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Abstract: The downstream sectors of the hydrocarbon industry in the Middle East are growing 
quickly. Due to their geographical locations, they need to transport products from manufacturing 
plants at one port to other hub ports for international shipping, forming complex closed-loop ship-
ping systems. Such domestic shipping systems are also typical logistics structures in many energy 
and heavy industries near coastal regions. The operations in such systems are frequently lagging 
due to uncertainties, such as weather and unexpected events, and the lack of effective management 
techniques. More reliable and efficient systems require a better vessel operations management pol-
icy than one based on a first-available-first-use policy and constant voyage speed. This study devel-
ops a detailed and realistic simulation model to evaluate the economic and environmental perfor-
mance of a closed-loop vessel shipping system, considering various uncertainties from weather and 
port operations. Furthermore, the optimization model has been incorporated into the simulation 
model to prescribe the optimal number of vessels and voyage speed to minimize the total costs. A 
new vessel dispatching policy, large-vessel-first-use, has been proposed and compared with the 
first-available-first-use policy using the developed model. Increased use of large vessels and slower 
voyage speeds significantly benefited the total costs and environmental effects. The optimal solu-
tion presented the potential to save 26.8% of the total cost and reduce greenhouse gas emissions up 
to 39% compared with the current operating condition. 
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1. Introduction 
The Middle East is well established as a crude oil and natural gas exporter and now 

is expanding investment in the refining and petrochemicals market. The International En-
ergy Agency has reported that refinery output from the Middle East is set to increase by 
60% by 2040 [1]. Therefore, it is anticipated that reliance on the supply chain’s ability to 
facilitate the transportation of petrochemical products will significantly increase. The par-
ticle-type petrochemical products, such as polyethylene and polypropylene, are usually 
packaged in a container and transported by a container ship, allowing transshipment at a 
port. 

The geographical features of the Middle East usually force manufacturers to 
transport hydrocarbon products from manufacturing sites near one port to a few hub 
ports for international shipping. Such domestic shipping systems generally form a closed-
loop shipping system with dedicated vessels and require infrastructure management. 
Manufacturers need integrated management to handle vessel operations and related in-
frastructure, entailing various issues and complexity. 
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In particular, bad weather is one of the most difficult challenges in maritime trans-
portation because it randomly hinders vessels from traveling at sea. At high wind speeds 
above a critical level, vessels cannot start to travel or may need to decrease speed if they 
were already at sea [2]. In addition, low visibility increases the risk of collision between 
vessels and obstacles. Some common causes of reduced visibility include fog, mist, smoke, 
heavy rains, and bright flashes from reflected sunlight [3]. A visibility distance of less than 
one nautical mile is hazardous as it reduces a vessel’s ability to sail safely, and a visibility 
distance of less than half a mile implies that vessels should not leave port [4]. 

Moreover, green shipping management has become a vital topic in the shipping in-
dustry. The shipping industry is responsible for a significant environmental footprint as 
it accounts for 2.7% of global CO2 emissions [5]. The International Maritime Organization 
(IMO) issued the Global Sulfur Cap 2020 regulation to limit sulfur oxide emissions for 
ships to below 0.5% compared to the previous limit of 3.5% [6]. The IMO also aims to 
reduce greenhouse gas (GHG) emissions by at least 50% by 2050 compared to 2008 [7]. 
Regulatory changes related to GHG emissions and waste discharge have generated more 
pressure for the shipping industry, requiring better environmental performance [8]. 

Many studies used simulation tools to address various issues and facilitate and im-
prove related cargo shipping systems in the oil and gas industry and other industries. 
Cheng and Duran (2004) addressed a global crude oil transportation model using simula-
tion [9]. They also formulated a design and control problem as a Markov decision process 
incorporating uncertainties such as travel time and crude demand. Using Bayesian simu-
lation techniques, Merrick et al. (2005) [10] studied the impact of ferry service expansions, 
considering uncertainties such as the arrival times of vessels. Franzese et al. (2006) [11] 
combined a template modeling with simulator-style development to yield a customized 
template for petrochemical supply chain operations, characterizing the downstream sup-
ply chain elements, including refineries and transportation modes. Almaz and Altiok 
(2012) [12] analyzed the risk of three different alternatives for improvement, such as in-
creasing vessel arrival, deepening the river, and using larger vessels. 

Further, Kulak et al. (2013) [13] analyzed terminal operations and detected system 
bottlenecks to highlight possible improvements. A simulation-based optimization ap-
proach by Ilati et al. (2014) [14] identified that tugboat deficiency contributed to increased 
waiting times for vessels, and low tugboat utilization had economic consequences. Carot-
enuto et al. (2014) [15] adopted a simulation-based approach to evaluate the primary sup-
ply process of maritime transport carrying crude oil. They highlighted that reducing in-
ventory variance impacted the system operations positively and provided economic ben-
efits by reducing costs. Recently, Rahimikelarijani et al. (2018) [16] used a simulation ap-
proach for congestion avoidance in waterways to operate with shorter waiting times and 
higher throughput by applying the Fisher pairwise comparison method. 

Mathematical programming is another primary approach used to address vessel 
shipping operations. Lababidi et al. (2004) [17] addressed uncertainties in operations and 
economic costs in the petrochemical sector using a two-stage stochastic optimization ap-
proach. Saharidis et al. (2009) [18] formulated a mixed-integer linear programming (MILP) 
model to determine the unloading and loading times of crude oil at a port and developed 
a few valid inequalities to solve the problem effectively. The two-stage stochastic model 
in [19] addressed the optimization of investment planning for the distribution of petro-
leum products under uncertainty, providing a specific case study in northern Brazil. 

Further, the optimization model in [20] addressed ship routing and scheduling prob-
lems in crude oil transportation with split deliveries. He et al. (2014) [21] formulated an 
MILP model for multi-echelon container supply-chain networks to minimize the total sup-
ply-chain service costs. Ghezavati et al. (2015) [22] designed a downstream segment for a 
supply chain system in the petroleum industry. Their developed optimization model cou-
pled with a simulation model prescribed the optimal locations of facilities and their ca-
pacities. 
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Ye et al. (2017) [23] formulated two MILP models for a scheduling problem to 
transport refined oil products using tramp ships. Aydin et al. (2017) [24] adopted a dy-
namic programming approach to address the speed optimization problem in liner ship-
ping. Recently, An et al. (2019, a) [25] presented a MILP model for integrated scheduling 
of vessel dispatching and port operations for the closed-loop shipping system in the con-
text of deterministic parameters with a constant travel speed. 

Few studies addressed the closed-loop container shipping system with uncertainty. 
To the best of our knowledge, only Bahamaish et al. (2019) [26] handled the closed-loop 
container shipping system with uncertainty using simulation. They considered the uncer-
tain round-trip time incurred by uncontrollable, unexpected events at destination ports. 
Using a fixed number of vessels, they examined the opportunity for cost savings by ad-
justing vessel operation policies. 

The number of vessels and their voyage speed are vital factors and may have a trade-
off for system performance. Considering additional existing uncertainties such as bad 
weather may generate more reliable and realistic estimates. Therefore, this study extends 
to the work of Bahamaish et al. (2019) by incorporating new decision factors for the num-
bers of each type of vessel and forward and backward travel speeds into the simulation 
model. We also consider additional uncertainties from high wind and low visibility to 
model the uncertain voyage interruption in the system. 

Hence, the first objective of this study is to develop a detailed and realistic simulation 
model for the closed-loop vessel dispatching problem to transport petrochemicals with 
several uncertainties caused by bad weather and uncontrollable events at destination 
ports. The second objective is to devise the best vessel operational policies to reduce op-
erating costs in an environmentally friendly manner, considering the different number of 
vessels and various travel speeds. 

The remainder of this paper is organized as follows: Section 2 demonstrates the prob-
lem statement and an approach to solving the current issues. Section 3 describes the de-
veloped simulation and optimization models and presents the newly devised vessel op-
erating policies. Section 4 provides the cases and data for numerical studies, and Section 
5 analyzes and discusses the results. Finally, Section 6 presents the conclusions. 

2. Problem Statement 
In the proposed scenario, the geographical location of a petrochemical plant in the 

UAE requires transporting products from a manufacturing plant near one port to two 
other ports for international shipping. The fundamental system structure is based on the 
system studied in [26]. Figure 1 depicts the schematic structure of the considered system. 
For domestic shipping, different types of vessels (i.e., small and large) transport products 
from the port at the manufacturing plant to other international ports and return to the 
origin port for another shipment. Such a back-and-forth voyage continues, forming a 
closed-loop system. This study incorporates uncertainties from bad weather and round-
trip time into the system. It also considers new decision factors, such as the number of 
each type of vessel and forward and backward travel speeds. 
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Figure 1. Schematic structure of the studied closed-loop vessel dispatching system. 

We have employed a few assumptions to construct the problem. First, we assume 
that the products are packed in a container and are ready to be loaded onto a ship. Second, 
the vessels berthed at the origin port are assumed to wait until they are fully loaded. Third, 
according to the field experts’ comments, vessels on the voyage are assumed to continue 
to travel to the destination port, regardless of weather conditions. Lastly, we assume that 
only one aggregated type of product is transported. 

A vessel’s trip begins from the waiting area in near-coastal water from the origin port, 
Port A. Because Port A has three docks, up to three vessels of any size can be berthed 
simultaneously and load products packaged in a container. The vessels in the waiting area 
stay there until any dock becomes available. A specific sea area adjacent to Port A is ded-
icated for use by arriving and departing tugging. For safety in the coastal waters of the 
origin port, both arriving and departing tugging is performed one by one in each 3 h time 
slot like a single runway at an airport. 

Once a vessel departs, it travels to Port B or Port C. Because the destination ports are 
managed by other organizations and used by many other companies, the manufacturing 
company has no control over the operations at the other ports. In contrast, it can control 
and manage all the operations at Port A and related infrastructure. Thus, unloading at 
Ports B and C is often delayed due to the uncertainties of terminal availability. Accord-
ingly, a round-trip time, which includes times for the forward and backward voyages and 
unloading at the destination port, is somewhat uncertain. After unloading the products 
and loading empty containers, the vessel returns to Port A. Then, one cycle of a vessel trip 
is completed. Because the manufactured products always need to be transported to the 
international ports (i.e., Ports B and C), the travel cycle is repeated as often as needed. 

The controllable operations at the origin port (e.g., tugging, loading and unloading, 
and waiting) follow the operation schedules determined by a manager and the inter-re-
turning pattern of vessels. Therefore, the uncertain returning pattern may impose diffi-
culties on scheduling vessel operations at the origin port. In particular, the voyage could 
be interrupted by uncertain weather conditions. In the considered system, vessels cannot 
depart from ports when a wind speed exceeds 35 km/h or a visibility distance is less than 
1 km. This study also considers such an uncertain voyage interruption along with the un-
certain delay at the destination ports. 

Currently, the manufacturing company rents several vessels for a specific period 
(three years) and operates vessels at the origin port based on the first-available-first-use 
(FAFU) policy. The vessels usually travel at 22.2 km/h (12 knots). Thus, it would be worth 
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examining the impact of differentiating the numbers of each type of vessel and forward 
and backward travel speeds on the system performance compared with the current oper-
ating conditions. Eventually, the optimal operating conditions should be prescribed to 
minimize the total costs considering the environmental effect. 

Note that the components and structure of the considered system are very similar to 
the round-trip aviation transportation system, which includes boarding and operations at 
the departing airport terminals, flying, landing and disembarking to the destination air-
port, and returning [27]. Such structural similarity implies that the closed-loop shipping 
system management is not trivial and may involve as many complicated and challenging 
managerial factors as the aviation transportation system. Another type of closed-loop 
transportation system can be found in biomass collection using trucks [28]. 

3. Methods 
This section describes the methods used in this study for simulation modeling, the 

optimization model embedded in simulation, and the environmental analysis. 

3.1. Simulation Modeling 
This study uses Simio simulation software to build a simulation model. The follow-

ing subsections provide detailed descriptions of the developed simulation model, valida-
tion procedure, output, and new scheduling policies tested by the developed model. 

3.1.1. Model Description 
We model the proposed problem as a continuous, discrete event simulation model. 

The product is modeled as a continuous entity, and all other events such as bad weather, 
vessel, and port operations are modeled as discrete events. A schematic diagram of our 
developed model is shown in Figure 2 to convey the developed logic clearly. The source, 
the “Production plant”, creates a metric ton of the products as a continuous entity accord-
ing to its production rate. The products created in the Production plant leave the system 
at the “Outflow sink”. Our model employs the transporter module in Simio to simulate 
vessel operations. Two transporter modules in Figure 2 represent vessels with different 
capacities (large and small). The model attempts to transport all produced products, mak-
ing the shipment demand proportional to the production volume. Hence, it operates as a 
push system. 

 
Figure 2. Schematic diagram of the simulation model for the closed-loop vessel shipping system. 
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The product first flows to (and is stored in) the “Yard tank,” which supplies the prod-
uct to three docks. The movement of the containerized product from the “Yard tank” to 
three docks is approximately modeled using flow paths. Empty vessels initially wait at 
the waiting area until a dock becomes available and move through the tugging path to 
any one of the available docks at the origin port (i.e., Port A). The tugging module only 
allows one vessel movement for either arrival or departure during a specified duration 
(i.e., three hours). The first berthed vessel is loaded first under the current FAFU vessel 
priority policy. If there is a sufficient amount of product in the Yard tank, several vessels 
can be loaded simultaneously. Once a vessel is fully loaded, it can be tugged if a tugging 
path is available. Otherwise, the vessel waits at the dock until a tugging path becomes 
available. 

After going through the tugging path, the vessel departs with the destination infor-
mation and moves to the destination port through the predefined route. Upon arrival at 
the destination, the vessel may wait some time to be berthed, following the specified dis-
tribution at the destination port. On berthing at the terminal of the destination port, the 
duration of the operation follows the average estimated time (due to a lack of actual data), 
which includes tie-up, unloading of products, and departure time. After unloading the 
products, the empty vessel returns to Port A and waits in the waiting area until there is 
an available dock at Port A. The unloaded entities at the two destination ports are stored 
in the “Virtual tank” to estimate the amounts of products transported easily and animate 
the transported volume. 

A few unique logic conditions, such as resource restriction, vessel selection, and rout-
ing requirements, have been incorporated in the developed model. To implement the re-
source restriction in the system, we employed two resource modules. The “Dock capacity” 
resource size is set to be three, representing the number of docks. It is decremented by one 
whenever a dock is seized (i.e., berthed) by a vessel and incremented whenever released. 
Therefore, according to the current available room in the Dock capacity, the model deter-
mines if another vessel waiting at the waiting area can be berthed or should wait longer. 
Similarly, the “Tug capacity” resource monitors and allows one vessel in the tugging paths 
at any time. Hence, only one arriving or departing vessel can move through the tugging 
paths at a time. 

The predefined vessel ranking in the model determines which vessel is tugged to a 
dock from the waiting area. The destination assignment for each fully loaded vessel is 
implemented in the routing logic at each dock by randomly assigning a specific destina-
tion port using the current cargo volume shipped to each destination: 85% of the products 
are transported to Port B and 15% to Port C. 

The vessel waiting times at the Port A waiting area are controllable by managers. 
Thus, these values are not entered but are determined by the simulation logic. However, 
the uncontrollable vessel waiting times at destination Ports B and C are input, following 
the specified distribution functions fitted to historical data. Furthermore, the voyage times 
between ports are set to be constants using average values from the assumption that the 
voyage time between ports is relatively stable. The model also considers the regularly 
scheduled maintenance time (e.g., six hours every three months) for vessels by using the 
reliability logic in the transporter module. 

The bad weather conditions for high wind and low visibility are modeled as discrete 
random events following the distribution according to the historical weather data. For 
example, a high-wind weather entity randomly arrives in the system according to the dis-
tribution for interarrivals. Then, it stays in the “High wind” condition during the period 
specified by the fitted distribution. While the high wind condition is in effect, the vessels 
are unable to leave port. However, vessels already underway will continue to move to the 
destination port regardless of the weather condition. Once the high wind condition is 
cleared, all voyage operations return to normal. The same logic is applied to a low visibil-
ity random event with the different distributions for interarrival and duration, using the 
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“Visibility” condition. The bad weather conditions are illustrated in the upper part of Fig-
ure 2. 

The developed model assesses several performance metrics of the system. It provides 
details on the amount of product produced and transported, counts the number of trips 
by each vessel, accounts for operating costs (including voyage and port dues), and esti-
mates GHG emissions. To estimate such performance metrics which are not provided by 
Simio, several variables are defined as user-defined statistics in the model. 

The generation of a simulation model that mimics a real-world situation requires a 
set of data. The used data have been collected from the internal documents of the studied 
company, the public weather database, and interviews with field experts. The following 
is a list of data used in the designing process of the simulation model: production volume; 
vessel operating times (i.e., voyage and tugging times); loading and unloading times at 
terminals; vessel capacity, and operating costs (i.e., fuel cost per round trip and port dues). 
Processes probability distributions are fitted to each of the following processes: vessel 
waiting at the destination ports; high-speed wind (interarrival time and duration), and 
low visibility (interarrival time and duration) (see the details in Section 4.2). 

3.1.2. Simulation Logic for Large-Vessel-First-Use Policy 
Our preliminary analysis estimated the unit fuel cost of a vessel for one round-trip 

voyage between the origin and destination ports using the average fuel cost per round 
trip divided by the vessel capacity. Due to the confidentiality of the information, we can 
only mention that a large vessel has a lower unit fuel cost than a small vessel, indicating 
that using a large vessel first would reduce the operating cost as proposed by [29]. On the 
other hand, a small vessel takes less loading and unloading time than a large vessel. Thus, 
using a small vessel first would more often improve the operational agility of the whole 
shipping system. Therefore, it would be worthwhile to investigate the impact of using a 
large vessel first on both operating costs and overall system performance. 

The proposed large-vessel-first-use (LVFU) policy requires selecting a large vessel 
first among all the available vessels in the waiting area. We can implement this relatively 
easily by assigning a higher ranking to large vessels than small vessels in the list of vessels. 
In addition, under the LVFU policy, when large and small vessels are loading products 
simultaneously at the origin port, large vessels should be filled first whenever possible. 
Because implementing such loading priority control is not trivial, we demonstrate our 
implementation logic as depicted in Figure 3. 
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Figure 3. Simulation logic for LVFU policy. 

We added six virtual docks to simulate the three physical docks with the LVFU pol-
icy. Three docks (S1, S2, and S3) are used only for small vessels, and the other three (L1, 
L2, and L3) are only used for large vessels. Because the “Dock capacity” resource restricts 
the number of vessels that can be berthed to be three, only up to three of six virtual docks 
can be used, making the terminal capacity the same as the three physical docks. Then, by 
controlling the flow priority on the paths connecting the Yard tank to each dock, three 
docks for large vessels will prioritize loading products over the other three docks for small 
vessels. The three paths connected to the same group of docks have equal priority. 

We explain the presented logic further using an example. Suppose that two large 
vessels are berthed at Docks L1 and L2, and one small vessel is berthed at Dock S1. Then, 
no other vessels can enter the terminal area, and all must wait at the waiting area. When 
the inventory in the Yard tank is sufficient, large and small vessels can be loaded simulta-
neously. If the inventory in the Yard tank is not sufficient, products will be supplied from 
the Yard tank to Dock L1 and L2 first until two large vessels are fully loaded. Then, prod-
ucts will be provided to Dock S1 to load the small vessel. If any one of three vessels fin-
ishes loading and departs via a tugging path, then another vessel (large vessel first) at the 
waiting area can be berthed and begin to load products. The maximum number of vessels 
berthed is three, and a large vessel will always have a higher priority for loading products. 
This pattern will be retained continuously throughout the simulation run. 

3.1.3. Model Validation 
To ensure that the model reflects an actual process, we employ a few procedures to 

validate its correctness. First, we have developed several other small test models, each of 
which includes only one specific logic. These test models have been examined by running 
them step-by-step. 

After checking the correctness of the developed logic, the entire model was tested 
further by simplifying the input data. For example, by using the infinite initial inventory 
at the origin port, the waiting time of a vessel for products was eliminated. Then, after 
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running the model with such simplified input, several performance measures were exam-
ined and compared with the manually calculated estimates. These performance measures 
include the total amounts of product transported, the total number of trips by each vessel, 
and the average cycle time for trips. 

For example, in the real operating data, the average round-trip time of each type of 
vessel ranges 52–57 h for a small vessel and 57–62 h for a large vessel. The round-trip times 
of the tested simulation model were 57–58 h and 62–63 h for small and large vessels, re-
spectively. Even though there is a slight difference, such estimates may be considered suf-
ficiently close, considering variability from weather uncertainty. The developed model is 
also expected to transport most of the produced products, as happens in the real-port sit-
uation. Therefore, we conducted several experiments with different production rates to 
confirm that the simulation model transported most products with the appropriate num-
ber of trips by each vessel as expected. 

3.2. Optimization of the Number of Vessels and Travel Speed 
This study seeks to find the optimum number of large and small vessels and deter-

mine the most economical travel speed to reduce the total costs. The developed optimiza-
tion model is incorporated into the simulation model to prescribe such decisions while 
satisfying all the required system constraints. Table 1 defines all notations used in the op-
timization model. 

Table 1. Notations for the optimization model. 

Indices 
i = L, S (L: large vessel, S: small vessel) 
k = B, F (B: backward, F: forward) 

Parameters 𝐶𝑃 : port dues per trip of type i vessel 𝐶𝑅 : rental cost per year of type i vessel 𝐶𝑉 : voyage cost per one-way trip of type i vessel at speed S0 𝐿𝑇: minimum target of throughput (transported amount per year) 𝑀𝑁 : maximum number of type i vessel 𝑆0: current speed (22.2 km/h (12 knots)) 𝑆𝐹 : minimum value of speed factor (0.7) 𝑆𝐹 : maximum value of speed factor (1.3) 𝑉𝑅: voyage cost change rate per voyage speed (4.3% per km/h (8% per knot)) 

Decision variables 𝑠 : speed factor, integer*0.1 𝑥 : the number of type i vessels, integer 

Outcomes 𝑡 : the number of trips per year by type i vessel 𝑦: throughput (transported amount per year) 
z: total cost per year 

By using the notations defined in Table 1, we formulate an optimization model as 
follows. 

Minimize z = 𝐶𝑅 𝑥 + 𝐶𝑅 𝑥 + 𝐶𝑃 𝑡 + 𝐶𝑃 𝑡 + 𝐶𝑉 2 + 𝑆0 ∗ 𝑉𝑅 ∗ 𝑠 − 1 +𝑆0 ∗ 𝑉𝑅 ∗ 𝑠 − 1 𝑡 + {𝐶𝑉 2 + 𝑆0 ∗ 𝑉𝑅 ∗ 𝑠 − 1 + 𝑆0 ∗ 𝑉𝑅 ∗ 𝑠 − 1 }𝑡     
(1)

Subject to: 
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𝑦 ≥ 𝐿𝑇 (2)0 ≤ 𝑥 ≤ 𝑀𝑁   (3)0 ≤ 𝑥 ≤ 𝑀𝑁   (4)𝑆𝐹 ≤ 𝑠 ≤ 𝑆𝐹   (5)𝑆𝐹 ≤ 𝑠 ≤ 𝑆𝐹   (6)𝑥 , 𝑥 : integer (7)𝑠 , 𝑠 : 0.1 * integer (8)

The objective function (1) is to minimize the sum of three types of costs: rental costs, 
port dues, and the operating costs of large and small vessels. The first two terms are the 
rental costs of large and small vessels. The third and fourth terms are port dues of large 
and small vessels. The last two terms are the voyage costs, which are the sum of the for-
ward and backward voyage costs. The voyage cost is a function of the number of trips and 
speed factors. A speed factor (𝑠  and 𝑠 ) of 1.0 means the speed at S0. 

Constraint (2) restricts the amount of product transported to be at least the target 
volume. Constraints (3) and (4) impose the possible range of the number of large and small 
vessels, respectively. Constraint (5) specifies the range of the forward speed factor, and 
Constraint (6) specifies the range of the backward speed factor. Constraints (7) and (8) 
invoke integer restrictions on decision variables. Note that the decision variables 𝑠  and 𝑠  have discrete values with a step size of 0.1. 

3.3. Environmental Impact 
The proposed operating policy must care about GHG emissions while being cost-

efficient. Therefore, carbon dioxide (CO2) and sulfur dioxide (SO2) emissions are estimated 
and compared with the current system emissions. The emission factors of CO2 and SO2 for 
marine diesel oil and the method of calculating the total emissions in this study are 
adopted from [30]. Their method requires multiplying the fuel consumption of a vessel by 
the emission factors of CO2 and SO2. Detailed calculations using the data are provided in 
Section 5.5. Estimating the environmental effects according to the fuel consumption is a 
typical technique in transportation systems, as shown in [31]. 

4. Numerical Study 
This section provides numerical studies to assess the performance of the proposed 

operating policies. The study investigates the optimal number of each type of vessel and 
forward and backward voyage speeds using the developed simulation model. 

4.1. Design of Experiments 
We designed experiments under two different vessel priority policies, FAFU and 

LVFU, as shown in Table 2. Columns #LV and #SV mean the number of large and small 
vessels used, respectively. Case C0 represents the current operating condition, in which 
two large and two small vessels are utilized at the constant voyage speed of 22.2 km/h (12 
knots). The first four cases (C0, C1, C2, and C3) used the FAFU policy for vessel priority, 
and the other four cases (C4, C5, C6, and C7) used the LVFU policy. The simulation model 
ran for one year with 20 replications. The OptQuest simulation optimization engine was 
used for the optimization model with the following parameters: default replications: 10, 
max replications: 30, max scenarios: 3000, confidence level: 0.95, and relative error of the 
confidence level: 0.05.   
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Table 2. Design of experiment. 

Case #LV #SV Vessel Priority 
Voyage Speed Factor 

FS BS 
C0 2 2 FAFU 1 1 
C1 2 2 FAFU 0.7~1.0 (*) 0.7~1.0 (*) 
C2 0~3 (*) 0~4 (*) FAFU 1 1 
C3 0~3 (*) 0~4 (*) FAFU 0.7~1.6 (*) 0.7~1.6 (*) 
C4 2 2 LVFU 1 1 
C5 2 2 LVFU 0.7~1.0 (*) 0.7~1.0 (*) 
C6 0~3 (*) 0~4 (*) LVFU 1 1 
C7 0~3 (*) 0~4 (*) LVFU 0.7~1.6 (*) 0.7~1.6 (*) 

(*): decision factor. 

Case C1 uses the same number of vessels as case C0. It investigates the impact of the 
lower voyage speed determined by the optimization model by examining the forward 
speed (FS) and backward speed (BS) factors with a decrement of 0.1 from 1.0 to 0.7. Speed 
factor 0.7 represents 70% (15.6 km/h) of the current speed (22.2 km/h), and speed factor 
1.6 represents 160% (35.6 km/h) of the current speed. In case C2, the optimization model 
determines the number of each type of vessel while the speed factors remain constant at 
the current operating speed. Our preliminary tests to transport most of the produced 
products determined the ranges for the number of each type of vessel (i.e., 0~3 for #LV 
and 0~4 for #SV). 

In particular there may be a trade-off between the number of vessels and voyage 
speed, such that a higher voyage speed may need a smaller number of vessels and vice 
versa. Thus, we designed case C3 to find the optimal number of each type of vessel and 
optimal speed factors simultaneously, considering the FS and BS factors from 0.7 to 1.6. 
Cases C4–C7 have the same structure as cases C0–C3 except that they follow the vessel 
priority policy of LVFU. 

4.2. Data 
Tables 3 and 4 summarize the data collected from the practical working conditions 

used in the simulation model. However, due to the confidentiality of the information, the 
cost values in Table 4 are replaced by symbols. The production rate in the model was set 
at 8,901 metric tons per day by taking the average value of the real production rate. In 
particular, the waiting times at Ports B and C are estimated as the gamma distribution, 
which is fitted to the limited historical data. 

Table 3. Time duration for operations. 

Location Operations 
Time (h) 

Small Vessel Large Vessel 

A 
Tugging for arrival 3 3 

Loading 12 16 
Tugging for departure 3 3 

Sea 
Voyage A<->B 18 (= 9 × 2) 18 (= 9 × 2) 
Voyage A<->C 22 (= 11 × 2) 22 (= 11 × 2) 

B, C 
Waiting at B, C 

2 + Gamma(3.86, 1.43) 
(shape: 3.86, scale: 1.43) 

2 + Gamma(3.86, 1.43) 
(shape: 3.86, scale: 1.43) 

Unloading at B, C 14 16 
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Table 4. Vessel information. 

Type Small Vessel Large Vessel 
Number 2 2 

Capacity in the specification (TEU) 650 950 
Current utilized max capacity (t) 7444 10,880 

Average fuel cost per round trip (USD) a b 
Port dues (USD) c d 

According to the field experts who manage the system studied in this research, wind 
speeds greater than 35 km per hour and low visibility of less than 1 km are the stopping 
conditions for vessel operations. We collected the wind-speed and visibility–distance 
hourly data from 2014 to 2019 from the world weather online database (World Weather 
Online) [32]. From the collected historical data, we extracted the interarrival time and du-
ration of high-speed wind (>35 km/h) and low visibility (<1 km). Table 5 shows the distri-
butions fitted to the extracted data. 

Table 5. High-speed wind and low visibility data and fitted distribution. 

  # Data Points Mean Std dev. Distribution Expression Square Error p-Value 

High-speed 
Wind 

Interarrival 
time (day) 

62 30.1 52.2 
0.999 + Weibull (12, 0.38)  

(Scale: 12, Shape: 0.38) 
0.0018 <0.005 

Duration (hour) 63 2.76 2.5 
0.5 + 15*Beta (0.544, 3.07)  
(alpha: 0.544, beta: 3.07) 

0.0071 0.238 

Low Visibility 

Interarrival 
time (day) 

43 34.9 59.8 
0.999 + Weibull (5.76, 0.259)  

(Scale: 5.76, Shape: 0.259) 
0.0016 <0.005 

Duration (hour) 44 5.5 2.93 
0.5 + 12 * Beta (1.4, 1.9)  
(alpha: 1.4, beta: 1.9) 

0.0293 0.213 

The best-fitted distribution for the interarrival times of both high-speed wind and 
low visibility is the Weibull distribution. The beta distribution is weakly fitted to the du-
ration data of high-speed wind and low visibility. We employed the beta distribution for 
those rather than using an experimental distribution to reduce simulation runtime. 

This study also estimates CO2 and SO2 emissions as a performance metric of environ-
mental effect. The total amounts of CO2 and SO2 emissions are calculated by multiplying 
the emission factors of CO2 or SO2 by the fuel consumption. According to Wei and Zhao 
(2010), the emission factors of CO2 and SO2 are 3,179 g/kg marine diesel oil and 7 g/kg 
marine diesel oil, respectively. 

5. Results and Discussions 
This section presents and analyzes the results of our numerical studies from five dif-

ferent analytical perspectives. 

5.1. Impact of Lowering Voyage Speed with the Current Number of Vessels 
Table 6 provides the results of lowering voyage speed with the current number of 

vessels (two large and two small vessels) on the system performance. The column “Prod-
uct volume” gives the produced amounts and transported amounts of products in metric 
kilo-tonnes (KT). The column “Costs” provides total cost and cost breakdown, including 
rental cost, port dues, and voyage cost. In case C1, the forward and backward speed fac-
tors are decision factors determined by the optimization model. Table 6 also includes the 
results of some examined cases for the voyage speed factors to identify a meaningful pat-
tern.   
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Table 6. Impact of lowering voyage speed with the current number of vessels. 

Case no 
Voyage Speed Factor Product Volume (KT) Costs (USD/Year) 

FS BS Produced Transported Total Cost Rental Cost Port Dues Voyage Cost 
C0 - 1 1 3274.83 3259.32 10,020,600 4,258,330 1,889,720 3,872,540 

C1 

1 1 0.9 3274.83 3260.30 9,836,700 4,258,330 1,890,240 3,688,120 
2 0.9 1 3274.83 3258.92 9,839,440 4,258,330 1,891,120 3,689,990 
3 1 0.8 3274.83 3258.12 9,639,210 4,258,330 1,886,680 3,494,200 
4 0.8 1 3274.83 3259.67 9,643,280 4,258,330 1,887,840 3,497,110 
5 1 0.7 3274.83 3260.58 9,450,080 4,258,330 1,885,480 3,306,270 
6 0.7 1 3274.83 3260.70 9,445,440 4,258,330 1,883,960 3,303,150 
7 0.9 0.9 3274.83 3257.89 9,648,830 4,258,330 1,889,720 3,500,780 
8 0.8 0.8 3274.83 3257.95 9,261,100 4,258,330 1,884,220 3,118,550 
9 0.7 0.7 3274.83 3258.18 8,894,980 4,258,330 1,886,080 2,750,570 

Within the considered range of the speeds, all cases could transport more than the 
target volume (3248 KT), which is 99% of the produced product. As the forward and back-
ward speeds decrease, the total costs decrease proportionally due to lower fuel consump-
tion. The lowest speed with the FS factor of 0.7 and BS factor of 0.7 is the most economical, 
saving 11% (1,125,620 USD per year) compared with the total cost of case C0. However, 
there is no meaningful difference between lowering forward and backward speeds: the 
cost reduction from reducing 0.1 of the FS factor is similar to that obtained by lowering 
the BS factor by the same amount. 

5.2. Impact of the Number of Vessels at the Current Voyage Speed under FAFU 
Figure 4 illustrates the results of case C2, in which the optimization model determines 

the number of each type of vessel at the current travel speed. #LV in Figure 4 represents 
the number of large vessels, and #SV is that of small vessels. Figure 4a shows the system 
throughput, which is equivalent to the transported volume per year. A few cases could 
not meet the target throughput (3248 KT). Either three large vessels or small vessels could 
transport the target product volume. As one fewer large vessel is used, one more small 
vessel is needed to meet the throughput target. 

 
(a) 
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Figure 4. Impact of the number of vessels at the current voyage speed under FAFU (case C2): (a) transported volume; (b) 
cost breakdown. 

In addition, we analyze the cost breakdown structure of case C2 as shown in Figure 
4b only for the feasible cases that meet the target throughput. The left y-axis is the total 
cost, and the right y-axis is the ratio of the total cost of each case of large and small vessels 
to the highest total cost when (#LV, #SV) = (3, 4). 

In most cases, the port dues ratios are similar and vary slightly from 0.13 to 0.16. Port 
dues decrease slightly as the number of large vessels increases. Total dues decrease be-
cause a large vessel needs fewer trips than a small vessel to transport the same amount of 
products. Similarly, the voyage cost decreases slightly as the number of large vessels in-
creases because a large vessel has a lower unit voyage cost than a small vessel. 

However, the rental cost of a large vessel is larger than that of a small vessel. Thus, 
as the number of large vessels increases, the rental cost increases. There is a trade-off be-
tween the operating cost (voyage cost and port dues) and rental cost according to the 
number of large and small vessels. The smallest total cost occurs when only three large 
vessels and no small vessels are used, that is, (#LV, #SV) = (3, 0). From the result, we infer 
a large vessel’s economic benefit from saving voyage cost and port dues may be better 
than the disadvantage from the increasing rental cost under the considered cost structure. 

5.3. Impact of the Number of Vessels and Voyage Speeds under FAFU 
In case C3, the number of each type of vessel and forward and backward voyage 

speed factors are decision variables. Even though the optimization model gives the opti-
mal solutions, we investigate the entire range of solution space to obtain insight into the 
decision factors. 

For the given numbers of each type of vessel, the voyage speed factors may or may 
not affect the throughput. Such a pattern is illustrated in Figure 5a. It shows the minimum, 
maximum, and average amounts of the transported products. When the number of vessels 
is not sufficient: (#LV,#SV) = (0,1), (0,2), (1,0), (1,1), even higher travel speeds cannot 
transport the target product volume. At the same time, when the number of vessels is 
sufficient, the travel speed does not affect the throughput. However, when the number of 
vessels is tight: (#LV,#SV) = (0,3), (2,0), the target transportation volume can be achieved 
only at high voyage speeds. 



Appl. Sci. 2021, 11, 9626 15 of 19 
 

 
(a) 

 
(b) 

Figure 5. Impact of the number of vessels and voyage speeds under FAFU: (a) transported volume; (b) cost breakdown at 
the optimal travel speeds. 

Figure 5b shows the cost breakdown at the optimal travel speed for the number of 
each type of vessel. The smallest total cost is acquired when (#LV, #SV) = (3,0), which is 
the same as case C2. The variation in the port dues is also relatively minor, such as in case 
C2 (see Figure 4b). However, when (#LV,#SV) = (0,3) and (2,0), the portions of the voyage 
cost are 0.32 and 0.37, respectively, which are higher than that of other numbers of vessels 
(0.20 ~ 0.27). This outcome is because only high speeds could meet the target throughput 
when (#LV,#SV) = (0,3) and (2,0), incurring higher fuel consumption than other, lower-
speed cases. 

5.4. Best Solutions and Impact of LVFU 
Finally, Table 7 summarizes the best solutions for each case. In the columns #Vessel 

and Speed factor, the underscored values mean that they are decision factors and have 
been prescribed as the best solutions by the optimization model. Several subcolumns un-
der “Costs” provide detailed information for the economic performance metrics. The total 
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cost is the sum of the rental and operating (voyage cost and port due) costs. Column Sav-
ing gives the cost savings from the difference between the total costs of case C0 and the 
case in each row. Column Saving (%) is calculated by the cost-saving of each case divided 
by the total cost of case C0. The undercored values in #Vessel and Speed Factor mean that 
they are prescribed by the optimization model. 

Table 7. Comparison of vessel selection rule from the best results of all cases. 

Case Vessel 
Priority 

#Vessel Speed Factor Product Volume 
(KT/Year) Costs (USD/Year) 

LV SV FS BS Produced Transported Total Saving Saving (%) * Rental Operating 
C0 FAFU 2 2 1 1 3275.2 3262 10,034,800 - - 4,258,330 5,776,450 
C4 LVFU 2 2 1 1 3275.2 3263 9,909,600 125,200 1.2% 4,258,330 5,651,270 
C1 FAFU 2 2 0.7 0.7 3275.2 3261 8,892,090 1,142,710 11.4% 4,258,330 4,633,750 
C5 LVFU 2 2 0.7 0.7 3275.2 3265 8,866,310 1,168,490 11.6% 4,258,330 4,607,980 
C2 FAFU 3 0 1 1 3275.2 3264 8,306,520 1,728,280 17.2% 3,285,000 5,021,520 
C6 LVFU 3 0 1 1 3275.2 3264 8,306,520 1,728,280 17.2% 3,285,000 5,021,520 
C3 FAFU 3 0 0.7 0.7 3275.2 3264 7,342,390 2,692,410 26.8% 3,285,000 4,057,390 
C7 LVFU 3 0 0.7 0.7 3275.2 3264 7,342,390 2,692,410 26.8% 3,285,000 4,057,390 

*: Saving (%) = 100 × (Total cost of C0—Total cost of the case)/Total cost of C0. 

In case C4, we applied the LVFU policy using the current number of vessels and 
speed. The LVFU policy shows potential for a cost saving of 1.2% (125,200 per year) com-
pared to case C0. All such cost saving is from the savings in the operating costs. In case 
C5, which also utilizes two large and two small vessels, the optimization model prescribed 
the same speed factors as case C1 (0.7 for the FS factor and 0.7 for the BS factor). Case C5 
could show a slight cost saving of 0.2% compared to case C1. The cost savings by applying 
the LVFU policy are 1.2% from case C0 to C4 at the current voyage speed and 0.2% from 
case C1 to C5 at the lowest voyage speed. We infer that lowering the voyage speed may 
provide less opportunity to select a large vessel from the idle vessels in the waiting area 
by making most vessels travel slowly somewhere in the system. 

However, the optimal number of vessels in case C6 is the same as that in case C2. 
Moreover, case C7 has the same optimal number of vessels and speed factors as case C3. 
The LVFU policy has not affected any results of cases C6 and C7 because the optimal so-
lutions for cases C6 and C7 use three large vessels only, making no difference between 
FAFU and LVFU. 

Overall, cases C3 and C7 generated the same best results among all cases tested, sav-
ing 26.8% (2,692,410 USD/year) of total costs compared with case C0. The number of ves-
sels and speed factors significantly affected the total costs. The LVFU policy has a limited 
effect when the number of large and small vessels is mixed and the voyage speed is not 
slow. However, the LVFU policy is still a recommendable operating option because it can 
be adopted easily for practical operations. 

5.5. Environmental Effect 
Table 8 presents the detailed performance metrics of all cases about the number of 

trips by each type of vessel, fuel consumption in metric tons (T), GHG emissions in metric 
tons (T), and % reduction compared with case C0. The GHG emissions are directly con-
verted from the marine diesel oil consumption using the conversion factors described in 
Section 4.2. Lowering the voyage speed reduces the fuel consumption significantly up to 
around 30% (see cases C1 and C5). Moreover, utilizing large vessels more also shows good 
environmental benefits by reducing GHG emissions by 14% (see cases C2 and C6). Finally, 
our proposed optimal solutions reduce the GHG emissions up to 39% compared with case 
C0 (see cases C3 and C7).   
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Table 8. Fuel consumption and GHG emissions. 

Case Vessel  
Priority 

#Vessel Speed Factor #Trips Marine Diesel Oil Consumption (T) Emissions (T) Reduction  
(%) * LV SV FS BS LV SV LV SV Total CO2 SO2 

C0 FAFU 2 2 1 1 168 190 2589  2741  5632  17,903  39  - 
C4 LVFU 2 2 1 1 190 159 2924  2285  5503  17,494  39  2% 
C1 FAFU 2 2 0.7 0.7 173 183 1892  1882  3988  12,676  28  29% 
C5 LVFU 2 2 0.7 0.7 180 174 1971  1781  3963  12,600  28  30% 
C2 FAFU 3 0 1 1 299 - 4596  - 4856  15,437  34  14% 
C6 LVFU 3 0 1 1 299 - 4596  - 4856  15,437  34  14% 
C3 FAFU 3 0 0.7 0.7 299 - 3272  - 3457  10,991  24  39% 
C7 LVFU 3 0 0.7 0.7 299 - 3272  - 3457  10,991  24  39% 

*: Reduction (%) = (Fuel consumption of C0—Fuel consumption of the case)/Fuel consumption of C0. 

In particular, by applying the LVFU policy in case C4, GHG emissions could be re-
duced 2% compared with case C0. Even though the large vessel’s fuel consumption per 
trip is greater than a small vessel’s, the total number of trips could be reduced by using 
large vessels more often under the LVFU policy. Accordingly, the total fuel consumption 
could be decreased. However, as the voyage speeds are lowered in cases C1 and C5, the 
impact of the LVFU policy on GHG emissions becomes smaller. It may be related to the 
inference discussed in Section 5.4 that slowing voyage speeds may let most vessels travel 
slowly somewhere, reduce the vessels idling in the waiting area, and lower the chance of 
selecting a large vessel from those. From cases C6 and C7, we do not see the impact of the 
LVFU policy as only large vessels are utilized. 

5.6. Larger Production Volumes for Future Scenarios 
The studied company has a plan to increase its production capacity in a few years. 

Thus, it would be valuable to examine larger production volume cases. Table 9 presents 
three additional test cases and results for double (C8), triple (C9), and quadruple (C10) 
production volumes using the LVFU policy. The prescribed number of vessels and speed 
factors in cases C8 and C9 show a similar pattern to the current production volume: (1) 
only large vessels are utilized, and (2) the lowest speed is best. 

Table 9. Large production volume cases. 

Case #LV #SV 
Vessel  
Priority 

Voyage Speed Factor Product Volume (KT) #Vessel Speed Factor 
FS BS Produced Transported LV SV FS BS 

C8 0~6 0~8 LVFU 0.7~1.6 0.7~1.6 6603 6580 5 0 0.7 0.7 
C9 0~9 0~12 LVFU 0.7~1.6 0.7~1.6 9904 9860 8 0 0.7 0.7 
C10 0~12 0~16 LVFU 0.7~1.6 0.7~1.6 12942 - - - - - 

However, in case C10, the model could not find any solution to transport more than 
99% of the produced products to the destinations even with a sufficient number of vessels. 
The current capacity of the plant-side port (i.e., three docks) is not sufficient to handle 
such a large transportation volume, making many vessels wait to enter the port. Thus, to 
quadruple the production volume, the company should invest not only in its manufactur-
ing facilities and vessels but also in the port infrastructure to accommodate more vessels. 

6. Conclusions 
The present study has successfully developed a simulation model for a closed-loop 

vessel shipping system considering various uncertainties from weather and uncontrolla-
ble delays at destination ports. Furthermore, the developed optimization model embed-
ded in the simulation model prescribes the optimal number of each type of vessel and 
forward and backward voyage speeds to minimize the total costs. To the best of our 
knowledge, this is the first simulation and optimization study to address the proposed 
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closed-loop vessel dispatching problem. Further, we have devised a new vessel-use pri-
ority policy (LVFU) and compared it with the current policy (FAFU). 

The numerical studies showed that the optimal solution prescribed uses only three 
large vessels at the lowest voyage speed to transport the target product volume. It could 
save 26.8% (2,692,410 USD/year) of the total cost and reduce GHG emissions up to 39% 
compared with the current operating condition. Lowering voyage speed showed a signif-
icant impact on system performance. Additionally, a large vessel has good economic ben-
efits from saving the voyage cost and port dues, which are greater than the disadvantage 
of the increased rental fee. Furthermore, even though the LVFU policy has a moderate 
effect, it would still be a recommendable operating option to be used with the current 
number of vessels and travel speed. The larger volume test results indicate that quadruple 
production volume may require additional investment on the plant-side port to accom-
modate more vessels. 

The present study provides a useful insight and decision-support tool for industrial 
managers to determine the most economical and environmentally friendly operating con-
ditions for a closed-loop vessel shipping system. The structure of the considered logistics 
system from the manufacturing facility at a coastal area to a hub port for long-distance 
transportation can be found easily in many energy and heavy industries around the 
world. Thus, the presented modeling concept and approach may be applicable to many 
business cases in other countries. The fruitful contribution of this study could be strength-
ened by further work that may integrate the production plant maintenance schedule and 
dynamic vessel speed optimization in every trip. 
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