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Abstract: Nonlinear active control is very important in many practical applications. Many well-
known nonlinear active noise control algorithms may suffer from high computational complexity and
low convergence speed, especially in the nonlinear secondary path case. Thus, it is still an actively
researched topic for reducing complexity and improving the convergence rate. This paper presents
a low-complexity Volterra filtered-error least mean square algorithm when taking a decomposable
Volterra model into account for active control of nonlinear noise processes, which is referred as DVM-
FELMS. The computational complexity analysis shows that the proposed DVMFELMS algorithm can
significantly reduce the nonlinear active noise control system’s complexity. The simulation results
further show that the proposed algorithm can achieve promising performance compared with the
Volterra-based FELMS algorithm and other state-of-the-art nonlinear filters, while the decomposable
error of the Volterra kernel may be introduced inevitably. Moreover, the proposed DVMFELMS algo-
rithm shows a better convergence rate in the broadband primary noise case due to fewer parameters
used in each sub-filter.

Keywords: low-complexity; active noise control; nonlinear; adaptive Volterra filter; Kronecker
product decomposition

1. Introduction

Active noise control has developed rapidly in the last few decades [1,2], and it has
been successfully applied in many fields, such as heating, ventilating and air-conditioning
systems [3], motor systems [4], and active headrests [5,6]. An active noise control system
can generate a sound wave with the same amplitude but inverse phase at the canceling
point by utilizing the secondary loudspeaker. Compared with passive methods, active
noise control has shown its potential in canceling low-frequency environmental noises. A
huge amount of research has been conducted in this field that focuses on the performance
limitation of the active noise control system [7,8], algorithms [9], and stability [10].

The most commonly used algorithm for a single-channel feedforward active noise
control system is the filtered-reference least mean square (FXLMS) algorithm modeled by
the finite impulse response (FIR) filter due to its stability and low computational complexity.
Although the FXLMS algorithm has already been successfully applied in active noise control
systems, its performance may degrade in controlling nonlinear noise processes [11]. It is
well-known that nonlinear phenomena may occur in many circumstances. First, when
the primary noise has a high sound pressure level, the primary path may suffer nonlinear
processes. Second, when the secondary actuator works at a high sound pressure level or
the size of the secondary loudspeaker is small but works at low frequencies, nonlinear
distortion may occur at the secondary actuator [12]. Third, the primary noise may come
from a dynamic system, such as a chaotic noise process. The transfer function of the
secondary path may have a non-minimum phase, so that the causality constraint will
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be violated [11]. In all of these situations, the traditional linear structure cannot model
the nonlinear part of the system accurately enough. To overcome these challenges, many
researchers have proposed numerous ways when taking the nonlinearity of the system
into account, which can be roughly divided into two categories [13,14]. The former one
uses artificial neural networks to model the nonlinearity of the system [15,16]. However,
most artificial neural network-based algorithms are too computationally consuming for
real applications of active noise control systems, which is out of the scope of this paper. The
latter one employs the modeling capability of adaptive nonlinear filters including adaptive
Volterra filters [11,17], the functional link network (FLNN) [18] and its generalized form
(GFLNN) [19], the exponential functional link network (EFLNN) [20], the even mirror
Fourier nonlinear (EMFN) filter [21], the Legendre neural network (LeNN) [22], Chebyshev
filters (CF) [23,24], and so on. Furthermore, due to the different properties of different
algorithms, convex combinations of the above-mentioned nonlinear filters have also been
studied to achieve better performance [25,26].

For active noise control systems, the influence of the secondary path must be con-
sidered for most algorithms. The NANC algorithm with a linear secondary path (LSP)
and with a nonlinear secondary path (NSP) was unified in [27] by introducing a virtual
secondary path into NANC with the NSP case. For most nonlinear filters, NANC with
NSP case is more computationally consuming compared to NANC with the LSP case. The
NANC problem with a nonlinear secondary path (NSP), however, is more important in
real applications [12]. When the memory length becomes large, the algorithms mentioned
above often require high computational complexity that cannot be neglected. There are two
ways to reduce the computational complexity of the NANC algorithm. One way is to use
the recursive structure, which can be seen as an expansion of the infinite impulse response
(IIR) filter. This kind of NANC algorithm includes the bilinear filter algorithm [28,29], recur-
sive second-order Volterra filter [30], recursive even mirror Fourier nonlinear filter [31,32],
adaptive function expansion bilinear filter [33,34], and so on. However, it is worth noting
that the stability of all recursive algorithms mentioned above should be carefully consid-
ered, and more efforts must be made to make the recursive algorithm stable [35]. The
other way is to use the simplified structure firstly introduced in [36], which uses a diagonal
channel structure of nonlinear filters and channel reduced strategy that only uses a few
channels near the main one. Note that the choice of the number of the reduced channels
may significantly influence the steady-state performance.

This paper focuses on a group of adaptive Volterra filter-based algorithms, which
are widely used in practice and perform well in a low-order nonlinear case. The major
challenge of these traditional Volterra filter-based algorithms is that the computational
complexity increases rapidly with the increase of the length of the memory and the order
of the Volterra kernel. Recently, the Kronecker product decomposition has been introduced
to linear system identification [37] and acoustic echo cancellation [38]. When using the
Kronecker product decomposition, the computational complexity can be reduced dramat-
ically in theory. In addition, it is demonstrated that the decomposable Volterra model
outperforms the simplified structure in [36]. Motivated by these latest works, this paper
proposes an adaptive Volterra-filtered error least mean square algorithm (DVMFELMS)
that takes a decomposable Volterra model and filtered-error structure into account for the
nonlinear active control problem. By comparing the computational complexity and the
convergence performance of the proposed algorithm with the linear FELMS algorithm,
VFELMS algorithm [11], FEGFLNN algorithm [19], and FEEMFNL algorithm [39], this
paper shows that the proposed algorithm not only reduces the computational complexity,
but also improves the convergence behavior slightly in the broadband noise cases.

The remainder of this paper is organized as follows. Section 2 formulates the problem
of nonlinear active noise control. Section 3 derives the proposed DVMFELMS algorithm,
and Section 4 compares its computational complexity with some state-of-the-art nonlinear
filter algorithms. Simulation and conclusions are presented in Section 5 and Section 6,
respectively.
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2. Problem Formulation
2.1. Linear Feedforward ANC System

Before describing the nonlinear active noise control problem, the standard linear
feedforward active noise control structure is first depicted in Figure 1 [1]. u(n) is the
reference signal at the time index n recorded by the reference microphone, and y(n) is the
output of the secondary actuator, which can be expressed as

y(n) = w(n) ∗ u(n), (1)

where w(n) is the coefficient of the active noise control filter, and ∗ denotes the linear
convolution. e(n) is the residual error sensed by the error microphone, which can be
expressed as

e(n) = d(n) + y(n) ∗ s(n), (2)

where S(z) and Ŝ(z) are the secondary path transfer function and its estimation, respec-
tively. P(z) is the primary path transfer function, and d(n) is the primary noise signal at
the error microphone.

In a standard linear feedforward active noise control structure, our goal is to find
a suitable output signal y(n) to minimize the mean square of the error signal e(n). All
transfer functions and control filters are assumed to be linear, which may be violated in
many circumstances, as mentioned above.

Primary 
Source

Reference 
Microphone

Error 
MicrophoneSecondary 

Source

( )S z

( )P z

( )W z

LMSˆ( )S z

( )u n ( )y n

Figure 1. Block diagram of linear feedforward ANC system.

2.2. Nonlinear Feedforward ANC System

This paper expresses the nonlinear process using the well-known Volterra struc-
ture [11], where the Volterra series representation of y(n) can be given by

y(n) =
∞

∑
p=0

yp(n), (3)

where
yp(n) = ∑

0≤l1,··· ,lp≤L
hp(l1, · · · , lp)× u(n− l1)× · · · × u(n− lp), (4)

hp(l1, · · · , lp) is the p-th-order Volterra kernel, and L + 1 is the length of the memory.
Equation (4) can be further expressed in the vector form as below:

yp(n) = UT
p (n)Hp(n), (5)

where T denotes transportation operation, and Up(n) is the p-th-order reference vector
with the length (L + 1)p, which is:

Up(n) = [u(n)× · · · × u(n), · · · , u(n− l1)× · · · × u(n− lp), · · · , u(n− L)× · · · × u(n− L)]T , (6)
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and similarly, Hp(n) is the p-th-order Volterra kernel vector with length (L + 1)p given by

Hp(n) = [hp(0, · · · , 0), · · · , hp(l1, · · · , lp), · · · , hp(L, · · · , L)]T . (7)

This Volterra expression can be regarded as a Taylor expansion of the generally
nonlinear function. Generally, only the first P order Volterra kernels are used to model the
system’s nonlinearity, although the truncated error may be introduced inevitably.

3. Proposed Algorithm

After considering a decomposable Volterra model, a low-complexity adaptive Volterra
algorithm based on a filtered-error structure is proposed in this section for both nonlinear
active noise control (NANC) with a linear secondary path (LSP) and that with a nonlinear
secondary path (NSP). By using the Kronecker product decomposition, the system’s com-
putational complexity can be reduced dramatically, which is promising for active noise
control systems.

3.1. DVMFXLMS

To derive the DVMFELMS algorithm, the adaptive Volterra algorithm based on a
filtered-reference structure (DVMFXLMS) is first derived in this part. To model the system’s
nonlinearity, a P-order Volterra model with the length of the memory L + 1 is utilized.
By using the Kronecker product decomposition and the characteristic of the Kronecker
product [38], Equation (5) can be rewritten as

yp(n) = (u(n)⊗ · · · ⊗ u(n))T(wp,1(n)⊗ · · · ⊗wp,p(n)),

= (uT(n)wp,1(n))⊗ · · · ⊗ (uT(n)wp,p(n)),

= (uT(n)wp,1(n))× · · · × (uT(n)wp,p(n)),

(8)

where ⊗ denotes the Kronecker product, and u(n) is the primary noise vector given by

u(n) = [u(n), u(n− 1), · · · u(n− L)]T , (9)

where wp,1(n)⊗ · · · ⊗wp,p(n) is the nearest Kronecker product decomposition of Hp(n),
which can be expressed as

arg min
wp,q (0≤p≤P, 0≤q≤p)

||Hp(n)−wp,1(n)⊗ · · · ⊗wp,p(n)||2, (10)

where || . ||2 is the l2-norm of a vector, and wp,q(n) is the q-th filter of the p-th-order of the
decomposed Volterra structure with memory length L + 1, which is defined as

wp,q(n) = [wp,q(n, 0), wp,q(n, 1), · · · wp,q(n, L)]T , with 0 ≤ p ≤ P, 0 ≤ q ≤ p. (11)

Minimizing the mean square error can be given by

J = E
{

e(n)2
}

,

= E
{(

d(n) + d̂(n)
)2
}

.
(12)

According to the steepest descent algorithm, the proposed FXLMS can update the
sub-filter wp,q(n) as follows:

wp,q(n + 1) = wp,q(n)− µp
∂J

∂wp,q

∣∣∣
n
, (13)
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where ∂J
∂wp,q

∣∣∣
n

is the single sample estimation of the gradient of J, and µp is the step size.

Defining yp,q(n) = uT(n)wp,q(n), y(n) can be rewritten as

y(n) =
P

∑
p=1

(
p

∏
q=1

yp,q(n)

)
. (14)

We further assume that wp,q(n) only changes slowly, and we can derive the gradient
in (13) by substituting (12) and (14) into (15):

∂J
∂wp,q

∣∣∣
n
=

((
q−1

∏
s=1

yp,s(n)
p

∏
s=q+1

yp,s(n)u(n)

)
∗ ∂d̂(n)

∂y(n)

)
e(n), (15)

defining the virtual secondary path filter s(n) with memory length M + 1:

s(n) =

[
∂d̂(n)
∂y(n)

,
∂d̂(n)

∂y(n− 1)
, · · · ∂d̂(n)

∂y(n−M)

]T

, (16)

and, for notation convenience, defining an auxiliary sub-vector:

up,q(n) = yp,q(n)u(n), (17)

where yp,q(n) =
(

∏
q−1
s=1 yp,s(n)∏

p
s=q+1 yp,s(n)

)
. Substituting (15)–(17) into (13), we can

derive the updating equation of wp,q(n) for all p and q as

wp,q(n + 1) = wp,q(n)− µp
(
up,q(n) ∗ s(n)

)
e(n). (18)

It is worth noting that for NANC with the LSP case, the virtual secondary path filter
s(n) can be modeled offline using a linear FIR filter. For NANC with the NSP case, the
virtual secondary path filter will change with the iteration, even though the nonlinear
secondary path is time-invariant. Thus, the nonlinear secondary path must be modeled
firstly based on one of the nonlinear filters mentioned above, such as the Volterra filter.
Then, the derivation in (16) is calculated using the modeled nonlinear filter. A sparse
modeling method of the nonlinear secondary path using a second-order Volterra filter can
be used here to reduce the computational complexity [39].

To improve the stability of the proposed algorithm, a normalized method is considered,
and a regularization parameter λ is also introduced, which is similar to [38]. The updating
equation of each sub-filter is finally given by

wp,q(n + 1) = wp,q(n)− µ̃p
(
up,q(n) ∗ s(n)

)
e(n), (19)

where
µ̃p =

µp

||yp,q(n)||2 + λp
. (20)

3.2. DVMFELMS

It should be noted that the auxiliary vector up,q(n) defined in (17) did not hold the
time-shifting property due to the presence of yp,q(n); thus, each element of up,q(n) must be
filtered by the virtual secondary path filter even in the LSP case, which is a computationally
consuming process. It was found that the filtered-error structure-based ANC system can
offer comparable performance with less computational and structural complexity compared
to a filtered-reference structure-based ANC [40]. Zhou and Debrunner introduced the
filtered-error structure to nonlinear active noise to reduce the computational complexity
in the NSP case [27]. The filtered-error structure’s main advantage is that only the error
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signal needs to be filtered by the virtual secondary path filter, which benefits the proposed
nonlinear active noise control algorithm based on the decomposable Volterra structure.

The diagram of the proposed DVMFELMS algorithm is depicted in Figure 2. To derive
the DVMFELMS algorithm, the final updating equation of the DVMFXLMS algorithm is
first recalled in the following:

wp,q(n + 1) = wp,q(n)− µ̃p(n)
(
up,q(n) ∗ s(n)

)
e(n). (21)

LMS

( )P z

( )S z

z M





( )u n

e( )n
1( )y n

( )Py n

2 ( )y n

1,1( )w z

2,1( )w z

2,2 ( )w z

P,1( )w z

P,2 ( )w z

, ( )P Pw z



( )y n





11( )y n，


1( )y n2，


( )y n2,2

,1( )Py n

( )nu




, ( )P Py n

( )S z

Figure 2. Block diagram of the proposed DVMFELMS algorithm.

Rewriting the update part of (21) as

∆wp,q(n) = −
(

M

∑
m=0

up,q(n−m)s(n, m)

)
e(n), (22)

and let k = n−m + M; then, n = k + m−M. Equation (22) can be written as

∆wp,q(n) = −
(

M

∑
m=0

e(k + m−M)s(k + m−M, m)

)
up,q(k−M). (23)

By substituting the time variable, only the error signal is filtered by the adjoint virtual
secondary path filter s(n), which is defined in the following instead of the whole new
auxiliary sub-vector up,q(n).

s(n) = [s(n, M), s(n− 1, M− 1), · · · s(n−M, 0)]T , (24)

It should be noted that in the LSP case, the adjoint virtual secondary path filter is
just the flip of the linear FIR filter in (16), while for the NSP case, due to the time-variant
property of the virtual secondary path filter, the last M values of the virtual secondary
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path filter must be stored to reconstruct the adjoint virtual secondary path filter. The final
update equation of the proposed DVMFELMS algorithm is given by

wp,q(n + 1) = wp,q(n)− µ̃pup,q(n−M)e f (n), (25)

where e f (n) is the filtered-error signal calculated by filtering the error signal by the adjoint
virtual secondary path filter defined in (24). From (25), one can see that the auxiliary vector
up,q(n) is just delayed by the M time scale without being filtered by the virtual secondary
path filter, while only the error signal needs to be filtered by the adjoint virtual secondary
path filter. Thus, the computational complexity of the proposed algorithm can be further
reduced, especially when the memory of the secondary path becomes large. The detailed
implementation of the proposed DVMFELMS algorithm is summarized in Algorithm 1.

Algorithm 1 Pseudo code of the proposed DVMFELMS algorithm.

Input: L,M,P,µ,reference signals u(n), desired signals d(n), secondary path s(n), adjoint

virtual secondary path s(n)

Initialization:

1: for p = 1; p < P + 1; p ++ do

2: for q = 1; q < p; q ++ do

3: wp,q(0) = [21−q, 0, · · · 0]T

4: end for

5: wp,p(0) = [0, 0, · · · 0]T

6: end for

Iteration:

7: for n = 0 to END do

8: for p = 1; p < P + 1; p ++ do

9: yp(n) = 1

10: for q = 1; q < p + 1; q ++ do

11: yp(n) = yp(n)(uT(n)wp,q(n))

12: end for

13: end for

14: calculate the output signal y(n) = ∑P
p=0 yp(n)

15: calculate the error signal e(n) = d(n) + y(n) ∗ s(n)

16: calculate the filtered-error signal e f (n) = e(n) ∗ s(n)

17: for p = 1; p < P + 1; p ++ do

18: for q = 1; q < p + 1; q ++ do

19: calculate the auxiliary sub-vector up,q(n) = yp,q(n)u(n) and gain up,q(n−
M)

20: update wp,q(n + 1) = wp,q(n)− µ̃pup,q(n−M)e f (n)

21: end for

22: end for

23: end for

Output: error signals e(n), output signals y(n), and filter coefficients wp,q(n)
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4. Computational Complexity

The proposed algorithm’s computational complexity is analyzed and compared with
state-of-the-art nonlinear filters in NANC, including the Volterra filter [11], GFLNN [19],
and second-order EMFNL (2OEMFNL) [39]. The computational complexity based on the
filtered-reference and the filtered-error structure is considered. The computational load
per iteration can be calculated according to L, M, and P. Note that only the multiplications
required for all algorithms are considered in this section.

The number of multiplications of the proposed DVMFXLMS algorithm is first calcu-
lated in the following. The number of multiplications for generating the pth-order output
yp(n) is Lp + 1. The number of multiplications for the pth-order filtered-reference signal
vector is Lp(M + 1) + 3(p − 2), and for the updating weights, the number of multipli-
cations is Lp. In all, the total number of multiplications of the proposed DVMFXLMS
algorithm is

TDVMFXLMS =
P

∑
p=1

(Lp(M + 3) + 3p− 5),

=
(P + 1)P(LM + 3L + 3)

2
− 5P,

(26)

The computational complexity required for VFXLMS, FXGFLNN, 2OFXEMFNL, and
the proposed DVMFXLMS algorithm for NANC with NSP is summarized in Table 1. It
can be seen that the VFXLMS algorithm has the highest computational complexity. The
2OFXEMFNL algorithm and the FXGFLNN algorithm can achieve comparable perfor-
mance with less computational complexity in higher-order nonlinearity. The proposed
DVMFXLMS algorithm has the lowest computational complexity due to the Kronecker
product decomposition and a similar property against the VFXLMS algorithm; however,
due to the decomposition error of (10), its performance may have some degradations in
some real applications, which will be analyzed in next section. From Table 1, it should be
noted that the number of multiplications of the DVMFXLMS algorithm for generating the
filtered signal are computationally consuming. The computational complexity required
for the DVMFELMS algorithm is then calculated. From (25), the difference between the
filtered-reference and filtered-error structure is the generation of the filtered signal. In the
DVMFELMS algorithm, only the error vector needed to be filtered by the adjoint virtual
secondary path filter; thus, only M multiplications are needed for all the sub-filter up-
dates. While the generation of all p-th order auxiliary vector up,q(n) needs Lp + 3(p− 2)
multiplications, the total complexity of the DVMFELMS algorithm is calculated as

TDVMFELMS =
P

∑
p=1

(3Lp + 3p− 1) + M,

=
(P + 1)P(3L + 3)

2
− P + M,

(27)

The computational complexity required for the VFELMS algorithm, the FEGFLNN
algorithm, the 2OFEEMFNL algorithm, and the proposed DVMFELMS algorithm for
NANC with an NSP case is summarized in Table 2. In order to make the computational
complexity required for all algorithms visible, the number of multiplications required for
all algorithms versus memory length is shown in Figure 3, while the length of the secondary
path M is 10 for all the cases. It is worth noting that only the NANC with the NSP case
is considered in this section because the NANC with the LSP can be seen as a special
case for NANC with NSP. In addition, for structures that have a time-shifting property,
such as the Volterra filter, GFLNN, and EMFNL, the computational complexity required
for all algorithms in NANC with the LSP case based on the filtered-reference structure is
almost the same as in NANC with the NSP case based on the filtered-error structure, while
for the proposed algorithm, the computational complexity required for all algorithms in
NANC with the LSP case based on the filtered-reference structure is the same as in NANC
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with the NSP case regardless of the computational complexity of the generation of the
virtual secondary path filter. Figure 3 shows that the filtered-error structure can reduce
the computational complexity in the NANC with the NSP case for all algorithms. With the
growth of memory length, the computational complexity of the VFELMS algorithm can be
intolerable for ANC systems. The computational complexity of the GFLNN and EMFNL
structure is smaller than the VFELMS algorithm, while it is still large for a real-time system.
However, by utilizing a decomposable Volterra structure and filtered-error structure, the
proposed DVMFELMS algorithm can significantly reduce the computational complexity of
the algorithm, which is promising in NANC systems, especially for the NSP case.

Table 1. Computational complexity of different algorithms for NANC with the NSP using filtered-reference structure.

Algorithm VFXLMS FXGFLNN 2OFXEMFNL DVMFXLMS

Inputs signal (P+L−1)!
L!(P−1)! − 1 2LP L− 1 1

Output signal (P+L)!
L!P! − 1 PL2 − (P− 3)L L2+5L

2
LP(P+1)

2 +P

Filtered signal M(P+L)!
L!P!

(PL2 − (P− 3)L)M M(L2+5L)
2

(L(M+1)+3)P(P+1)
2 −5P

Weight update 2
(
(P+L)!

L!P! − 1
)

2PL2 − 2(P− 3)L L2 + 5L LP(P+1)
2

Total
(P+L−1)!(MP+ML+4P+3L)

P!L! −
4

(M + 3)(PL2 − 2(P− 3)L) + 2LP (M+3)(L2+5L)
2 +L− 1

(L(M+3)+3)P(P+1)
2 −4P

Table 2. Computational complexity of different algorithms for NANC with the NSP using filtered-error structure.

Algorithm VFELMS FEGFLNN 2OFEEMFNL DVMFELMS

Inputs signal (P+L−1)!
L!(P−1)! − 1 2LP L− 1 1

Output signal (P+L)!
L!P! − 1 PL2 − (P− 3)L L2+5L

2
LP(P+1)

2 +P
Filtered signal M M M M

Weight update 2
(
(P+L)!

L!P! − 1
)

2PL2 − 2(P− 3)L L2 + 5L LP(P+1)
2

Total (P+L−1)!(4P+3L)
P!L! − 4 3(PL2 − 2(P− 3)L) + 2LP + M 3(L2+5L)

2 +M + L− 1
(P+1)P(3L+3)

2 − P + M
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5. Performance Evaluation

This section evaluates the proposed DVMFELMS algorithm’s performance and com-
pares it with the FELMS algorithm, the VFELMS algorithm, the FEGFLNN algorithm, and
the FEEMFNL algorithm. We evaluate the algorithms in three different nonlinear situations;
the primary path has a nonlinear process in the first case, the primary and secondary paths
have nonlinearity in the second case, and there is a real measured path with an intensely
saturated signal in the last case. The normalized mean square error (NMSE) [11] is used to
evaluate the performance of the algorithm, which is defined as

NMSE = 10 log10

(
E
{

e2(n)
}

σ2
d

)
, (28)

where σ2
d is the mean square energy of the primary noise. All results presented in this

section are based on an ensemble average of 100 independent runs for each algorithm. The
primary path P(z) is set to be −P(z) in the middle of the iteration to study all algorithms’
stability and tracking capability. Furthermore, the step-sizes are all selected to achieve the
maximum convergence rate with the minimum achievable NMSE.

5.1. Simulation with Nonlinear Primary Path

In the first experiment, the situation where the primary path has a nonlinear process is
studied. The primary noise recorded by the error microphone is generated by passing the
reference signal through a third-order Volterra model with cross terms, which is given by

d(n) = u(n− 5) + 0.8u(n− 6) + 0.3u(n− 7) + 0.4u(n− 8)

+ 0.2u(n− 5)u(n− 6)− 0.3u(n− 5)u(n− 7) + 0.4u(n− 5)u(n− 8)

+ 0.04u(n− 5)u(n− 6)u(n− 7)− 0.02u(n− 5)u(n− 6)u(n− 8),

(29)

where the transfer function of the secondary path is S(z) = z−2 + 0.3z−3. The reference
noise signal u(n) is considered to be two cases; a sinusoidal wave of 500 Hz with a sampling
rate of 8000 Hz is utilized in the first case, and a band-limited white Gaussian noise in the
second case. The sinusoidal reference signal is given by

u(n) =
√

2 sin
(

2π × 500× n
8000

)
+ v(n), (30)

where v(n) is a white Gaussian noise with zero mean and unit variance, and the signal-to-
noise ratio (SNR) is set to be 30 dB. The memory length for all algorithms is chosen to be 10.
The order of the Volterra kernel is chosen to be 3, and the order of the functional link neural
network and even mirror Fourier nonlinear filter is chosen to be 2. The step size for the
FELMS algorithm is chosen to be µ1 = 2× 10−3, step sizes for the third-order Volterra filter
are set to µ1 = 2× 10−3, µ2 = 1× 10−3, µ3 = 6× 10−4, step sizes for the 2OFEGFLNN
algorithm and 2OFEEMFNL algorithm are set to µ1 = 2 × 10−3, µ2 = 1 × 10−3, and
step sizes for the 3ODVMFELMS algorithm are set to µ1 = 2 × 10−3, µ2 = 2 × 10−2,
µ3 = 1× 10−4, λ2 = 0.6, λ3 = 0.04.

Figure 4 shows the NMSE achieved by all five algorithms versus the number of itera-
tions in the sinusoidal noise case. It can be seen from Figure 4 that the reduction of primary
noise achieved by the FELMS algorithm, the 3OVFELMS algorithm, the 2OFEGFLNN
algorithm, the 2OFEEMFNL algorithm, and the 3ODVMFELMS algorithm is about 22.5 dB,
25.3 dB, 25.9 dB, 26.2 dB, and 26.3 dB, respectively. All nonlinear algorithms achieve
better performance against the FELMS algorithm. The proposed DVMFELMS algorithm
performs slightly better in the steady-state performance and the convergence rate in this
case. It should be noted that the proposed DVMFELMS algorithm can even outperform the
VFELMS algorithm in NMSE, which might be explained by the Volterra model used in the
VFELMS algorithm being over-fitting for this simulation case.
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Figure 4. Performance comparison using the nonlinear primary path with sinusoidal reference signal.

For results of the broadband noise, the frequency range of the band-limited noise
is chosen to be from 50 Hz to 1000 Hz, among which the ANC system usually works
well. The signal is normalized to unity, and a white Gaussian noise with zero mean
and unit variance with an SNR of 30 dB is also added. All the transfer functions and
nonlinearities used are exactly the same as in the first case. The step size for the FELMS
algorithm is chosen to be µ1 = 6× 10−3, step sizes for the third-order Volterra filter are set
to µ1 = 6× 10−3, µ2 = 4× 10−3, µ3 = 6× 10−4, step sizes for the 2OFEGFLNN algorithm
and 2OEMFNL algorithm are set to µ1 = 6 × 10−3, µ2 = 1 × 10−3, and step sizes for
the 3ODVMFELMS algorithm are set to µ1 = 6× 10−3, µ2 = 4× 10−3, µ3 = 1× 10−3,
λ2 = 0.02, λ3 = 0.02. Figure 5 shows that the reduction of primary noise achieved by the
FELMS algorithm, the 3OVFELMS algorithm, the FEGFLNN algorithm, the 2OEMFNL
algorithm, and the 3ODVMFELMS algorithm in the broadband noise case is about 19.8 dB,
23.8 dB, 23.2 dB, 23 dB, and 23.6 dB, respectively. It is worth noting that in the broadband
case, the VFELMS algorithm outperforms the 2OFEGFLNN algorithm and the 2OEMFNL
algorithm in NMSE, which coincides with the results in [19]. Nevertheless, the 2OEMFNL
algorithm has a fast convergence rate due to its inherent property, as shown in [27]. The
proposed DVMFELMS algorithm can achieve comparable steady-state performance against
the VFELMS algorithm, while with a slightly faster convergence rate. This may be explained
by the fewer parameters used in the DVMFELMS algorithm.
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Figure 5. Performance comparison using the nonlinear primary path with band-limited white
Gaussian reference signal.

5.2. Simulation with Nonlinear Primary Path and Nonlinear Secondary Path

To further demonstrate the effectiveness of the proposed DVMFELMS algorithms in
the NANC/NSP case, both primary and secondary paths are considered to have nonlinear-
ity in this experiment. The primary noise recorded by the error microphone is generated
by passing the reference signal through a second-order Volterra model given by

d(n) = u(n− 5) + 0.8u(n− 6) + 0.3u(n− 7) + 0.4u(n− 8)

+ 0.2u(n− 5)u(n− 6)− 0.3u(n− 5)u(n− 7) + 0.4u(n− 5)u(n− 8),
(31)

while the secondary path is considered to be an NLN model used in [27], which is ex-
pressed as

l1 = 1− 0.6z−1 + 0.05z−2,

N(z1(n)) = 3.3tanh(0.3z1(n)),

l2 = 1 + 0.2z−1 + 0.05z−2.

(32)

Figure 6 depicts the NMSE obtained by all five active noise control algorithms versus
the number of iterations by using the same sinusoidal signal as the reference signal in (30).
The memory length for all algorithms is chosen to be 10, and the order of the Volterra kernel
is chosen to be 2. The step size for the FELMS algorithm is chosen to be µ1 = 2× 10−1,
step sizes for the second-order Volterra filter are set to µ1 = 2× 10−1, µ2 = 2× 10−1,
step sizes for the FEGFLNN algorithm are chosen to be µ1 = 2× 10−1, µ2 = 4× 10−3,
step sizes for the 2OEMFNL algorithm are set to µ1 = 2× 10−1, µ2 = 1× 10−2, and step
sizes for the 2ODVMFELMS algorithm are set to µ1 = 2× 10−1, µ1 = 2× 10−2, λ2 = 0.02.
Figure 6 shows that the reductions of primary noise achieved by the FELMS algorithm, the
2OVFELMS algorithm, the 2OFEGFLNN algorithm, the 2OFEEMFNL algorithm, and the
proposed 2ODVMFELMS algorithm are about 20.8 dB, 29.7 dB, 29.3 dB, 29.1 dB, and 29.7 dB,
respectively. It should be noted that the FEEMFNL algorithm shows bad convergence
speed in the NSP case. The proposed DVMFELMS algorithm can still achieve comparable
performance with the lowest computational complexity in the NSP case. However, the
convergence rate of the proposed 2ODVMFELMS algorithm is worse in these cases because
of the sinusoidal signal and NSP used.
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Figure 6. Performance comparison using the nonlinear primary path and secondary path with
sinusoidal reference signal.

For broadband results, the band-limited white Gaussian noise used here is exactly
the same as in experiment 2. The SNR is also set to be 30 dB. All the transfer functions
are exactly the same as in the first case. Figure 7 shows the NMSE achieved by all five
algorithms versus the number of iterations. The step size for the FELMS algorithm is
chosen to be µ1 = 2 × 10−1, step sizes for the second-order Volterra filter are set to
µ1 = 2 × 10−1, µ2 = 2 × 10−1, step sizes for the 2OFEGFLNN algorithm are chosen
to be µ1 = 2× 10−1, µ2 = 4× 10−3, step sizes for the 2OEMFNL algorithm are set to
µ1 = 2 × 10−1, µ2 = 1 × 10−2, and step sizes for the 2ODVMFELMS algorithm are
set to µ1 = 2 × 10−1, µ1 = 2 × 10−2, λ2 = 0.02. One can see from Figure 7 that the
reductions of primary noise achieved by the FELMS algorithm, the 2OVFELMS algorithm,
the 2OFEGFLNN algorithm, the 2OEMFNL algorithm, and the 2ODVMFELMS algorithm
are about 17.3 dB, 24.1 dB, 23.7 dB, 23.5 dB, and 23.8 dB, respectively. It can be seen that the
FEFLNN algorithm and the FEEMFNL algorithm show worse performance in steady-state
NMSE and convergence speed than the Volterra filter-based algorithm in the broadband
reference signal and NSP case. The proposed DVMFELMS algorithm has performance
comparable with the VFELMS algorithm, with a dramatic reduction of computational
complexity.
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Figure 7. Performance comparison using the nonlinear primary path and secondary path with
band-limited white Gaussian reference signal.

5.3. Simulation with Measured Primary Path and Secondary Path

In this experiment, a real measured primary and secondary path is used to justify the
proposed DVMFELMS algorithm’s effectiveness in a real application. The amplitude and
phase response of both primary and secondary paths is shown in Figure 8. The reference
signal is chosen to be three sinusoidal waves at normalized frequencies of 0.01, 0.02, and
0.08, which is normalized to unity power [29]. A white Gaussian noise with zero mean
and unit variance with a signal-to-noise ratio of 30 dB is also added. Furthermore, the
reference signal is assumed to have strong saturation generated by clipping the reference at
50% of the maximum signal value. The memory length of the primary and secondary path
is chosen to be 80. Figure 9 shows the NMSE achieved by all five algorithms versus the
number of iterations. The step size for the FELMS algorithm is chosen to be µ1 = 1× 10−4,
step sizes for the second-order Volterra filter are set to µ1 = 1× 10−4, µ2 = 1× 10−4, step
sizes for the 2OFEGFLNN algorithm are chosen to be µ1 = 1× 10−4, µ2 = 5× 10−6, step
sizes for the 2OFEEMFNL algorithm are set to µ1 = 1× 10−4, µ2 = 4× 10−5, and step
sizes for the 2ODVMFELMS algorithm are set to µ1 = 1× 10−4, µ1 = 1× 10−3, λ2 = 0.02.
Figure 9 shows that the reduction of primary noise achieved by the FELMS algorithm,
the 2OVFELMS algorithm, the FEGFLNN algorithm, the 2OEMFNL algorithm, and the
2ODVMFELMS algorithm in the real measured primary and secondary path cases is about
27.5 dB, 29.7 dB, 29.6 dB, 29.9 dB, and 29.6 dB, respectively. From Figure 9, it can be seen
that the 2OEMFNL algorithm outperforms all algorithms in NMSE, while having the lowest
convergence speed. The proposed DVMFELMS algorithm can achieve almost the same
NMSE compared with the VFELMS algorithm in this case. The number of multiplications
in this experiment for all four nonlinear algorithms are 278960, 39210, 10289, and 958,
respectively, which shows the potential in the real application of the proposed DVMFELMS
algorithm.
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Figure 8. Amplitude and phase response of measured primary and secondary path.
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Figure 9. Performance comparison using measured primary and secondary path with saturated
reference signal.

6. Conclusions

This paper proposes a very low-complexity adaptive Volterra filter-error least mean
square algorithm for the active control of nonlinear noise processes after considering a
decomposable Volterra model and filtered-error structure. The computational complexity
analysis shows that the proposed DVMFELMS algorithm can significantly reduce the
complexity, especially for the NANC system with the NSP case. The simulation result
shows that the proposed algorithm can achieve comparable performance with the VFELMS
algorithm and other state-of-the-art nonlinear filters in simulation conditions, while the
decomposable error of the Volterra kernel may inevitably be introduced. In addition,
the proposed DVMFELMS algorithm shows potential in a better convergence property
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due to the fewer parameters used in each sub-filter. Further work should concentrate on
studying the step control to improve the stability of the DVMFELMS algorithm for practical
applications.
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37. Paleologu, C.; Benesty, J.; Ciochină, S. Linear system identification based on a kronecker product decomposition. IEEE/ACM

Trans. Audio Speech Lang. Process. 2018, 26, 1793–1808. [CrossRef]

http://dx.doi.org/10.1121/1.1377632
http://dx.doi.org/10.1121/1.4916274
http://www.ncbi.nlm.nih.gov/pubmed/25920845
http://dx.doi.org/10.1109/78.845922
http://dx.doi.org/10.1109/TASLP.2018.2869686
http://dx.doi.org/10.1109/78.934136
http://dx.doi.org/10.1121/1.5124472
http://www.ncbi.nlm.nih.gov/pubmed/31590543
http://dx.doi.org/10.1016/j.sigpro.2012.08.013
http://dx.doi.org/10.1109/72.392246
http://dx.doi.org/10.1016/j.jsv.2004.08.007
http://dx.doi.org/10.1109/LSP.2004.836944
http://dx.doi.org/10.1109/TSA.2003.822741
http://dx.doi.org/10.1109/TASL.2011.2136336
http://dx.doi.org/10.1109/TCSI.2016.2572091
http://dx.doi.org/10.1016/j.sigpro.2014.10.037
http://dx.doi.org/10.1016/j.sigpro.2015.11.008
http://dx.doi.org/10.1016/j.ymssp.2019.04.059
http://dx.doi.org/10.1016/j.apacoust.2013.08.005
http://dx.doi.org/10.1016/j.asoc.2016.01.051
http://dx.doi.org/10.1109/TCSI.2006.887636
http://dx.doi.org/10.1109/TCSI.2004.842429
http://dx.doi.org/10.1016/j.apacoust.2016.01.001
http://dx.doi.org/10.1016/j.ymssp.2012.06.020
http://dx.doi.org/10.1109/TSP.2014.2367467
http://dx.doi.org/10.1016/j.apacoust.2018.11.022
http://dx.doi.org/10.1016/j.apacoust.2017.10.023
http://dx.doi.org/10.1016/j.apacoust.2020.107407
http://dx.doi.org/10.1109/TSP.2016.2641395
http://dx.doi.org/10.1002/ett.4460140210
http://dx.doi.org/10.1109/TASLP.2018.2842146


Appl. Sci. 2021, 11, 9637 18 of 18

38. Pinheiro, F.C.; Lopes, C.G. A low-complexity nonlinear least mean squares filter based on a decomposable volterra model. IEEE
Trans. Signal Process. 2019, 67, 5463–5478. [CrossRef]

39. Guo, X.; Li, Y.; Jiang, J.; Dong, C.; Du, S.; Tan, L. Sparse modeling of nonlinear secondary path for nonlinear active noise control.
IEEE Trans. Instrum. Meas. 2018, 67, 482–496. [CrossRef]

40. Miyagi, S.; Sakai, H. Performance comparison between the filtered-error LMS and the filtered-x LMS algorithms ANC. In
Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, Sydney, NSW, Australia, 6–9 May 2001;
pp. 661–664.

http://dx.doi.org/10.1109/TSP.2019.2932880
http://dx.doi.org/10.1109/TIM.2017.2781992

	Introduction
	Problem Formulation
	Linear Feedforward ANC System
	Nonlinear Feedforward ANC System

	Proposed Algorithm
	DVMFXLMS
	DVMFELMS

	Computational Complexity
	Performance Evaluation
	Simulation with Nonlinear Primary Path
	Simulation with Nonlinear Primary Path and Nonlinear Secondary Path
	Simulation with Measured Primary Path and Secondary Path

	Conclusions
	References

