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Abstract: Many workers who engage in manual material handling (MMH) jobs experience high phys-
ical demands that are associated with work-related musculoskeletal disorders (WMSDs). Quantifying
the physical demands of a job is important for identifying high risk jobs and is a legal requirement in
the United States for hiring and return to work following injury. Currently, most physical demand
analyses (PDAs) are performed by experts using observational and semi-quantitative methods. The
lack of accuracy and reliability of these methods can be problematic, particularly when identifying
restrictions during the return-to-work process. Further, when a worker does return-to-work on
modified duty, there is no way to track compliance to work restrictions conflating the effectiveness of
the work restrictions versus adherence to them. To address this, we applied a deep learning model
to data from eight inertial measurement units (IMUs) to predict 15 occupational physical activities.
Overall, a 95% accuracy was reached for predicting isolated occupational physical activities. How-
ever, when applied to more complex tasks that combined occupational physical activities (OPAs),
accuracy varied widely (0–95%). More work is needed to accurately predict OPAs when combined
into simulated work tasks.

Keywords: occupational physical demands; deep learning; wearable devices; musculoskeletal disorders

1. Introduction

Work-related musculoskeletal disorders (WMSDs) are injuries or pain involving the
joints, ligaments, muscles, nerves, tendons, and/or structures that support the limbs, neck,
and back [1,2]. WMSDs are a common concern for modern industrialized nations [3] due
to their high incidence and high costs which reached over USD 20 billion in the United
States in 2018 [4]. It can be caused by a complex interaction of physical, psychosocial,
biological and individual characteristics, among which physical demand is an important
factor. One of the most prevalent WMSDs is low back pain [5], which is associated with
physically demanding tasks that include handling heavy loads repeatedly and in awkward
postures [6,7].

Since the physical demands vary widely across jobs, a physical demand analysis
(PDA) outlines the physical and environmental requirements to perform a job and is used
for pre/post-offer employment screening, return-to-work, and identification of personal
protective equipment needs. In the US, it is a required part of a job description and must be
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written in compliance with the American Disabilities Act. The PDA includes information
on the approximate duration (% of day) and magnitude (load) that different occupational
physical activities (OPAs), such as lifting/lowering, carrying, kneeling, reaching, walking,
and standing, take place. The PDA informs workers about the physical demands of a job
before they are hired and it provides occupational health practitioners critical information
for facilitating effective return to work programs should an injury occur.

Various methods for quantifying OPAs include self-report, observational, and direct
measurement [8,9]. Though both self-report and observational approaches are low-cost
and convenient, results can be inaccurate and unreliable, as well as time consuming [5].
Although observational methods are the most common approach for estimating OPAs [8],
some have used more detailed video-based techniques to quantify the duration of OPAs
with higher accuracy. Essentially, workers are recorded in real-time and the video is
analyzed using computer software that aggregates the amount of time spent performing
different OPAs. Direct measurements of force supplement the video analysis to provide a
more valid and reliable PDA; however, this approach is extremely time consuming and
costly [8].

Accurate and reliable quantification of OPAs required for a job description is critical
for physically demanding jobs. Prospective workers rely on them to determine if they
would like to pursue a job and clinicians rely on them to facilitate appropriate return to
work plans. Further, accurate and reliable quantification of the duration, frequency and
magnitude of physical demands can be useful when assessing interventions designed
to reduce physical exposures associated with WMSDs. To overcome the limitations of
self-report, observational, and direct measurement methods, kinematic data could be an
effective approach to quantifying OPAs in the workplace. Kinematic data yield the position,
velocity, and acceleration of body segments and have been used to predict the patterns
and quality of movement [10]. Conventional methods of capturing kinematic data rely
principally on video analysis or an optoelectronic system to distinguish movement patterns
of body segments [11–14]. However, these laboratory methods have limitations in real
work scenarios both in cost and feasibility.

Wearable technology, such as inertial measurement units (IMUs), have been used to
capture human body motion for animation, optimizing athletic performance, and even
optimizing patient treatment [15]. For example, Daponte et al. [16] developed a wireless and
IMU-based system for monitoring patient motion with real-time 3D reconstruction. IMU
systems have also been used by practitioners for gait and lower limb rehabilitation [17,18].
IMUs perform well when tracking the orientation of a moving object, thus, coaches and
athletes use them to assess athletic performance [19,20]. More recently, IMUs have been
used in the workplace to quantify specific exposures that may increase risk of injury. A
smart garment using two IMU sensors was introduced by Wang et al. [21] to monitor
shoulder posture for treating WMSDs. Relative time series data and kinematic data from
the wearable sensors (IMUs) are used to summarize the percent time spent in different
physical activities and the probability of being at high risk for WMSDs [22,23]. The IMU
system (17 IMUs) with classification models introduced by Kim and Nussbaum [24] and
Bastani, Kim, Kong, Nussbaum, and Huang [25], classified MMH tasks for real-time
applications with a higher accuracy than observational methods. These studies provide
support for the use of wearable devices in predicting OPAs actively and continuously in
diverse work environments, even using fewer sensors. However, the performance of using
wearable devices on classifying a broader range of OPAs such as crouching, kneeling and
overhead work has not been evaluated. Further, there is little, if any, work published on
predicting OPAs when combined in typical simulated work tasks.

Therefore, the objective of this study was to apply deep learning models to data from
eight IMUs to predict physical activities performed during simulated occupational tasks.
If wearable devices can be used to predict OPAs with higher accuracy, reliability and
efficiency than self-report, observational or direct methods, job descriptions and return to
work programs can be standardized more effectively.
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2. Materials and Methods
2.1. Study Procedure

This laboratory study collected kinematic data from 8 IMUs worn on 8 different body
segments by participants who performed OPAs common in MMH jobs [9,13,22,23,25–36].
The kinematic data were used for training a deep learning model for pattern recognition
(Figure 1). The trained model was used to predict OPAs performed in 3 simulated work
tasks. In this pilot validation study, model predictions of the OPA were validated using a
frame-by-frame analysis of video collected during simulated tasks.

Figure 1. Study procedure of prediction of occupational physical activities using inertial measuring units and deep
learning model.

2.2. Participants

Subjects (n = 15) were recruited by email, campus, and social networks. To be included
in the study, subjects needed to be between 18 and 65 years of age and willing to perform
the simulated work tasks described. Subjects with neck/back/arm/shoulder/vision pain
were excluded. Written informed consent was obtained from all subjects before their
participation. This study was approved by the Institutional Review Board of the University
of California, San Francisco (IRB# 10-04700).

2.3. Occupational Physical Activities and Manual Material Handling Tasks

In this study, 15 categories of occupational physical activities were selected with some
OPAs performed in multiple ways to capture the variation of physical activities and prevent
overfitting of the model (Table 1). To train the models, subjects performed activities with
fixed parameters of load, duration, and repetition. Most OPAs were performed for at least
60 s each (Table 1).
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Table 1. Occupational physical activities (N of subjects = 15).

OPA Category Activity Load Duration/Repetition Repetition

1 Lifting/Lowering

1 Lifting from floor to shoulder level 4.5 kg (box) 15 s 2
2 Lifting from floor to waist level 4.5 kg (box) 15 s 2

3 Lifting from shoulder to waist level
with twist 4.5 kg (box) 15 s 2

4 Lifting from shoulder to waist level
without twist 4.5 kg (box) 15 s 2

5 Stooped lifting from floor to waist level 4.5 kg (box) 15 s 2
6 Lifting from floor to 1.5 m level 4.5 kg (box) 15 s 2

2 One-handed
lifting/lowering

7 Right-handed lifting from floor
to waist level 4.5 kg (box) 15 s 2

8 Left-handed lifting from floor
to waist level 4.5 kg (box) 15 s 2

3 Pushing 9 Pushing clockwise 136 kg (cart) 60 s 1
10 Pushing counterclockwise 136 kg (cart) 60 s 1

4 Pulling 11 Pulling clockwise 136 kg (cart) 60 s 1

5 One-handed
pulling

12 Right-handed pulling 136 kg (cart) 60 s 1
13 Left-handed pulling 136 kg (cart) 60 s 1

6 Standing 14 Standing 0 kg 60 s 1

7 Sitting 15 Sitting 0 kg 60 s 1

8 Kneeling 16 Kneeling 0 kg 60 s 1

9 Static stooping 17 Static stooping 0 kg 60 s 1

10 Walking 18 Walking 0 kg 60 s 1

11 Crouching 19 Crouching 0 kg 60 s 1

12 Crawling 20 Crawling 0 kg 60 s 1

13 Carrying 21 Carrying 4.5 kg (box) 60 s 1

14 Reaching

22 Reaching (standing) close to body
(shoulder elevation angle: 30◦) 0 kg 60 s 1

23 Reaching (standing) far from body
(shoulder elevation angle: 60◦) 0 kg 60 s 1

24 Reaching (standing) high and far from
body (shoulder elevation angle: 135◦) 0 kg 60 s 1

15 Overhead work 25 Static overhead work 0 kg 60 s 1
26 Dynamic overhead work 0 kg 60 s 1

OPA: occupational physical activities.

A subset of participants (n = 9) completed up to three simulated work tasks including
bottle packing, carpet laying, and drilling to test the deep learning model’s ability to predict
OPAs while performing simulated work tasks (Figure 2). Except for sitting which exhibited
obvious features for prediction, the bottle packing, carpet laying and drilling tasks included
all OPAs (Table 2). Verbal explanation and visual demonstration were provided for subjects
prior to performing the various OPAs and simulated work tasks. The whole procedure
took approximately 2 h per subject.

Table 2. Manual material handling tasks (n = 9). Subjects complete MMH tasks with different handling height and OPAs
covered by each task are listed.

MMH Task N Duration/Repetition OPA Category Covered

Bottle packing 6 Within 5 min Standing, reaching, lifting/lowering, walking and carrying

Carpet laying 4 Within 5 min
Walking, lifting/lowering, one-handed lifting/lowering, pushing,

pulling, one-handed pulling, crouching, stooping, crawling,
kneeling and standing

Drilling 4 15 s Walking, lifting/lowering, carrying, stooping, overhead work
and standing
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Figure 2. Manual material handling tasks: bottle packing, carpet laying, and drilling.

Subjects performed carpet laying and bottle packing tasks until the task was complete;
all tasks were completed within 5 min. Drilling was performed for 15 s. Details for each
task include:

• Bottle packing started with opening the box and putting 12 bottles into the box, which
contained three rows (close, intermediate, and extended distances) and four bottles
in each row. After placing the bottles in the box, the box was closed. The horizontal
distances between the bottles and the body were <30 cm, 30–40 cm, and >40 cm. Next,
the box was carried about two meters and placed on shelves of fixed heights ranging
from floor height, waist height and shoulder height.

• The carpet laying task was performed by lifting carpet from a shelf (floor, waist and
shoulder height) onto a cart. The cart was then pushed or pulled to a distance of
approximately two meters. After placing the carpet on the floor, subjects were asked
to lay the carpet in a pre-defined rectangle.

• The drilling task involved picking up a drill, or paint roller with one hand, walking to
the designated area about two meters away and drilling overhead or on the ground.
Afterwards the tool was returned to the original spot.

2.4. Wearable Track Device with Inertial Measuring Units

A lightweight (<0.7 kg) prototype wearable vest and arm cuffs that housed 8 IMUs
(SwiftMotion, Berkeley, CA, USA) was used to quantify the kinematics while performing
OPAs (Figure 3). The vest was designed with a shoulder harness, belt, upper arm straps
and upper leg straps made by nylon mesh fabric, which was used to fix the positions of the
IMUs. The vest was available in three different sizes (small, medium, and large), and the
straps were length-adjustable to allow exact positioning of the sensors, independent of the
body type of the subject.

The specific positions of IMUs were as follows: (1) two were placed on the spine
facing posterior, one between the 3rd and 4th thoracic spinous process (T3-T4) and the
other between the 5th lumbar and 1st sacral spinous process (L5-S1); (2) two were placed
on the medial segment of each upper arm facing lateral; (3) two were placed on the distal
segment of each forearm just proximal to the hand facing posterior; (4) the last two were
placed on the medial segment of each thigh facing posterior. With these 8 sensors and their
corresponding anatomical locations it was possible to track the orientation of the trunk,
upper arms, forearms, and thighs. The sensors were not placed directly on muscle bellies,
as their orientation could then change during the activation of those muscles.
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Figure 3. Wearable vest for occupational physical activities: (a) wearable track device and location of
IMUs and their orientations (orientations were displayed as two orthogonal vectors), (b) performing
manual material handling tasks with prototype, (c) IMU used in this study.

The small IMUs (50 × 50 × 20 mm) developed by the researchers included three-axis
accelerometers, three-axis gyroscopes, and three-axis magnetometers, which measured
accelerations, velocities, and position (orientation). Data from the IMUs were recorded at a
sample frequency of 10 Hz.

2.5. Data Collection

Time series data (1 column) and kinematic data (18 columns) were synchronized from
the 8 IMUs and transmitted to a laptop by Wi-Fi dongles. The IMUs output included both
the quaternion and Euler data. Kinematic data were recorded by IMU number and position
(2 columns), quaternion (4 columns), Euler angle (◦, 3 columns), raw acceleration (m/s2,
3 columns), linear acceleration (m/s2, 3 columns), and angular velocity (rad/s, 3 columns).
The current orientation of IMUs was determined by using Euler angle following the Z-Y-Z
sequence: the first rotation occurs around the Z-axis, followed by a rotation around the
Y-axis and a rotation around the rotated new Z-axis. Quaternions transformed to Euler
angles using Equation (1) [37].

Quat2Eul(q)=

[
arctan

2(q0q1+q2q3)

1−2
(
q2

1+q2
2
) ,arcsin(2(q0q2−q3q1)),arctan

2(q0q3+q1q2)

1−2
(
q2

2+q2
3
) ]T

(1)

where, q0 denotes the scalar part and q1, q2 and q3 denote the vector part of the quaternion.

2.6. Model Training

The ResNet-18 structure was pre-defined, only the weights were learned during
training. Error was defined as the averaged cross-entropy loss over all samples [38] in
one batch (Equation (2)). Training was not finished until the model converged (Figure 4a).
A convolutional neural network (CNN), ResNet-18 [39] was used for categorical prediction.
Its 18-layer implementation was robust to train the model efficiently and retain high
accuracy. The time series data and kinematic data of activities based on the 15 OPA



Appl. Sci. 2021, 11, 9636 7 of 17

categories (Table 1) were converted to tensors (1 × 60 × 19) and divided into 60%, 20% and
20% for training, validation, and testing, respectively.

loss(x,i)=
1
N

(
−x[i]+log(∑je

x[j])
)

(2)

where, in each batch, i represented the correct OPA categories, j represented all of the OPA
categories and N was the batch size. The lowest validation error across models did not
necessarily identify the best model. Therefore, it was critical to save the current best model
when the validation error decreased. After the training was complete, the best model was
selected based on testing data accuracy (minimize empirical error). Model training and
prediction were all performed using Python 2.7.

Figure 4. Model training: (a) the training and validation error over the epoch, the model converged at epoch 23 and became
overfitting afterward, (b) window cut.

The OPA categories were added to data of 15 activities as the activity’s labels; the
raw datasets were saved to 15 csv files. Each csv file represented one activity and was
constructed in such a way that columns represented coordinates and time derivative
information from one sensor and rows represented timestamps of each of the 8 sensors.
Therefore, each row had 18 columns of sensor data, 1 column for the timestamp, and
1 column for the label.

The final model input data was generated by combining multiple rows together
to form an image-like window. The number of rows combined (window size) was a
hyperparameter of the model. The window size with the highest accuracy achieved. Each
window had a size of 60 rows × 20 columns; in other words, 60 rows of sensor data,
20 columns of sensor data plus an activity label (Figure 4b). Finally, the overlapping
window was cut. An overlapping window was defined as a window containing multiple
activities and therefore it was redundant. For example, when a single window (1 s)
contained both activity 1 and activity 2, this window was dropped (0.7%).

2.7. Tasks Prediction and Validation

Simulated work tasks were video-recorded at 30 frames per second then analyzed
using Multimedia Video Tasks Analysis™ (MVTA™, NexGen Ergonomics Inc., Pointe-
Claire, QC, Canada). Each frame was categorized and labeled into one of the 15 OPAs
(Table 1). Two researchers performed the task analysis using MVTA. Both researchers
were trained by a senior engineer who has been using MVTA for more than 13 years.
Random frames were selected by PI and the senior engineer to confirm task analysis
reliability and accuracy. Any uncertainties were resolved by discussion with the PI and
senior engineer. Transitions (i.e., frames between standing and lifting) were allocated to
the proceeding OPA.

In the occupational activity classification problems, after removing the column of
activity label, each task was split into multiple 60 × 19 windows as input to the CNN.
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In total, 60 rows of data corresponded to roughly 1 s of “video” which was enough for a
single activity to be repetitive and recognizable. The CNN analyzed these windows and
mapped them to a predicted OPA. The trained CNN model was applied to the IMU data
for the simulated work tasks to predict an OPA for each 1 s interval. The OPA prediction
each second was compared to the results from the MVTA [40] to calculate model accuracy
of OPA prediction (Figure 5). A post hoc analysis of the best three predictions of OPAs
generated by the CNN model was used for further analysis.

Figure 5. This diagram shows the approach for assessing the accuracy of the CNN model. Data
collected from the OPAs performed in isolation were divided into 60%, 20% and 20% for training,
validation, and testing, respectively. The trained model was applied to testing data from the OPAs
performed in isolations, then the simulated work tasks to predict OPAs. Multimedia video task
analysis was performed on the simulated work tasks and compared with model predictions to
estimate the accuracy of the predictive model.

2.8. Post Hoc Analysis

For the simulated work tasks, the best three CNN OPA predictions each second were
compared with the actual OPA identified by MVTA. For the best three CNN predictions of
each second, if there was a correct prediction, it was counted. If all three were incorrect,
the first OPA prediction was counted as the incorrect prediction.

3. Results

A total of 15 healthy participants with an average age of 31 ± 13.6 years (9 males,
6 females, Table 3) participated in this study. The average height and weight of individuals
were 169.4 ± 14.8 cm and 68.2 ± 15.6 kg, respectively. None of them reported any recent
injuries or chronic diseases.

Table 3. Demographics and anthropometric data of subjects.

Gender N
Age Height Weight BMI Lower Leg UPPER LEG Lower Arm Upper Arm

(yrs) (cm) (kg) (kg/m2) (cm) (cm) (cm) (cm)

Male 9 Mean 31 177 76.10 24.30 57.44 92.00 37.67 38.89
SD 15.43 12.13 15.43 4.30 3.68 6.54 2.87 3.26

Female 7 Mean 33 165 61.16 22.45 52.17 85.67 33.33 34.33
SD 15.79 4.40 7.11 1.75 2.64 2.42 1.97 2.34

The CNN achieved an overall accuracy of 95% in test data but differed by OPA with
one handed lifting/lowering having the lowest accuracy (83%) and six OPAs having an
accuracy of 100% (Table 4).
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Table 4. CNN model accuracy of different OPA categories (N = number of correct predictions over
total samples for each OPA. Accuracy is the percentile of correct predictions divided by total samples).

OPA Category N of Correct Samples (Windows) Accuracy

Overhead work 194/194 100%
Sitting 97/97 100%

Crawling 78/79 98%
Standing 103/103 100%
Carrying 271/271 100%
Walking 101/106 95%
Pushing 170/180 94%
Reaching 279/279 100%

Static stooping 84/84 100%
Kneeling 84/85 98%

Crouching 85/96 88%
Lifting/Lowering 1028/1064 96%

One-handed lifting/lowering 273/327 83%
Pulling 80/94 85%

One-handed pulling 194/207 93%

Overall 3121/3266 95%

The data collected from bottle packaging tasks, carpet laying tasks and drilling tasks
were combined and processed by the trained CNN model. The top CNN OPA prediction
was compared with MVTA results for each frame to calculate the prediction accuracy
(Table 5). Based on the 1503 frames, the average accuracy was 22% with accuracies varying
by OPA. The lowest accuracy was 0% (one-handed lifting) and the highest accuracy was
95% (overhead work).

The analysis of the three best CNN predictions was higher; the average prediction
accuracy was 45% (Table 6). Some OPA prediction accuracies were high; accuracy of
one-handed pulling and overhead work exceeded 95%, while the accuracy for pushing
reached 88%. However, prediction accuracy of other OPAs was very low. For example,
kneeling had an accuracy of 7%, being commonly mistaken for crouching (Figure 6). None
of the one-handed lifts were correctly predicted. Many frames of stooping were predicted
as reaching.
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Table 5. Accuracy of the top OPA prediction during simulated work tasks. The confusion matrix shows the CNN model accuracy of OPA predictions in simulated work tasks. OPAs were
classified as upper body kinematics or whole-body kinematics. Cells in the left-hand column represent OPA categories in tasks and cells in the second row represent CNN predicted
activities. Cells on the main diagonal and off-diagonal indicate the number of correct and incorrect predictions of each activity. The two right-hand columns represent the total frame and
prediction accuracy of each OPAs, respectively. The cell at the bottom-right corner indicates the average prediction accuracy.

OPA Category
Upper Body Kinematics Whole Body Kinematics

Total
(Frame)

Accuracy
Reaching Carrying Lifting Lifting

Onehanded Pulling Pulling
Onehanded Pushing Overhead

Work Standing Walking Kneeling Crouching Crawling Stooping Sitting

Reaching 31 23 47 1 14 1 50 5 7 26 28 1 9 243 13%
Carrying 1 36 9 8 11 3 11 1 24 5 5 1 115 31%
Lifting 6 32 28 29 16 12 15 8 39 21 3 209 13%

Lifting onehanded 2 5 0 7 1 1 3 4 8 3 1 35 0%
Pulling 1 13 13 6 2 4 39 33%

Pulling onehanded 1 0 1 1 3 0%
Pushing 3 2 29 23 2 59 39%

Overhead work 0 0 40 1 1 42 95%
Standing 5 21 4 7 1 17 4 4 3 1 2 69 25%
Walking 2 8 13 2 14 2 21 3 25 4 2 96 22%
Kneeling 1 1 25 2 35 16 1 1 2 89 60 4 237 1%

Crouching 7 3 85 1 5 1 7 24 13 12 22 180 13%
Crawling 2 2 1 5 7 17 41%
Stooping 5 2 33 7 5 9 5 90 3 159 57%

Sitting 0 0 N/A

Total 58 107 273 0 24 166 88 108 17 60 36 261 149 109 47 1503 22%
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Table 6. Accuracy of the top 3 OPA predictions during simulated work tasks. A confusion matrix showing the accuracy of the best three CNN predictions of OPAs in simulated work tasks.
If there was a correct prediction in the best three outcomes, the correct one was counted. Otherwise, the first outcome of the best three predictions was counted. Cells in the left-hand
column represent OPA categories in tasks and cells in the second row represent the best three predicted activities. The best three CNN predictions of each frame were taken for analysis.
Cells on the main diagonal and off-diagonal indicate the number of correct and incorrect prediction of each activity. The two right-hand columns represent the total frame and CNN best
three prediction accuracies of each OPA, respectively. The cell at the bottom-right corner indicates the average accuracy of best three CNN predictions.

OPA Category
Upper Body Kinematics Whole Body Kinematics

Total
(Frames)

Accuracy
Reaching Carrying Lifting Lifting

Onehanded Pulling Pulling
Onehanded Pushing Overhead

Work Standing Walking Kneeling Crouching Crawling Stooping Sitting

Reaching 103 20 28 1 14 1 30 4 4 23 9 1 5 243 42%
Carrying 1 66 1 6 8 6 1 19 4 2 1 115 57%
Lifting 3 14 106 22 11 1 12 4 23 12 1 209 51%

Lifting onehanded 2 5 0 7 1 1 3 4 8 3 1 35 0%
Pulling 1 21 7 4 2 4 39 54%

Pulling onehanded 3 3 100%
Pushing 1 6 52 59 88%

Overhead work 41 1 42 98%
Standing 1 11 3 5 1 39 1 4 3 1 69 57%
Walking 2 4 12 2 6 1 40 3 20 4 2 96 42%
Kneeling 1 1 23 2 35 16 1 1 16 87 51 3 237 7%

Crouching 7 1 50 4 1 4 71 9 12 21 180 39%
Crawling 1 1 3 12 17 71%
Stooping 2 33 7 4 9 3 99 2 159 62%

Sitting 0 0 N/A

Total 118 110 272 0 29 118 103 75 39 70 37 271 110 115 36 1503 45%
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Figure 6. This stacked bar chart shows the top 5 other OPAs that each activity was misclassified as. The X-axis represents
the OPAs performed during the simulated work tasks and the legend represents OPAs predicted by CNN.

4. Discussion

The present study used a deep learning method to predict 15 OPA activities common
in MMH jobs. A convolution neural network model was applied to data from 8 IMUs
to predict which of the 15 OPAs were being performed during each second of analysis.
Overall, the model had an average accuracy of 95% when each OPA was performed in
isolation. However, model accuracy decreased when applied to simulated work tasks that
contained multiple OPAs (e.g., bottle packaging, carpet lying and drilling).

The CNN model was first applied to predict occupational physical activities performed
in isolation. The study indicated that the CNN model provided a reliable prediction of
OPAs performed in isolation with the highest accuracy of prediction reaching 100%, and the
lowest accuracy being 83%. However, even when performed in isolation, some activities
had better accuracy than others; overhead work, sitting, standing, carrying, reaching and
static stoop had 100% accuracy while one-handed lifting, pulling and crouching were
lower (83%, 85% and 88%, respectively). One possible reason for the lower accuracy in one-
handed lifting (83%) was the asymmetrical movement that varied with each lift (Figure 7a).
Pulling and one-handed pulling also had lower prediction accuracy (85% and 93%, respec-
tively) which may have also been due to activity being asymmetrical and varied. The model
accuracy for crouching may have been lower (88%) due to the trunk angle being similar to
other activities, such as lifting and kneeling. Future studies should include IMU data from
the lower legs to evaluate whether additional IMU data improves model prediction for all
OPAs by differentiating activities with similar upper body postures (Figure 7b).
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Figure 7. Activities with similar trunk flexion have low prediction accuracies: (a) one-handed lifting, an asymmetrical
activity (83%); (b) crouching (88%).

To test the robustness of the trained CNN model, it was applied to data collected
during three MMH tasks. The overall model accuracy fell dramatically to 22%. Each
task contained multiple OPAs and the model was unable to differentiate the OPAs with
high accuracy when they were performed as part of a simulated task. To understand the
inaccurate predictions, a post hoc analysis analyzed the best three CNN predictions for
each second of simulated work. The overall accuracy of OPAs increased from 22% to 45%.
The results of some activities improved greatly; prediction for lifting and pushing increased
from 13% to 51% and 39% to 88%, respectively. This indicates that the model may have had
an incorrect best prediction, but the 2nd or 3rd prediction was correct, at least for some
OPAs. However, some activities had minimal changes in accuracy. The incorrect predictions
for each OPA were graphed to visually depict erroneous predictions for each OPA. This
was primarily done to develop improved models for future research, particularly for the
OPAs with a low prediction accuracy. Upon further analysis, the erroneous predictions
appeared to be primarily due to four circumstances including (1) variation in how the OPA
was performed; (2) OPAs being performed concurrently; (3) posture similarities between
OPAs; (4) an OPA being embedded in another OPA, thus confusing the model.

The amount of variation in how activities were performed impacted the model predic-
tion accuracy. For example, the CNN model was trained with people lifting using a squat
technique, yet during the work simulated tasks, some people used the stoop lift posture
which was mistakenly predicted as crouching. Kneeling only had a 7% accuracy despite
using the best three predictions. Kneeling can also be performed with much variation;
there was kneeling while sitting on the heels, kneeling upright (no hip flexion) and single
knee kneeling. Since the model was not trained for these variations in posture, it predicted
other similar activities such as crouching or crawling. Future research should include
more variations of how each OPA is performed during the training-test dataset before
it is applied to simulated work tasks. Fifteen subjects participated in the current study.
Including more people in the training-test dataset would also be helpful in capturing
variations in how OPAs are performed.

Another reason for poor prediction accuracy was that subjects often performed multi-
ple OPAs at the same moment while performing a task which the single model prediction
approach could not resolve. For example, subjects may reach while kneeling, sitting, or
standing. Standing was misclassified as lifting since subjects usually lift items when stand-
ing. This presented challenges for the CNN model in predicting the predominant activity.
Despite the extensive training, evaluation, and discussion about how to classify each frame
in MVTA, human judgement was used to identify the predominant activity.
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As described above when OPAs were performed in isolation, similar postures across
OPAs were a reason for poor accuracy during the MMH tasks, especially since there was
no information on loads being handled. Reaching was frequently predicted as lifting,
overhead work, and carrying likely because those activities include shoulder flexion with
an increased horizontal distance between the body and wrists. Kneeling was commonly
misclassified as crawling or crouching, also likely due to the similarities in hip flexion
and trunk angles, particularly when kneeling while sitting on one’s heels. Crouching was
misclassified as lifting or sitting, again due to similar hip flexion angles. Surprisingly,
walking had low prediction accuracies and was most commonly misclassified as one-
handed pulling, carrying, or pushing, all of which include walking while handling a load.
Having additional information from lower extremity IMUs and/or about loads being
handled may improve the OPA classification across these otherwise similar activities that
all included some amount of reach.

Another common reason for misclassification was when one OPA was part of or
embedded within another OPA. For example, when categorizing OPAs in MVTA, the
visual cues made it obvious when someone was reaching forward to lift something. In
this case, the lift started at the beginning of the reach to lift an item and ended when the
item was brought back to their body. In other words, if someone was reaching forward
to lift something, the frames including the reach forward required to make contact with
the object, were classified as part of the lift. Despite this consistency in how the models
were trained, the CNN model could not differentiate these activities during the simulated
activities, based on intent of the movement. This may explain why reaching was incorrectly
predicted as a carry and why standing was frequently misclassified as lifting. Thus, a
different approach to OPA classification will be needed in the future to help differentiate
OPAs. It may be beneficial to start the classification of a lift when the load is actually being
lifted versus the moment someone reaches forward to initiate a lift.

To mitigate the misclassification discussed above and improve the prediction accuracy,
additional IMUs and/or pressure insoles could be added to the system in future studies.
For example, pressure insole information may help differentiate similar activities that
primarily differ based on loads being handled such walking versus carrying, pushing or
pulling and crouching versus lifting. Information from pressure insoles has been shown
to distinguish such activities [36] and may help distinguish kneeling, crouching, and
stooping from lifting. Pressure insole information may also help distinguish crawling from
kneeling and crouching since the total force would be significantly lower since the weight
is supported through the knees when crawling.

To address concurrent OPAs happening simultaneously, sequential modeling could be
used to make multiple predictions. A prior study used sequential artificial neural network
models to estimate hand posture before estimating hand exertion force [41]. Perhaps a
similar approach that predicts whole body posture before predicting upper extremity
movement could be used to improve OPA prediction accuracy.

Continual challenges to estimating prediction accuracies remain because of the transi-
tional time between OPAs when performing simulated work. This can be minimized by
training models to make accurate predictions from the beginning of the activity to the very
end. For example, lifting would need to be predicted from the first moment there is hip and
knee flexion to the moment the person returns to standing. This has obvious challenges
for a model that makes a prediction every second and will require proceeding information
for accurate classification. Exploring additional types of deep learning models may help
to address this issue and improve prediction results. In this study, a recurrent neural
network (RNN) model was first applied to predict OPAs when performed in isolation. The
prediction result of the RNN model did not meet expectations. Upon reflection, RNNs are
designed to predict an outcome for each timestamp in a time series that was not the best fit
for OPA classification. Further, CNN Resnet models have been shown to outperform other
deep learning approaches significantly for time series classification [42]. Thus, the current
model chosen for this study was from ImageNet contest winner, Resnet. Its 18-layers
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implementation is robust to train the model efficiently and retain high accuracy for single
OPAs prediction. The window size of the current CNN model was 60 rows of sensor data,
roughly corresponding to 1 s of video data which is enough for a single activity to be
repetitive and recognizable. However, in MMH tasks, activities change at a very fast pace.
Thus, further investigation on window size selection is needed.

5. Limitations

Subjects could choose how they performed the simulated work tasks, therefore, some
activities such as one-handed pulling and crawling had limited data. For some OPAs like
crawling, this may have led to the low accuracy rate, specifically because crawling is similar
with other OPAs. Future studies should include more participants and data from a greater
number of simulated tasks. Fifteen subjects participated in this pilot study which allowed
us to assess the feasibility and accuracy of this approach. In future studies, more subjects
will be included to allow more variability when training the model.

6. Conclusions

Fifteen occupational physical activities were predicted using a convolutional neural
network model and inertial measurement units with an overall accuracy of 95% when
performed in isolation, however, the prediction accuracy was low and varied widely when
applied to simulated work tasks that included multiple OPAs. Reasons for the reduced
accuracy may be addressed in future studies by exploring sequential modeling approaches,
model selection, and the addition of lower extremity IMUs and/or pressure insole sensors.
Predicting OPAs using wearable devices and deep learning models is an important step in
quantifying physical job demands with more accuracy than current methods.
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