxT
j xi + b. Condition (8) is the complementary slackness condition.

If λi = 0, then the vector is not part of the solution at all. If non-zero, then (9) must be true,
and xi will be part of the solution. When ξi = 0 and h(xi) = 0, sample xi will be considered
a support vector.

The penalty h(xi) can be:

h(xi)

> 0, λi = 0 and ξi = 0
= 0, 0 < λi < C,

h(xi) + ξi = 0 with ξi = 0
< 0, λi = C,

h(xi) + ξi = 0 with ξi > 0

(10)

Appl. Sci. 2021, 11, 9644 7 of 16

Based on these conditions, a vector xi could belong to one of the following sets:
(i) support vectors, where h(xi) = 0 and 0 < λi < C, defining the hyperplane, (ii) error
vectors, where h(xi) < 0 and λi = C, vectors situated on the wrong side of the separation
hyperplane (or in the separation region), and (iii) rest vectors, where h(xi) > 0 and λi = 0,
vectors situated on the correct side of the separation hyperplane.

We map the input to a multi-dimensional space characterized by a kernel K(·, ·) and
use the notation:

Qij = yiyjK(xi, xj) (11)

We generalize the penalty function to h(xi) = ∑j λjQij + byi − 1.
Incremental–decremental training comes down to varying the λi parameters so that

the KT conditions are always fulfilled. These variations determine vector migrations
between the previously mentioned sets of vectors. The variations are defined by:[

∆b
∆λs

]
= −

[
0 ys
ys Qss

]−1[yc
Qsc

]
︸ ︷︷ ︸

βs

∆λc (12)

[
∆hr
∆hc

]
=

{[
yr Qrs
yc Qcs

]
βs +

[
Qrc
Qcc

]}
︸ ︷︷ ︸

γs

∆λc (13)

where the ‘s’ index stands for support and the ’r’ is used for both error or rest vector sets.
By computing the exact increments of ∆λs, we carefully trace vectors’ migrations among
the sets, thus performing the learning/unlearning (which are symmetrical procedures).
Considering the first relation, ∆λs = βs∆λc, where βs is the s-th component of vector β,
we find that −λs ≤ ∆λs ≤ C− λs, and further that −λs ≤ βs∆λc ≤ C− λs; this means, for
the incremental case, that:

∆λc = min
{

C− λs

βs
,−λs

βs

}
(14)

Equation (14) is for support vectors only; a similar equation can be written for the rest
vectors. The entire discussion has already been provided in detail in [39].

4. Adaptive-Window Incremental–Decremental SVM (AIDSVM)

We are now ready to introduce the AIDSVM algorithm, which is a generalization of
the CP algorithm for concept drift, using an adaptive shifting window.

Using the classification terminology [7–9], AIDSVM is a window-based active ap-
proach. It uses a window of the most recent samples to construct the classifier, and reacts
to the concept drift by discarding the oldest samples from the window, until the Hoeffding
condition (1) is met.

The AIDSVM method is presented in Algorithm 1. A high-level diagram is also
shown in Figure 2. The algorithm starts with an empty window; the samples are added
progressively as they arrive. The window should have a minimum length, such that the
statistical test could always be performed on a relevant number of samples. Below this
minimum, the drift detection is not employed. For every sample added, several tests are
performed on the current window. The window is partitioned into two splits, W0 and W1.
As the partition moves, the length of split W0 increases, and the length of split W1 decreases.
For a window width of n data vectors, where we keep at least m elements in the split, there
are exactly n−m− 1 possibilities of constructing the W0 and W1 window splits.

Appl. Sci. 2021, 11, 9644 8 of 16

Algorithm 1 Concept drift AIDSVM learning and unlearning

procedure ADAPTIVESHIFTINGWINDOW(data_stream)
. the data stream is considered continuous
choose C, εcut
choose min_window_size and max_window_size,

with min_window_size < max_window_size
set initial solutions using (x1, y1) and (x2, y2)
. window initialized with empty list
W ← ∅
while incoming data samples exist do

(xk, yk)← next incoming sample
extend kernel with (xk, yk)
collect statistics for next vector xk
append vector xk to window W
LEARN(xk)
if size(W) < min_window_size then

continue
for i← min_window_size to size(W) - min_window_size do

W0 ← x1 . . . xi
W1 ← xi+1 . . . xsize(W)

µ0, µ1 ← mean(W0), mean(W1)
if |µ0 − µ1| ≥ εcut_adjusted

UNLEARN(all xj ∈W0)
continue

if size(window) > window_size then
UNLEARN(first xi ∈W)
. remove first sample from window W

procedure LEARN(xc)
while sample xc not yet learned do

Q← compute_Q(kernel, y) with Equation (11)
βs ← compute_beta(Q, y) with Equation (12)
γs ← compute_gamma(Q, y, βs) with Equation (13)
∆ls, ∆lr ← compute_limits_for_support_and_rest_vectors(xc, C) with Equation (14)
update all λs, λc using ∆ls, ∆lr, C, βs and γs
. at least one vector will migrate
reassign_vectors_in_sets()

procedure UNLEARN(xc)
while xc not yet unlearned do

if xc removal leaves its class unrepresented then
return

Q← compute_Q(kernel, y) with Equation (11)
βs ← compute_beta(Q, y) with Equation (12)
γs ← compute_gamma(Q, y, βs) with Equation (13)
∆ls, ∆lr ← compute_limits_for_support_and_rest_vectors(xc, C) with Equation (14)
update all λs, λc using ∆ls, ∆lr, C, βs and γs
. at least one vector will migrate
reassign_vectors_in_sets()

Appl. Sci. 2021, 11, 9644 9 of 16

Figure 2. ADWIN framework.

The SVM classifier, trained on the entire window W, is evaluated on every sample xi ∈W.
The estimated class ŷi is compared against the true class label yi. For every pair of window
splits W0 and W1, we compute the mean of the sample error ei = {yi different from ŷi},
and then the difference of those means. This difference is compared to the dynamic
threshold εcut_adjusted given by Equation (4). In the ideal case, the difference is close to
zero (for a window without concept drift). Once the difference becomes greater than the
computed threshold, all samples from the first split W0 are unlearned by the decremental
SVM procedure, and training is resumed.

The algorithm does not apply the statistical test if the current shifting window has
fewer samples than min_window_size; this is taken as a measure of precaution. Conversely,
the upper size of the shifting window is also limited. In addition, the SVM does not remove
a vector that is the only remaining representative of its class.

Let us analyze the computational complexity of this algorithm. We consider N to be the
width of the shifting window. The ADAPTIVESHIFTINGWINDOW procedure (Algorithm 1)
calls the LEARN/UNLEARN procedures. Both procedures follow the following steps:

1. Perform an O(1) test to check if the associated λc is within the allowed limits, 0 ≤ λc ≤ C,
while testing whether the penalty hc has either reached zero (due to xc migrating to
support set) or a positive or negative value (due to migration to the rest/error sets);

2. Computation of Q is in O(N3);
3. Computation of βs, given by Equation (11), is based on matrix inversion, so it is in

O(nSV3), where nSV ≤ N is the number of support vectors;
4. Computation of γs is in O(nSV2) as given by Equation (12);
5. Procedure compute_limits_for_support_and_rest_vectors() is in O(N2), computation of

the maximum/minimum for ∆λ values associated to support vectors is in O(nSV),
and for the rest vectors we have to compute the penalties h, which is O(N2);

6. Procedure reassign_vectors_in_sets() has linear time.

The inner loop of the LEARN/UNLEARN procedures is in O(N3). This is dominant
over the construction of the window splits, which is in O(N2). The UNLEARN procedure is
called within the for loop, and theoretically we could have O(N4). However, in practice, we

Appl. Sci. 2021, 11, 9644 10 of 16

observed that discarding the entire W0 is sufficient to reinitialize the model, and any further
drops do not occur. We can conclude that, for most cases, execution time is in O(N3).

5. Experiments

We experimentally compared the performance of AIDSVM to the ones of FHDDM,
FHDDMS, DDM, EDDM and ADWIN, which were introduced in Sections 2 and 3.1.
For these drift detectors, two algorithms were employed, namely Naive Bayes (NB) and
Hoeffding Trees (HT) [28]. We used the implementations provided by the Tornado frame-
work (sources can be found on-line [45]).

We also compared the performance of AIDSVM against the classic SVM (https://
scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html, accessed on 2 October
2021) (C-SVM). This is actually a SVM trained on a fixed size window. When a sample
arrives, the earliest one is discarded to make room for the new one, and the SVM is retrained
from scratch based on the updated window.

5.1. SINE1 Dataset

Following [28,30,46], we used the SINE1 synthetic dataset (https://github.com/
alipsgh, accessed on 2 October 2021), with two classes, 100,000 samples, and abrupt
concept drift [31]. Additionally, 10% noise was added to the data. The rationale, as given
by [46], is to assess also the robustness of the drift detection classifier in the presence
of noise. The dataset has only two attributes, (xa, xb), uniformly distributed in [0, 1]. A
point with xb < sin(xa) is classified as belonging to one class, with the rest belong to the
other class. At every 20,000 instances, an abrupt drift occurs: the classification is reversed.
This presents the advantage that we know exactly where drift occurs and as such, we can
evaluate the sensibility of our classifier.

5.2. CIRCLES Dataset

Another dataset used frequently in the literature is the CIRCLES dataset [20,27,31,47].
It is a set with gradual drift; two attributes x and y are uniformly distributed in the interval
[0, 1]. The circle function is (x = xc)2 + (y− yc)2 = r2

c , where xc and yc define the circle
center and rc is its radius. Positive instances are inside the circle, whereas the exterior ones
are labelled as negative. Concept drift happens when the classification function (the circle
parameters) changes; this happens every 25,000 samples.

5.3. COVERTYPE Dataset

The Forest Covertype dataset [48] is often applied in the data stream mining
literature [20,27,31,47]. It describes the forest coverage type for 30 × 30 meter cells, pro-
vided by the US Forest Service (USFS) Region 2 Resource Information System. There are
581,012 instances and 54 attributes, not counting the class type. Out of these, only 10
are continuous, so the rest of them (such as wilderness area and soil type) are nominal.
The set defines seven classes; we only used two classes, the most represented, with a total
of 495,141 data samples. The classes are equally balanced: 211,840 in class 1 vs. 283,301 in
class 2. The dataset was already normalized [49]. For the SVM to work properly in case of
small windows, we detected the sets of temporally consecutive data samples belonging
to the same class. We observed that, apart from a set of 5692 consecutive elements of the
same class, which was skipped, all other such sequences had less than 300 elements. For
those, we switched the middle element with the most recent element of a different class, to
ensure that we have no sequences longer than 150 samples from the same class. This is
similar with SVM keeping its most recent sample of the opposite class, in the definition of
the hyperplane.

Concept drift in the COVERTYPE case may appear as a result of change in the forest
cover type [31]. There is no hard evidence of concept drift in this case; we do not know
whether concept drift does occur, and in that case, what is its position within the data

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://github.com/alipsgh
https://github.com/alipsgh

Appl. Sci. 2021, 11, 9644 11 of 16

stream [31,47,50]. Thus we cannot compare against a baseline; only comparison among
employed methods is possible.

5.4. Performance Comparison

We evaluated the performance on these three datasets, for two classifiers with five
drift detection methods from the Tornado framework [45] (thus a total of 10 models),
against AIDSVM and C-SVM. For AIDSVM, different parameters were used, and they are
dataset dependent. They are shown in Table 1, where the window size for AIDSVM is the
maximum allowed.

Table 1. C-SVM and AIDSVM parameters used for each data set.

Dataset Window Size γ (gamma) C

SINE1 1500 6.008484 10
CIRCLES 1000 7.797753 1
COVERTYPE 2000 0.241477 100

The window size was chosen as a sufficiently large number, that provided best accu-
racy results when the model was trained from the beginning of the stream and tested on
the next 100 samples. The γ parameter was computed as γ = 1/(N · σ2), where N is the
dataset size and σ2 the variance for all of the features. These were previously rescaled to fit
in the [0, 1] interval. The C parameter was determined by the incremental training process,
sufficiently large so that the initial support vector set would not become empty. As we
wanted a confidence level of 95% in the Hoeffding inequality (1), we chose δ = 0.05.

The accuracies for the realized experiments are presented in Table 2. On the SINE1
dataset, the most accurate classic drift detection model is HT+FHDDM, with 86.37%. The
C-SVM performance is only 84.83%; because C-SVM is not suited for abrupt drift, this poor
accuracy is somehow expected. The AIDSVM model was the best performer, with 88.68%,
indicating good adaptability to abrupt drift. On the CIRCLES dataset, however, it can be
seen that the best models seem to be on par—HT+FHDDM with 87.16%, HT+FHDDMS
with 87.19%, C-SVM with 87.17% and AIDSVM with 87.22%. Being a dataset with gradual
concept drift, C-SVM is expected to behave well, and this is supported by the experiment.
For the COVERTYPE dataset, the best classic model seems to be the HT+DDM, achieving
89.90%. C-SVM performance of 91.79% suggests that this dataset seems to also be a
gradual drift dataset; however, better performance of AIDSVM of 92.17% indicates a rather
rapid drift.

Table 2. Accuracy comparison between AIDSVM and other concept drift detectors, on given datasets.
C-SVM was also evaluated, although its window size is not variable.

Method on Dataset SINE1 CIRCLES COVERTYPE

NB+FHDDM 85.32% 86.24% 87.94%
NB+FHDDMS 85.35% 86.26% 87.05%
NB+DDM 85.06% 86.06% 88.43%
NB+EDDM 82.50% 84.81% 84.92%
NB+ADWIN 84.72% 86.20% 86.78%

HT+FHDDM 86.37% 87.16% 89.16%
HT+FHDDMS 86.36% 87.19% 87.58%
HT+DDM 86.09% 86.97% 89.90%
HT+EDDM 83.69% 85.21% 84.98%
HT+ADWIN 84.09% 86.74% 87.02%

C-SVM 84.83% 87.17% 91.79%
AIDSVM 88.68% 87.22% 92.17%

Appl. Sci. 2021, 11, 9644 12 of 16

We made a time comparison between C-SVM and AIDSVM in Table 3. We recorded the
mean time and standard deviation, in milliseconds, after training on the same 1000 sample
window size, on an Intel Core i5-8400 CPU with 16 GB RAM. We observed the advantage
of AIDSVM without retraining from scratch.

Table 3. Running time comparison between C-SVM and AIDSVM, in milliseconds per training
sample. Training was carried out on 5000 samples with a window size of 1000, for all datasets.

Method on Dataset SINE1 CIRCLES COVERTYPE

C-SVM 154 ± 12 115 ± 8 119 ± 11
AIDSVM 117 ± 7 75 ± 9 73 ± 6

Figure 3 shows the window size dynamics for the three datasets, trained on the
AIDSVM classifier. For SINE1, we can clearly observe the sudden drift changes; the
window becomes almost empty. For the CIRCLES dataset, drift change is still visible at
samples 25,000, 50,000, and only a little bit at 75,000. We explain this by considering the
gradual drift employed by the dataset and by the fact that using a shifting window is
inherently a way to cope with drift. In case of the COVERTYPE dataset, the drift here
looks more like a combination of gradual and abrupt drifts; this is also supported by the
point-to-point comparison among the drift methods contained in Table 4.

Figure 3. Dynamic window sizes for the considered datasets.

5.5. Qualitative Discussion

We represented the instant accuracy of the classifier (given in Figure 4). This was
computed as a mean on the next 100 samples. The C-SVM instant accuracy falls at concept
drift and slowly recovers, whereas the AIDSVM accuracy recovers faster. We also computed
the Exponentially Weighted Average at sample t, computed as Vt = βVt−1 + (1− β)At,
where At is the accuracy at sample t. β is chosen to be 0.9995, equivalent to a weighted
average for about the last 2000 samples. One can see that the simple C-SVM EWA drops
by about 20%, whereas the AIDSVM EWA drop is below 5%. The last metric, the mean
accuracy, shows that, compared with the C-SVM, the AIDSVM mean accuracy gain is about
4%; interestingly, our mean accuracy of 88.54% is slightly better than Diversity Measure as
a Drift Detection Method in a semi-supervised environment (DMDDM-S, 87.2%) presented
in the most recent work of Mahdi [46], on the same SINE1 dataset.

Appl. Sci. 2021, 11, 9644 13 of 16

Table 4. Drift points detected by the compared models. Drift is detected the same regions, mostly observed for the SINE1 and CIRCLES datasets. Here, we have only shown the first five
detections. The presence of ellipsis shows that the sequence is longer. Clear concept drift is seen in SINE1 around theoretical positions 20,000, 40,000 and 60,000, and for CIRCLES at
positions 25,000, 50,000 and 75,000. COVERTYPE dataset seems to have a mixture of abrupt and gradual concept drift.

Drifts Signalled SINE1 CIRCLES COVERTYPE

NB+FHDDM 20,048, 40,043, 60,048, 80,047 25,061, 50,063, 75,104 803, 1761, 2689, 3149, 3587 . . .
NB+FHDDMS 20,033, 40,035, 60,047, 80,037 25,061, 50,023, 75,104 803, 1607, 2009, 2644, 3129 . . .
NB+DDM 20,156, 40,138, 60,106, 80,171 25,339, 50,240, 75,676 839, 2105, 2717, 3149, 3588 . . .
NB+EDDM 93, 21,121, 40,949, 61,038, 61,165 . . . 110, 260, 31,163, 50,397, 50,629 . . . 116, 280, 364, 553, 703 . . .
NB+ADWIN 20,065, 26,178, 27,775, 29,924, 40,069 . . . 9537, 25,090, 27,843, 50,052, 75,205 . . . 1025, 2818, 3747, 4772, 5637 . . .

HT+FHDDM 20,054, 40,052, 41,756, 60,052, 80,051 25,061, 50,063, 75,066 816, 1673, 2031, 2700, 3146 . . .
HT+FHDDMS 20,036, 40,042, 41,765, 60,047, 80,038 25,061, 50,023, 75,066 816, 1607, 2009, 2706, 3123 . . .
HT+DDM 20,150, 40,144, 60,154, 80,164 25,304, 50,297, 75,559 853, 1924, 51,532, 51,741, 51,775 . . .
HT+EDDM 93, 20,899, 40,873, 60,951, 61,224 ... 110, 260, 27,840, 31,500, 31,930 ... 116, 280, 364, 553, 703 . . .
HT+ADWIN 2877, 4770, 6435, 8260, 12,869 ... 1985, 5506, 25,091, 28,420, 50,053 ... 993, 2786, 4675, 5636, 5797 . . .

AIDSVM 20,036, 40,041, 60,044, 80,038 25,055, 25,069, 50,023, 50,030, 50,037, 75,668 ... 990, 996, 1006, 4715, 4751 . . .

Appl. Sci. 2021, 11, 9644 14 of 16

Figure 4. Accuracy comparison between fixed-window C-SVM and adaptive-window AIDSVM,
on the SINE1 dataset. The instant accuracy evaluated on the next 100 samples is depicted with blue
(C-SVM) and green (AIDSVM). Exponentially weighted accuracy (EWA) is also shown, as well as the
mean accuracy.

6. Conclusions

We introduced AIDSVM, an incremental–decremental SVM concept drift model with
adaptive shifting window. It presents two important advantages: (i) better accuracy, be-
cause irrelevant samples are discarded at the appropriate moment based on the Hoeffding
test, and (ii) it is faster than a classic SVM since no retraining is needed—the model is
adapted on-the-run. The results of the experiments on three frequently used datasets indi-
cate a better adjustment of the AIDSVM model compared to other drift-detection methods.

Experimental evaluation indicated that AIDSVM copes better with concept drift, and
in general it has similar or better accuracy results compared to classical concept drift
detectors. However, the construction of the incremental solution is generally slower; this
makes AIDSVM well suited for data streams with moderate throughput, where good
accuracy is required in the presence of concept drift. To the best of our knowledge,
our implementation is the first online SVM classifier that copes with concept drift using
dynamic adaptation of the shifting window by avoiding retrain from scratch.

A further improvement to the current AIDSVM implementation would be to speed up
the unlearning process. This can be carried out in two stages. First, one would determine
how many samples from the beginning of the window have to be removed. This is achieved
by testing the Hoeffding condition (1) on sub-windows formed by successively removing
the oldest sample. Second, after finding out which samples must be removed, one would
have to decrease all λc characteristic values for those vectors in a uniform way, and a
similar relation to Equation (13) must be derived.

AIDSVM could be modified to support regression problems; the incremental–decremental
SVM for regression was previously approached in [41–43]. A natural direction would also
be to extend AIDSVM to multiple classes, where an ensemble of incremental SVMs with
adaptive windows could be trained in parallel.

Author Contributions: Conceptualization, H.G. and R.A.; methodology, H.G.; software, H.G.; valida-
tion, H.G. and R.A.; formal analysis, H.G. and R.A.; investigation, H.G.; resources, R.A.; data curation,
H.G.; writing—original draft preparation, H.G.; writing—review and editing, R.A.; visualization,
H.G.; supervision, R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Transilvania University of Braşov.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 9644 15 of 16

References
1. Voosen, P. New climate models predict a warming surge. Science 2019, 364, 222–223. [CrossRef]
2. Gama, J. Knowledge Discovery from Data Streams, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2010.
3. Lazarescu, M.M.; Venkatesh, S.; Bui, H.H. Using multiple windows to track concept drift. Intell. Data Anal. 2004, 8, 29–59.

[CrossRef]
4. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv.

(CSUR) 2014, 46, 1–37. [CrossRef]
5. Iwashita, A.S.; Papa, J.P. An overview on concept drift learning. IEEE Access 2019, 7, 1532–1547. [CrossRef]
6. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng. 2019, 31,

2346–2363. [CrossRef]
7. Farid, D.M.; Zhang, L.; Hossain, A.; Rahman, C.M.; Strachan, R.; Sexton, G.; Dahal, K. An adaptive ensemble classifier for mining

concept drifting data streams. Expert Syst. Appl. 2013, 40, 5895–5906. [CrossRef]
8. Ditzler, G.; Roveri, M.; Alippi, C.; Polikar, R. Learning in nonstationary environments: A survey. IEEE Comput. Intell. Mag. 2015,

10, 12–25. [CrossRef]
9. Alippi, C.; Qi, W.; Roveri, M. Learning in nonstationary environments: A hybrid approach. In Proceedings of the International

Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 11–15 June 2017; pp. 703–714.
10. Raab, C.; Heusinger, M.; Schleif, F. M. Reactive Soft Prototype Computing for Concept Drift Streams. Neurocomputing 2020, 416,

340–351. [CrossRef]
11. Saigal, P.; Khanna, V. Multi-category news classification using Support Vector Machine based classifiers. SN Appl. Sci. 2020, 2,

458. [CrossRef]
12. Shamshirband, S.; Esmaeilbeiki, F.; Zarehaghi, D.; Neyshabouri, M.; Samadianfard, S.; Ghorbani, M.A.; Mosavi, A.; Nabipour, N.;

Chau, K. Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer
perceptron for predicting soil temperature at different depths. Eng. Appl. Comput. Fluid Mech. 2020, 14, 939–953. [CrossRef]

13. Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of
Support Vector Machines and Random Forests for Corine Land Cover Mapping. Remote Sens. 2021, 13, 777. [CrossRef]

14. Flores, C.; Taramasco, C.; Lagos, M.E.; Rimassa, C.; Figueroa, R.A. Feature-Based Analysis for Time-Series Classification of
COVID-19 Incidence in Chile: A Case Study. Appl. Sci. 2021, 11, 7080. [CrossRef]

15. Zhu, H.; Woo, J.H. Hybrid NHPSO-JTVAC-SVM Model to Predict Production Lead Time. Appl. Sci. 2021, 11, 6369. [CrossRef]
16. Shabani, S.; Samadianfard, S.; Sattari, M.T.; Mosavi, A.; Shamshirband, S.; Kmet, T.; Várkonyi-Kóczy, A.R. Modeling Pan

Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines. Comparative
Analysis. Atmosphere 2020, 11, 66. [CrossRef]

17. Klinkenberg, R.; Joachims, T. Detecting concept drift with support vector machines. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML ’00), Stanford, CA, USA, 29 June–2 July 2000; ICML: San Diego, CA, USA,
2000; pp. 487–494.

18. Klinkenberg, R. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal. 2004, 8, 281–300.
[CrossRef]

19. Sun, J.; Li, H.; Adeli, H. Concept Drift-Oriented Adaptive and Dynamic Support Vector Machine Ensemble With Time Window in
Corporate Financial Risk Prediction. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 801–813. [CrossRef]

20. Bifet, A.; Gavaldà, R. Learning from time-changing data with adaptive windowing. In Proceedings of the Seventh SIAM
International Conference on Data Mining (SDM’07), Minneapolis, MN, USA, 26–28 April 2007; Volume 7, p. 6.

21. Gemaque, R.N.; Costa, A.F.J.; Giusti, R.; dos Santos, E.M. An overview of unsupervised drift detection methods. WIREs Data
Min. Knowl. Discov. 2020, 6, e1381. [CrossRef]

22. Elwell, R.; Polikar, R. Incremental learning in nonstationary environments with controlled forgetting. In Proceedings of the 2009
International Joint Conference on Neural Networks, Atlanta, Ga, USA, 14–19 June 2009; pp. 771–778.

23. Elwell, R.; Polikar, R. Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 2011, 22,
1517–1531. [CrossRef] [PubMed]

24. Shen, Y.; Zhu, Y.; Du, J.; Chen, Y. A Fast Learn++.NSE classification algorithm based on weighted moving average. Filomat 2018,
32, 1737–1745. [CrossRef]

25. Gomes, H.M.; Bifet, A.; Read, J.; Barddal, J.P.; Enembreck, F.; Pfharinger, B.; Holmes, G.; Abdessalem, T. Adaptive random forests
for evolving data stream classification. Mach. Learn. 2017, 106, 1469–1495. [CrossRef]

26. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P.P. Learning with drift detection. In Proceedings of the 17th Brazilian Symposium
on Artificial Intelligence (SBIA 2004), Sao Luis, Maranhao, Brazil, 29 September–1 October 2004.

27. Baena-Garcıa, M.; del Campo-Ávila, J.; Fidalgo, R.; Bifet, A.; Gavalda, R.; Morales-Bueno, R. Early drift detection method. In
Proceedings of the Fourth International Workshop on Knowledge Discovery from Data Streams, San Francisco, CA, USA, 2006.
Volume 6, pp. 77–86.

28. Pesaranghader, A.; Viktor, H.L. Fast Hoeffding drift detection method for evolving data streams. In Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19–23 September 2016;
pp. 96–111.

http://doi.org/10.1126/science.aax7217
http://dx.doi.org/10.3233/IDA-2004-8103
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1109/ACCESS.2018.2886026
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1016/j.eswa.2013.05.001
http://dx.doi.org/10.1109/MCI.2015.2471196
http://dx.doi.org/10.1016/j.neucom.2019.11.111
http://dx.doi.org/10.1007/s42452-020-2266-6
http://dx.doi.org/10.1080/19942060.2020.1788644
http://dx.doi.org/10.3390/rs13040777
http://dx.doi.org/10.3390/app11157080
http://dx.doi.org/10.3390/app11146369
http://dx.doi.org/10.3390/atmos11010066
http://dx.doi.org/10.3233/IDA-2004-8305
http://dx.doi.org/10.1109/TSMCA.2012.2224338
http://dx.doi.org/10.1002/widm.1381
http://dx.doi.org/10.1109/TNN.2011.2160459
http://www.ncbi.nlm.nih.gov/pubmed/21824845
http://dx.doi.org/10.2298/FIL1805737S
http://dx.doi.org/10.1007/s10994-017-5642-8

Appl. Sci. 2021, 11, 9644 16 of 16

29. Pesaranghader, A.; Viktor, H.L.; Paquet, E. A framework for classification in data streams using multi-strategy learning.
In International Conference on Discovery Science; Springer: Cham, Switzerland, 2016; pp. 341–355._22. [CrossRef]

30. Pesaranghader, A.; Viktor, H.; Paquet, E. Reservoir of diverse adaptive learners and stacking fast Hoeffding drift detection
methods for evolving data streams. Mach. Learn. J. 2018, 107, 1711–1743. [CrossRef]

31. Pesaranghader, A. A Reservoir of Adaptive Algorithms for Online Learning from Evolving Data Streams. Ph.D. Dissertation,
University of Ottawa, Ottawa, ON, Canada, 2018. [CrossRef]

32. Yan, M.M.W. Accurate detecting concept drift in evolving data streams. ICT Express 2020, 6, 332–338. [CrossRef]
33. ZareMoodi, P.; Siahroudi, S.K.; Beigy, H. A support vector based approach for classification beyond the learned label space in

data streams. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC ’16), Pisa Italy, 4–8 April 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 910–915.

34. Yalcin, A.; Erdem, Z.; Gurgen, F. Ensemble based incremental SVM classifiers for changing environments. In Proceedings of the
2007 22nd International Symposium on Computer and Information Sciences, Ankara, Turkey, 7–9 November 2007; pp. 1–5.

35. Altendeitering, M.; Dübler, S. Scalable Detection of Concept Drift: A Learning Technique Based on Support Vector Machines. In
Proceedings of the 30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021), Athens,
Greece, 15–18 June 2021; Volume 51, pp. 400–407.

36. Cauwenberghs, G.; Poggio, T. Incremental and decremental support vector machine learning. In Proceedings of the 13th
International Conference on Neural Information Processing Systems (NIPS’00), Denver, CO, USA, 1 January 2000; MIT Press:
Cambridge, MA, USA; 2000; pp. 388–394.

37. Diehl, C.P.; Cauwenberghs, G. SVM incremental learning, adaptation and optimization. In Proceedings of the International Joint
Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 4, pp. 2685–2690.

38. Laskov, P.; Gehl, C.; Krüger, S.; Mxuxller, K. Incremental support vector learning: Analysis, implementation and applications. J.
Mach. Learn. Res. 2006, 7, 1909–1936.

39. Gâlmeanu, H.; Andonie, R. Implementation issues of an incremental and decremental SVM. In Proceedings of the 18th
International Conference on Artificial Neural Networks (ICANN ’08), Prague, Czech Republic, 3–6 September 2008; Part I;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 325–335.

40. Gâlmeanu, H.; Andonie, R. A multi-class incremental and decremental SVM approach using adaptive directed acyclic graphs. In
Proceedings of the 2009 International Conference on Adaptive and Intelligent Systems, Klagenfurt, Austria, 24–26 September
2009; pp. 114–119.

41. Martin, M. On-line support vector machine regression. In Machine Learning: ECML 2002; Elomaa, T., Mannila, H., Toivonen, H.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 282–294.

42. Ma, J.; Theiler, J.; Perkins, S. Accurate on-line support vector regression. Neural Comput. 2003, 15, 2683–2703. [CrossRef]
43. Gâlmeanu, H.; Sasu, L.M.; Andonie, R. Incremental and decremental SVM for regression. Int. J. Comput. Commun. Control 2016,

11, 755–775. [CrossRef]
44. Ma, Y.; Zhao, K.; Wang, Q.; Tian, Y. Incremental cost-sensitive Support Vector Machine with linear-exponential loss. IEEE Access

2020, 8, 149899–149914. [CrossRef]
45. Pesaranghader, A. The Tornado Framework for Data Stream Mining (Python Implementation). Available online: https:

//github.com/alipsgh/tornado (accessed on 3 October 2021).
46. Mahdi, O.A.; Pardede, E.; Ali, N.; Cao, J. Fast Reaction to Sudden Concept Drift in the Absence of Class Labels. Appl. Sci. 2020,

10, 606. [CrossRef]
47. Huang, D.T.J.; Koh, Y.S.; Dobbie, G.; Bifet, A. Drift detection using stream volatility. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2015; pp. 417–432.
48. Blackard, J.A.; Dean, D.J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest

cover types from cartographic variables. Comput. Electron. Agric. 2000, 24, 131–151. [CrossRef]
49. Centre for Open Software Innovation, The University of Waikato. Datasets—MOA. 2019. Available online: https://moa.cms.

waikato.ac.nz/datasets/ (accessed on 1 May 2020).
50. Bifet, A.; Kirkby, R. Data Stream Mining: A Practical Approach; MOA, The University of Waikato, Centre for Open Software

Innovation: Hamilton, New Zealand, 2009. Available online: https://www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf
(accessed on 2 October 2021). [CrossRef]

http://dx.doi.org/10.1007/978-3-319-46307-0_22
http://dx.doi.org/10.1007/s10994-018-5719-z
http://dx.doi.org/10.20381/ruor-22444
http://dx.doi.org/10.1016/j.icte.2020.05.011
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.15837/ijccc.2016.6.2744
http://dx.doi.org/10.1109/ACCESS.2020.3015954
https://github.com/alipsgh/tornado
https://github.com/alipsgh/tornado
http://dx.doi.org/10.3390/app10020606
http://dx.doi.org/10.1016/S0168-1699(99)00046-0
https://moa.cms.waikato.ac.nz/datasets/
https://moa.cms.waikato.ac.nz/datasets/
https://www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf
http://dx.doi.org/10.1.1.192.1957. Available online: https://www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf (accessed on 2 October 2021)

	Introduction
	Related Work: Concept Drift with Adaptive Shifting Windows
	Background: The Adaptive Window Model for Drift Detection and the Incremental–Decremental SVM
	Concept Drift with Adaptive Window
	Kuhn–Tucker Conditions and Vector Migration in Incremental–Decremental SVMs

	Adaptive-Window Incremental–Decremental SVM (AIDSVM)
	Experiments
	SINE1 Dataset
	CIRCLES Dataset
	COVERTYPE Dataset
	Performance Comparison
	Qualitative Discussion

	Conclusions
	References

