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Abstract: Pits are defects that occur during the film manufacturing process; they appear in the
micrometer scale, which makes distinguishing them with the human eye difficult. Existing defect
detectors have poor recognition rates for small objects or require a considerable amount of time. To
resolve these problems, we propose a real-time small pit defect detector (RT-SPeeDet), a two-stage de-
tection model based on an image processing and convolutional neural network (IP–CNN) approach.
The proposed method predicts boundary boxes using a lightweight image-processing algorithm opti-
mized for pit defects, and applies binary classification to the predicted regions; thus, simultaneously
simplifying the problem and achieving real-time processing speed, unlike existing detection methods
that rely on CNN-based detectors for both boundary box prediction and classification. RT-SPeeDet
uses lightweight image processing operations to extract pit defect candidate region image patches
from high-resolution images. These patches are then passed through a CNN-based binary classifier
to detect small pit defects at a real-time processing speed of less than 0.5 s. In addition, we propose a
multiple feature map synthesis method that enhances the features of pit defects, enabling efficient
detection of faint pit defects, which are particularly difficult to detect.

Keywords: anomaly detection; small pit defect detection; deep learning; multiple feature map

1. Introduction

In the manufacturing industry, anomaly detection technologies that classify defects
occurring during the manufacturing processes are being actively researched to automate
the quality assurance process [1–5]. Traditional image processing-based defect detection
methods show high performance because they can design feature extractors that are suitable
for limited and clear feature information. However, they are unsuitable for systems that
irregularly generate defects of various forms. Conversely, deep learning-based defect
detection methods are capable of accurately and rapidly detecting various forms of defects
owing to their excellent data mining performance.

The purpose of this paper is to design a machine vision method for automatically
detecting small pit defects among various film surface defects described in Figure 1. Pits are
mainly caused by a grain of dust or sand during the rolling process in manufacturing films
used in displays of smartphones or LCD TVs. These micro-fine stabbed defects are a major
factor in determining the quality of displays. However, different from other defects, the
micro-meter-sized (µm) small pit defects cannot be easily observed even with the human
eye in the entire film image in Figure 2a unless being magnified as shown in Figure 2b.
Furthermore, the manufacturing factory usually requires a real-time processing less than
1 s for detecting defective films. The current manufacturing technique has a problem,
where the pits are detected using a lightweight image processing method for real-time,
but they suffer from a low detection rate of approximately 50%, which actually motivates
this study.
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Deep learning-based object detection models, such as fast R-CNN [6] and YOLO [7], 

present significantly reduced detection rates for small pit defect detection. This perfor-

mance degradation is caused by the nature of the end-to-end model, in which object fea-

tures are lost during continuous downsampling to process the input image rapidly. By 

contrast, when the downsampling process is reduced, the processing speed is markedly 

lowered owing to the enormous number of computations required. Moreover, anchor 

box-based detection methods also encounter problems because it is difficult to set a suit-

able size of the anchor boxes for small objects [8–10]. In such cases, insufficient training 

data owing to the rare occurrence of defectives also become major factors making defect 

detection difficult. To solve these problems, we propose a real-time small pit defect detec-

tion network (RT-SPeeDet), which is a two-stage detection model that combines image 

processing technology with a convolutional neural network (CNN)-based binary classifi-

cation model. 

Figure 1. Different type of film surface defects; (a) wrinkle, (b) bubble, (c) scratch, (d) pit. 

The proposed model was inspired by region proposal methods based on the risk pri-

ority number (RPN) [11]. First, we design an image processing-based feature extractor 

suitable for small pit defects to localize candidate areas. Next, to conduct the classification, 

the image patches of a pit candidate region are entered as input to the CNN. This task 

simplification improves the processing speed and detection performance by reducing the 

overhead of the object detection model, which must simultaneously perform localization 

and classification during the training and inference processes. In addition, the proposed 

multiple feature map synthesis-based candidate region detection method resolves the 

problem of low detection rates for small objects by suppressing the noise of the back-

ground region and improving the pit defect region. Finally, the recall rate is improved 

using a data augmentation technique suitable for the characteristics of pit defects.  

The rest of this paper is organized as follows. Section 2 describes the limitations of 

existing object detection models. Section 3 describes the proposed RT-SPeeDet method in 

detail. Section 4 presents the results of a performance evaluation on the proposed model. 

Section 5 describes an ablation study on various design elements and discusses some lim-

itations. Finally, in Section 6, we present our conclusion and future research direction. 

  

(a) (b) 

Figure 2. Film images; (a) original film image with small pit defects, (b) enlarged pit area. 

    

(a) (b) (c) (d) 

Figure 1. Different type of film surface defects; (a) wrinkle, (b) bubble, (c) scratch, (d) pit.
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Figure 2. Film images; (a) original film image with small pit defects, (b) enlarged pit area. 
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Figure 2. Film images; (a) original film image with small pit defects, (b) enlarged pit area.

Deep learning-based object detection models, such as fast R-CNN [6] and YOLO [7],
present significantly reduced detection rates for small pit defect detection. This perfor-
mance degradation is caused by the nature of the end-to-end model, in which object
features are lost during continuous downsampling to process the input image rapidly. By
contrast, when the downsampling process is reduced, the processing speed is markedly
lowered owing to the enormous number of computations required. Moreover, anchor box-
based detection methods also encounter problems because it is difficult to set a suitable size
of the anchor boxes for small objects [8–10]. In such cases, insufficient training data owing
to the rare occurrence of defectives also become major factors making defect detection
difficult. To solve these problems, we propose a real-time small pit defect detection net-
work (RT-SPeeDet), which is a two-stage detection model that combines image processing
technology with a convolutional neural network (CNN)-based binary classification model.

The proposed model was inspired by region proposal methods based on the risk
priority number (RPN) [11]. First, we design an image processing-based feature extractor
suitable for small pit defects to localize candidate areas. Next, to conduct the classification,
the image patches of a pit candidate region are entered as input to the CNN. This task
simplification improves the processing speed and detection performance by reducing the
overhead of the object detection model, which must simultaneously perform localization
and classification during the training and inference processes. In addition, the proposed
multiple feature map synthesis-based candidate region detection method resolves the
problem of low detection rates for small objects by suppressing the noise of the background
region and improving the pit defect region. Finally, the recall rate is improved using a data
augmentation technique suitable for the characteristics of pit defects.

The rest of this paper is organized as follows. Section 2 describes the limitations of
existing object detection models. Section 3 describes the proposed RT-SPeeDet method in
detail. Section 4 presents the results of a performance evaluation on the proposed model.
Section 5 describes an ablation study on various design elements and discusses some
limitations. Finally, in Section 6, we present our conclusion and future research direction.
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2. Limitations of Existing Object Detection Models

Although deep learning-based object detection models have made remarkable ad-
vances, their low detection rate for small objects remains a problem to be solved. The
simplest solution for this problem is to reduce the loss rate for small objects by increasing
the resolution of the input image [12]. Another solution is to combine low- and high-level
feature maps to create multi-scale representations that enhance the features. Another
approach is to perform prediction at different layers; this results in feature maps of various
scales [13]. Nonetheless, the difficulty in detecting small objects remains a problem. The
following studies were conducted to resolve this problem [14,15].

Hu et al. used a Gaussian filtering technique, which is an image processing technology,
and the Otsu algorithm, which is an adaptive binarization technique, to detect pit defects
in steel shells [16,17]. They proposed an algorithm that can detect positive regions, where
steel shells are present and applied Gaussian filtering and binarization to the interior of
the ellipse to detect the existence of pits. To detect five types of defects that occur in the
process of manufacturing, Zhao et al. proposed the TICNET model, which improves the
existing cascade R-CNN approach [18]. The feature extraction capacity of the model was
improved by applying deformable convolution layers instead of convolution layers; this
can learn both weights and kernel offsets [19,20]. In addition, to concentrate the model’s
learning on objects that are difficult to classify among the defect samples, they enhanced
the features of cascade-RCNN and improved the learning performance for complex defect
patterns. Jiang et al. attempted to apply parameter optimization on fast R-CNN to detect
four types of defects, including pits, present on the surface of a shaft [21]. Because it is
difficult to find small defects with a minimum size of 0.3 mm in images with a size of
16,384 × 4096 pixels obtained through line scanning, the images were manually split into
images of size 500 × 500 pixels. It was observed that for a single IoU value, the performance
decreased when the ratio of negative samples was increased; therefore, they proposed a
method of setting multiple IoU values to increase the ratio of positive samples. Ren et al.
proposed a neural network that sets anchor boxes optimized for small object sizes; it uses a
multi-scale representation learning method that combines high- and low-level feature maps
to create feature maps that contain more feature information regarding small objects [22].
In addition, they added contextual information about the areas around small objects and
used this information in feature maps to resolve the imbalance problem of insufficient
small object training data. Studies have also been conducted on methods for improving the
detection performance using data augmentation techniques that have properties suitable
for small object detection [23,24].

Table 1 shows the input image resolutions and resulting detection times of previous
defect detection studies. When the detection targets are small objects such as pit defects, the
deep learning and machine learning methods all take more than 2 s on average. By contrast,
in the case of larger ordinary objects, these methods are capable of processing even high-
resolution images within approximately 120 ms because such objects can be adequately
found using a lightweight architecture. Therefore, finding small objects during tasks
requiring real-time processing is a problem of considerable difficulty. In previous studies,
deep-learning-based methods have the disadvantage of having to manually divide the
input image to avoid a loss of the small object area during the forward propagation. Besides,
previous image-processing-based methods require complex feature extracting operations
to detect small defects accurately, which results in a problem of decreasing processing
speed. The target images in this paper are film images with a size of 8192 × 6000 pixels.
When they are divided for stable small object detection, more than 160 image patches with
a size of 512 × 512 pixels are created. Detection task using the faster R-CNN model, or
the YOLO-v3 model, which is optimized for real-time processing, on more than 160 image
patches to examine all regions in a single film image will take 22 s and 4.8 s, respectively,
given that the processing speeds of these models are 0.14 and 0.03 s, respectively. This is a
fatal problem in quality assurance (QA) processes that require real-time processing of less
than 1 s.



Appl. Sci. 2021, 11, 9632 4 of 14

Table 1. Performance comparison of existing defect detection models.

Method Input Image Speed [s] Deep Learning Small Defects

Hu [16] 1928 × 1448 3.41 × #
Zhao [18] 2800 × 300 1.57 # #

Tabernik [14] 1408 × 512 0.11 # ×
Westphal [15] 180 × 180 0.13 # ×

Jiang [19] 512 × 512 2.29 # #

Because the pit defects that this approach attempts to detect have an extremely small
size, approximately 1/480,000th of the film images, there is a high probability that the
features will be lost as they pass through each layer of a deep neural network. Figure 3
shows the strength levels of the pit defects that exist in the film images. The strong and
medium-level pits in Figure 3a,b can be seen with the human eye when the image is
magnified. However, unlike normal defects, they have no clear features and are easily
confused with noises in the image background. The weak-level pits shown in Figure 3c are
a major cause of missed detection because they are difficult to distinguish with the human
eye. In particular, pit defects have a low frequency of occurrence, and it is difficult to obtain
an adequate amount of training data for deep learning-based object detection studies.

Appl. Sci. 2021, 11, 9632 4 of 14 
 

respectively, given that the processing speeds of these models are 0.14 and 0.03 s, respec-

tively. This is a fatal problem in quality assurance (QA) processes that require real-time 

processing of less than 1 s. 

Table 1. Performance comparison of existing defect detection models. 

Method Input Image Speed [s] Deep Learning Small Defects 

Hu [16] 1928 × 1448 3.41 × ○ 

Zhao [18] 2800 × 300 1.57 ○ ○ 

Tabernik [14] 1408 × 512 0.11 ○ × 

Westphal [15] 180 × 180 0.13 ○ × 

Jiang [19] 512 × 512 2.29 ○ ○ 

Because the pit defects that this approach attempts to detect have an extremely small 

size, approximately 1/480,000th of the film images, there is a high probability that the fea-

tures will be lost as they pass through each layer of a deep neural network. Figure 3 shows 

the strength levels of the pit defects that exist in the film images. The strong and medium-

level pits in Figure 3a,b can be seen with the human eye when the image is magnified. 

However, unlike normal defects, they have no clear features and are easily confused with 

noises in the image background. The weak-level pits shown in Figure 3c are a major cause 

of missed detection because they are difficult to distinguish with the human eye. In par-

ticular, pit defects have a low frequency of occurrence, and it is difficult to obtain an ade-

quate amount of training data for deep learning-based object detection studies.  

   

(a) (b) (c) 

Figure 3. Pit defects according to the difficulty of observability; (a) strong level, (b) medium level, 

(c) weak level. 

In order to solve the problems of the existing deep learning-based defect detection 

methods described above, this paper presents an IP–CNN-based two-stage pit defect de-

tection structure that is divided into image-processing and CNN-based classification, in-

stead of an end-to-end structure. 

3. Real-Time Small Pit Defect Detection Network 

3.1. System Overview 

The proposed real-time small pit defect detection (RT-SPeeDet) model involves a can-

didate region extraction stage that uses image-processing technology and a CNN-based 

classification stage, as shown in Figure 4. To separate the function of an end-to-end detec-

tion model into two stages, RT-SPeeDet conducts localization in the defect candidate re-

gion extraction stage and then applies CNN binary classification to the extracted candi-

date regions. 

Figure 3. Pit defects according to the difficulty of observability; (a) strong level, (b) medium level,
(c) weak level.

In order to solve the problems of the existing deep learning-based defect detection
methods described above, this paper presents an IP–CNN-based two-stage pit defect
detection structure that is divided into image-processing and CNN-based classification,
instead of an end-to-end structure.

3. Real-Time Small Pit Defect Detection Network
3.1. System Overview

The proposed real-time small pit defect detection (RT-SPeeDet) model involves a
candidate region extraction stage that uses image-processing technology and a CNN-
based classification stage, as shown in Figure 4. To separate the function of an end-to-end
detection model into two stages, RT-SPeeDet conducts localization in the defect candi-
date region extraction stage and then applies CNN binary classification to the extracted
candidate regions.
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3.2. Extracting Candidate Image Patches for Pit Detection
3.2.1. Cropping of Positive Region

The image processing-based candidate region extraction stage is divided into a process
for cropping the positive region in the overall film image and a process for conducting
the localization of the pit candidate areas in the cropped region and simultaneously ex-
tracting the image patches. Because the detection speed decreases when processing entire
8192 × 6000 high-resolution images, the positive regions of the film, excluding the back-
ground regions, are extracted from the film images. Figure 5 shows the positive region
extraction process. First, to improve the processing speed, the original image in Figure 5a
is reduced to 1/nth size using Equation (1), and the color image is converted into a black
and white image.

resize
(

I,
W
n

,
H
n

)
(1)
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Here, I is the input image; W and H are the width and height of the input image, re-
spectively. In addition, n is a selectable integer used to reduce the number of computations
by resizing the input image. As n increases, the processing speed improves; however, when
n is set too large, pit defect information is lost. Because n is a factor that affects pit defect
detection rates, this analysis is covered in the ablation study discussed in Section 5. As
the pit defects have no specific color information, the three-channel RGB image can be
converted into a grayscale image to reduce computations. Next, binarization is applied
based on a threshold value to extract the positive regions. We analyzed film images with
various lighting conditions and observed that there is a large contrast between the film’s
positive region and the background. Accordingly, the threshold was set at 20% of the
image’s maximum brightness value, which can adequately distinguish positive regions in
all environments. After binarization is applied, as shown in Figure 5b, a four-connectivity
labeling operation, in which connected pixels are divided into individual groups, is con-
ducted such that the black and light regions are divided by region. Finally, the positive
region is cropped as shown in Figure 5c.

3.2.2. Cropping of Positive Region

The goal of the pit candidate region extraction stage is to minimize the background
region noise in the positive region and to detect the pit defects. As the number of candidate
area image patches input into the CNN increases, the detection speed decreases; therefore,
the number of candidate areas should be minimized, including all possible pit defects.

To minimize the processing time during the candidate region extraction stage, this
approach adopts morphology operations that have been used in real-time small object
detection studies [25,26]. Morphology operations can be used to suppress noise and
enhance the features of object regions to detect small objects that appear as tiny dots
in infrared images captured at a distance. Furthermore, these can be used to extract
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desired data using the information of a target object with a known geometric shape. The
applied method is a simple approach in which a structure element, which is a kernel
suitable for the shape and size of the target, is moved to all regions of the image and the
operations are conducted. The advantage of morphology operations is that the computation
overhead is extremely small; therefore, it is suitable for real-time pit defect detection that is
targeted in this paper. Equations (2)–(5) show the dilation, erosion, opening, and closing
operations, respectively.

[I ⊕ b](x, y) = max[I(x − p, y − q) + b(p, q)] (2)

[I 	 b](x, y) = max[I(x + p, y + q)− b(p, q)] (3)

[I ◦ b](x, y) = (I 	 b)⊕ b (4)

[I·b](x, y) = (I ⊕ b)	 b (5)

Here, I is the original image, x, y are the original image coordinates, and p, q are
the coordinates of the structure element. In addition, because pit defects have a round
shape, an ellipse structure element was used. Figure 6 shows the results of multiple feature
map extraction for morphology operation-based pit defect candidate region detection.
Figure 6b shows the results of the opening morphology operation for the grayscale image
in Figure 6a. The opening operation has the effect of removing small-sized light pixels
during the dilation process after an erosion operation. By contrast, Figure 6c shows the
results of the closing operation, which has the effect of removing dark regions through
erosion after a dilation operation. Here, in the case of strong-level pits, the pit regions are
shown clearly using only the closing operation, whereas the weak-level pits are not shown
clearly at this stage. In addition, because of the light pixels in the background regions
in the results of the closing operation, a significant amount of noises may be included in
the binarization results, or it may be difficult to find the binarization threshold value. To
resolve this problem, this study adopted an approach to extract multiple feature maps that
suppress the background region noise and more clearly enhance weak-level pits. Multiple
feature maps are extracted through addition and difference operations conducted on each
feature map based on the morphology operation results.

First, Figure 6d is an image obtained through a difference operation applied to the
results of the opening and closing operations. The difference operation is used to block
the background noises in the image and obtain a localized bright region. As can be seen
in the resulting image, the background region is darkened while the pit defect region is
brightened, making it clearly visible. Figure 6e shows the results of a difference operation
conducted on a grayscale image with the resulting image of the opening operation in
Figure 6b. Consequentially, the edge areas are emphasized. A weighted sum of the feature
maps of which the inner and edge regions of the pits have become more visible is performed
to make the weak-level pits more distinct. During this process, although the background
noise may also become clear, it can prevent non-detection of weak-level pits. Figure 6f,g
show the results of clearly enhancing the pit regions by applying a weighted sum of the
feature maps obtained through the aforementioned difference operation and one more
weighted sum on the closing operation results with the brightest pit regions. A comparison
of the resulting image in Figure 6g with the image in Figure 6c shows that the contrast
between the pit regions and background is clearer. When a difference operation applies the
image in Figure 6g, which has enhanced pit regions and the image in Figure 6b, an image
having clearly distinguished pit regions is obtained, as shown in Figure 6h. By improving
the contrast in this way, it becomes easier to find the threshold value when conducting
adaptive binarization to extract candidate regions, and the quality of the binarization is
therefore improved. In order to prevent the intermittent loss of information, Figure 6i is
obtained by the difference operations between Figure 6h,d where the internal regions are
clearly emphasized. Finally, Figure 6k can be obtained using Otsu binarization, which is an
adaptive method, and then inverting the result.
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The Otsu algorithm sets the threshold k so that it maximizes the variance σ2
B(k) among

classes in a histogram of the image [13].

σ2
B(k) =

[mGP1(k)− m(k)]2

P1(k)[1 − P1(k)]
(6)

In Equation (6), mG is the average brightness of the entire image and P1(k) is the
probability of the occurrence of a set consisting of the components of a histogram from
brightness label 0 to k. Furthermore, m(k) is the average brightness of the accumulated
value up to label k. Pit defects and the background regions can be clearly distinguished
by calculating the parameters m(k) and P1(k), according to the k value, and finding a
threshold value for dividing the image that maximizes the variance among classes. During
the multiple feature map synthesis process, the noise of the background regions may also
become distinct, which may increase in the number of candidate region image patches.
To resolve this problem, morphology operations that are mainly used for noise removal
are applied in sequence to obtain a resulting image with the fine noise of the background
regions removed, as shown in Figure 6l. The final resulting image is divided into regional
units through four-connectivity labeling. Finally, based on the observation that the maxi-
mum size of the pit defects is approximately 10 × 10 pixels owing to the characteristics
of the defects, all regions larger than the maximum size of pits are removed. However,
if the condition of the image is poor, a much higher amount of noises will be included
in comparison to the number of pit defects. This problem occurs when the background
noise with a faint edge or dot-like shapes is also enhanced during the multiple feature
map synthesis process. Although most of the candidate regions’ image patches can be
adequately classified during the classification process, the following contrast-based filtering
was applied to reduce the overhead of the classification process.

Figure 7 shows the contrast-ratio-based filtering process for the ith image patch out of
N total candidate regions. Among the methods used to find the contrast ratio of an image,
a histogram-based method is more sophisticated. However, considering the overhead, we
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used a method that finds the difference between the maximum and minimum values of
the image patch. In this case, where there is no minimum contrast ratio in the candidate
region, background regions can be quickly found. The contrast ratio threshold was set as
the minimum value at which weak-level pits were not filtered during the experiments. By
creating boundary boxes in the candidate regions after applying contrast-based filtering, it
is possible to obtain fully localized candidate region extraction results, as shown in Figure 8.
If the condition of the captured film images is poor, an extremely large amount of noises
may be included; however, contrast-based filtering can be used to remove 20% to 30% of
the noise regions.
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3.2.3. Pit Classification

The extracted pit candidate regions are entered as an input into a CNN-based binary
classifier. This study used typical CNN models such as ResNet [27], MobileNet [28], and
SqueezeNet [29] for binary classification. ResNet uses a skip-connection, which adds the
output value x of previous layer L − 1 to the output value F(x) of a certain layer L. This
resolves the learning problems of deep-layer models. ResNet is a typical CNN-based model
with markedly improved performance. MobileNet is a typical lightweight CNN model
employing depth-wise convolutions and using a small number of parameters to achieve
an excellent image classification performance. SqueezeNet is another typical lightweight
CNN model. By introducing the Fire Module, this model achieves the same performance as
existing CNN-based models with a greatly reduced model size. In this study, experiments
were conducted using these three CNN models as binary classifiers, which have their own
unique features, and their performances were compared.
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4. Experiments and Results
4.1. Implementation Details

To evaluate the small pit defect detection performance of the proposed RT-SPeeDet
method, the following experiment environment was applied. All experiments were con-
ducted using the deep learning framework PyTorch on an Intel i7-6850K CPU and NVIDIA
GTX Titan XP GPU. The main library versions used in the experiments were Python 3.8.5,
PyTorch 1.9, TorchVision 0.10.0, and OpenCV 4.5.2.

To train the CNN model, we used 792 pit defect image patches with a size of 28 × 28 pixels,
which were extracted from 300 film images, as shown in Figure 9a–d. In order to train non-
pit regions, 58,149 image patches with a size of 28 × 28 pixels that may include either noise
or background were used. The overall dataset was randomly divided into 90% for training
and 10% for testing. Training was conducted for 80 epochs on all models with a batch size
of 128 and a learning rate of 0.005. The loss function was a cross entropy, and the stochastic
gradient descent (SGD) optimizer was applied. For the final performance evaluation, tests
were conducted using 30 film images with a resolution of 8192 × 6000 pixels in which
68 pit defects were present. During the experiments, the image resize parameter was n = 4,
and the resolution of the test input images was adjusted to 2048 × 1500 pixels. According
to the results of the ablation study described in Section 5, these values were the most stable
for detecting pit defects.
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In the detection performance evaluations, the degree to which the predicted boundary
box overlapped with the correct answer ground truth was calculated, and the prediction
was found to be correct if the threshold value was 50% or more and the class prediction
value matched the correct answer value. The evaluation indexes that were used in the
performance evaluations consisted of true positives (TPs), in which the correct answer was
accurately predicted, true negatives (TNs) in which something other than the correct answer
was predicted to be an incorrect answer, false positives (FPs) in which an incorrect answer
was predicted to be correct, and false negatives (FNs), in which a correct answer could not
be predicted. These four indexes were used to calculate the precision and recall, as shown
in Equations (7) and (8). In addition, the experiments also used the accuracy index given in
Equation (9) to evaluate the candidate region image patch classification performance.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Acc =
TP + TN

TP + FP + TN + FN
(9)

Additional performance evaluation indexes include the PR-curve and average pre-
cision (AP) indexes, which classify the confidence of the model regarding the detection
results, according to the threshold value, and show changes in the precision and recall.
However, in the case of RT-SPeeDet, binary classification is conducted on each candidate
region, and most of the confidence values were measured at 90% or more. For this reason,
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changes in the threshold value were insignificant; therefore, the AP index was not used in
the performance evaluation of RT-SPeeDet.

4.2. Candidate Region Extraction Performance of RT-SPeeDet

First, Table 2 shows the performance of the proposed multiple feature map-based
candidate region extractor. The candidate region extractor extracted 4339 candidate regions
from all film images in the test set, and approximately 96% of all pit defects were included.
Recall is a performance index that finds defective samples, and is used as an important
index to reduce the number of defective products during the manufacturing processes.
In terms of recall, it can be seen that the proposed candidate region extraction algorithm
RT-SPeeDet achieves an excellent performance. For the processing speed of each module, it
took 60 ms to extract positive regions and 30 ms to extract candidate regions from positive
regions. As a result, candidate region image patches can be extracted from high-resolution
input images at a processing speed of 0.1 s or less.

Table 2. Candidate region extraction performance of RT-SPeeDet.

Cropping
Positive Region

Speed

Extracting
Candidate

Region Speed
TP TN FP FN Precision Recall

0.06 s 0.03 s 65 0 4274 3 1.5% 95.6%

4.3. Comparison with Faster R-CNN and YOLO-v3

Table 3 shows the small pit defect detection test results for the RT-SPeeDet, Faster
R-CNN, and YOLO-v3 models. Here, SqueezeNet was used as the CNN architecture
of RT-SPeeDet, and the bold text shows the best performance for each of the evaluation
indexes, including those of Faster R-CNN and YOLO-v3. First, it can be seen that the two
models other than RT-SPeeDet were unable to detect any of the defects, and YOLO-v3 in
particular was unable to make even a single prediction. As related studies have found, the
major causes of the poor detection performance were the loss of object information owing
to a convolution in the forward propagation process of the model, as well as the size of
the anchor boxes, which were larger than the small pit defects. Although Faster R-CNN
predicted boundary boxes containing pit defects, the IoU value was extremely low owing
to the large anchor boxes, and all boundary boxes were classified as a misdetection. Based
on these results, it can be seen that the two models are unable to properly learn the pit
defects in high-resolution images without a separate optimization process.

Table 3. Performance comparison of various object detectors with small pit defects dataset.

Model TP TN FP FN Precision (%) Recall (%) Acc (%) Time (s)

RT-SPeeDet 54 4284 1 14 98.2 79.4 99.7 1.48
Faster R-CNN [6] 0 0 68 68 0 0 0 0.15

YOLO-v3 [9] 0 0 0 68 0 0 0 0.043
Faster

R-CNN_Cropped 42 0 13 26 76.3 61.8 51.9 14.59

YOLO-v3_Cropped 7 0 4 59 63.6 10.3 10 4.128

To evaluate the pit detection performance of each model in more detail, the posi-
tive regions of the film images were divided into 96 images with a pixel resolution of
512 × 512 pixels, and training and evaluation were conducted, as in a related study
described in Section 2. The results of these experiments are shown in the Faster R-
CNN_Cropped and YOLO-v3_Cropped rows of Table 4. Even though the resolution
of the input images was reduced, the YOLO-v3 model was unable to find more than 7 of
the pits with a recall rate of 10%. Furthermore, because 96 image patches were created for
each film image, it took approximately 4 s to search a single image. Faster R-CNN found
42 pits, although it took approximately 14 s to search each image.
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Table 4. Small pit defect detection test results according to input image resolution.

Model Resolution Precision (%) Recall (%) Acc (%) Time (s)

RT-SPeeDet-R 1638 × 1200
(n = 5)

70.4 73.5 98.1 2.6
RT-SPeeDet-M 97.6 60.3 99.0 0.55
RT-SPeeDet-S 98.0 73.5 99.7 1.73

RT-SPeeDet-R 2048 × 1500
(n = 4)

71.1 79.4 99.2 2.28
RT-SPeeDet-M 97.2 51.5 99.2 0.47
RT-SPeeDet-S 98.2 79.4 99.7 1.48

RT-SPeeDet-R 2730 × 2000
(n = 3)

47.1 83.8 99.3 6.22
RT-SPeeDet-M 80.0 35.3 99.5 1.07
RT-SPeeDet-S 96.5 80.9 99.3 3.99

By contrast, RT-SPeeDet detected pits with 98% precision and approximately 80%
recall. Although it achieved a processing time of 1.5 s, the fact that it could process high-
resolution images with a size of 8192 × 600 pixels without dividing the images shows
that it has an excellent processing speed and detection accuracy. Notably, the proposed
candidate region image patches were classified into pit defects and background regions
with 99.7% accuracy, indicating an excellent pit defect classification performance. However,
detection in manufacturing processes, which is the target of this paper, require a processing
speed of less than 1 s; therefore, further speed improvements are still needed. To this
end, an additional ablation study was conducted to compare the performance based on
the use of lightweight architectures. The results of the ablation study are described in the
next section.

5. Ablation Study

In this study, the RT-SPeeDet CNN binarization classifier was replaced with three dif-
ferent architectures, and a detailed analysis was conducted on two factors. In Tables 4 and 5,
the abbreviations R, M, and S refer to ResNet, MobileNet, and SqueezeNet, respectively.
First, this study compared changes in the processing performance according to the image
resolution, which was adjusted according to the value of the hyperparameter n. This study
then examined changes in performance according to the use of data augmentation techniques.

Table 5. Pit defect detection results according to the data augmentation techniques applied.

Model

Augmentation Baseline Auto Contrast Adjust Bright Random Rotation
Time

(s)Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

RT-SPeeDet-R 71.1 79.4 61.5
(−9.6)

82.4
(+3)

29.5
(−41.6)

82.4
(+3)

45.5
(−25.6)

82.4
(+3) 2.28

RT-SPeeDet-M 97.2 51.5 88.7
(−8.5)

80.9
(+29.4)

49.6
(−47.6)

82.4
(+30.9)

53.5
(−43.7)

55.9
(+4) 0.47

RT-SPeeDet-S 98.2 79.4 84.6
(−13.6)

80.9
(+1.5)

31.2
(−67)

80.9
(+1.5)

98.2
(0)

82.4
(+3) 1.48

5.1. Effect of Input Image Resolution

Table 4 shows the experiment results for each model according to the input image
resolution. The detection times for each resolution had a maximum of 4 s with extremely
large differences, which is due to changes in the number of candidate regions based on the
resolution. As the resolution increased, the noise in the background region also increased,
and the candidate regions increased by a factor of greater than 2, which increased the
processing time and misdetection rate. By contrast, when the resolution was too low, some
of the pit defect regions were lost, and the number of non-detections increased. In the
case of MobileNet, when n was 4, there was only a 1% difference in precision compared
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to SqueezeNet, whereas it achieved more than 3 times faster speed at 0.47 s. Since the
proposed two-stage detector RT-SPeeDet is compatible structure, converting classifier to
lightweight architecture makes it possible to achieve processing speeds of less than 1 s.
This shows the proposed model is efficient in terms of structure.

5.2. Effects of Data Augmentation Techniques

For data augmentation, this study used techniques such as brightness change, random
rotation, and automatic contrast adjustment. Table 5 shows the results of training and test-
ing using 792 additional augmented images for each of these three augmentation techniques.

The baseline shows the results for the original dataset without any data augmenta-
tion techniques applied. For the two techniques other than Auto Contrast, the precision
decreased significantly. When Adjust Bright was used, the contrast between the pit and
background regions decreased in some of the created data, and the number of misdetec-
tions greatly increased. In the case of Random Rotation, the misdetection rate increased
because RT-SPeeDet, which performs localization through image processing without model
training, is vulnerable to changes in location. However, when Auto Contrast was used,
the recall performance increased by up to 3% compared to the existing method. In the
case of RT-SPeeDet-M in particular, the precision slightly decreased, whereas the recall
improved by more than 29%, and the model showed the same recall as the RT-SPeeDet-S
model. Given that we aim at a pit defect detection speed of less than 1 s, the RT-SPeeDet-M
model achieved an excellent detection rate with half the processing speed by applying the
data augmentation techniques.

5.3. Limitations

The detection rate for weak-level pits which makes pit detection difficult can be im-
proved by synthesizing multiple feature maps; however, the proposed RT-SPeeDet still has
a difficulty of detecting weak-level pits that are too small or have almost no contrast with
the background regions, resulting in the undetected pits described in Figure 10a–e. The
reason of detection failure is due to the simple image resizing for lightweight image pro-
cessing, which is used inevitably to process high-resolution images in real time. Moreover,
most of the processing time of RT-SPeeDet is spent on the classification task. Among the
processing times in Table 4, the image processing-based candidate region extraction time is
only 0.1 s, and the rest of the time is spent on the classification process. Considering that the
image classification speed of RT-SPeeDet-M is 3 ms, a more fine-grained image processing
technique is required to reduce the number of input candidate regions to improve the
processing time.
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6. Conclusions and Future Work

This paper proposed a real-time IP–CNN-based pits detection method for automatic
inspection of small pit defects during the film manufacturing process employed in popular
electronic devices of digital display. Previous deep-learning-based general-purpose object
detection solutions that rely on end-to-end DNN models have some constraints of accuracy
and processing speed to detect the micro-fine defects, such as pits, due to repeated convo-
lution and down-sampling operations in the feature extraction process. On the contrary,
experimental results presented in this paper show that the proposed RT-SPeeDet could
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achieve both target processing speed and detection accuracy of small pits by exploiting a
two-stage structure based on IP–CNN. Furthermore, the presented method can be applied
to detect more diverse type of defects in the other manufacturing industry, beyond small
film pits targeted in this paper, by expanding it to multi-class defects detection or similar
anomaly detection problems with insufficient training data and weak features. Proposing a
more precise candidate region extracting algorithm to increase accuracy, as well as further
reducing the overall processing time, are possible applicants of future research directions.
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