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Abstract: In outcome-based academic programs, Program Education Objects (PEOs) are the key
pillars on which program components are built. They are articulated linguistically as broad statements
of graduates’ professional and career accomplishments within a few years of graduation. Moreover,
PEOs are mapped into a set of skills and attributes known as Program Learning Outcomes (PLOs). It
goes without saying that a profound understanding of the PEOs is a key factor in the success of an
academic program. For this sake, this paper proposes a data analytics-based approach to examine the
correlations among PEOs. More specifically, it applies a data similarity-based approach to analyze
the correlations among the PEOs of engineering programs. To this end, a dataset of PEOs–PLOs
mapping of a set of engineering programs has been extracted from their self-study reports. The
collected dataset has undergone preprocessing steps to transform it into a suitable representation.
This involves data cleaning, data annotation using a developed set of PEOs labels, and removal of
data instances with multiple PEO labels. Each PEO is then represented as a vector space model
whose dimensions are the PLOs, and their values are the relative frequencies of PLOs computed
from all data instances of that PEO. After that, three data similarity measures, namely Euclidean
distance, cosine measure, and Manhattan distance, are applied to measure the similarity between
PEOs vector space models. The resultant similarity matrices are then analyzed at the level of a
specific measure, an agreement between measures, and average similarity across all measures. The
analysis results contribute to a better understanding of the PEOs correlations and provide very
useful actionable insights for empowering decision making toward systemization and optimization
of academic programs processes.

Keywords: data analytics; learning analytics; data similarity; program educational objectives;
outcome-based education

1. Introduction

Over the past century, the ability of education systems to equip graduates with the
necessary professional and career skills needed for the 21st century has been questioned [1,2].
Consequently, the need for an effective education system that focuses on the potential
and actual abilities of the graduate has become more crucial. In response to this need,
several reformation attempts of the traditional education systems have been made since
1950, among which Outcome-Based Education (OBE) is the most prominent. According to
Spady [3], the prime mover of the OBE, developing an OBE system requires identifying
a clear set of learning outcomes, around which all the system activities are centered, and
establishing the conditions and opportunities within the system that enable and encourage
all students to achieve those essential outcomes. Currently, the OBE approach is becoming
prevalent in higher education academic programs. It is realized through identifying
three types of outcomes: PEOs, PLOs, and Course Outcomes (COs) [4]. Although PEOs
describe, in broad statements, career and professional accomplishments that the program is
preparing its graduates to achieve, PLOs describe, in narrower statements, the knowledge,
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skills, and behaviors those students are expected to attain by the time of graduation [5].
Similarly, COs are statements that describe the knowledge, skills, and behaviors students
are expected to attain as a result of taking a course. Figure 1 depicts the PEOs, PLOs, COs,
and their correlations [6].
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Conceptually speaking, PEOs collectively represent a broad vision of the program that
inform all its activities [7]. They serve as an important nexus point to assess the program;
the point at which curriculum, faculty, facilities, and other programmatic components
are viewed within a large context of a program’s stockholder’s needs and the mission
of the institution [8]. Broadly speaking, PEOs play a key role in a program’s continuous
improvement and provide a mean for the academicians to define what continuous improve-
ment means for the program [9]. Practically speaking, PEOs are developed by program
constituencies and expressed linguistically as short statements that describe graduate at-
tributes and accomplishments within a few years of graduation. Typically, these attributes
fall within the following categories [9]: technical skills, professional, ethical, communi-
cation aspects, management and leadership, lifelong learning and continuous education,
advanced and graduate studies pursuing, etc. In addition, PEOs must be mapped into a
predefined set of PLOs, which are developed by educational authorities or accreditation
agencies [6,10]. The PEOs must be assessed periodically to continuously improve the
program [7,11].

Given the hierarchical structure of academic program and the key role of the PEOs in
this structure, it is hypothesized that a profound understanding of PEOs at the conceptual
as well as the practical level is essential for a successful design and implementation of its
processes [12]. A particular aspect in program structure that merits a thorough investigation
is the internal structure of PEOs in terms of the correlation among them. It is expected
that the outcome of this investigation would contribute to a better understanding of
PEOs correlations, and ultimately lead to more informed systemization and optimization
of different processes of academic programs. Unfortunately, as ascribed in [7,9], the
literature paid very little attention to the study PEOs. Even accreditation bodies, such as
the Accreditation Board for Engineering and Technology (ABET), provide little in the way
of concrete guidelines for what should be included in the PEO, nor for the processes of
generating and assessing them.

Recently, data analytics approaches, particularly learning analytics (LA), are being used
actively for a wide range of purposes in tertiary education, to enhance the learning process,
evaluate efficiency, improve feedback, enrich the learning experience and support decision
making [13]. In this paper, the power of learning analytics is leveraged to deepen the
understanding of PEOs by analyzing the correlation among them. More specifically, this paper
applies data similarity methods to analyze the correlations among the PEOs of engineering
programs. To do so, a dataset of PEOs of ABET accredited engineering programs has been
collected. The PEOs, which are mapped into a set of PLOs developed by ABET, are processed,
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and represented as vector space models, in terms of ABET PLOs, to measure the correlation
among them. Besides the actionable insights that can be obtained from this investigation,
computing similarity among PEOs is essential practice for developing practical PEOs-based
applications, such as clustering, recommendation and visualization.

The remaining sections of this paper review the relevant works, describe the general
methodology of computing data similarity, describe the specific methodology of computing
similarities among PEOs, present and discuss the obtained results, and finally conclude
this paper.

2. Related Works

The vast amount of data available in digital repositories has provoked the emergence
of data mining, as analytical tools can be used to extract meaningful knowledge from such
data. Data mining has already been successfully applied to many domains, including
medicine, business, robotics and computer vision, to name just a few [14,15]. Likewise,
the constant upsurge of data in educational institutions has given rise to the emergence of
educational data mining and LA, with a focus on developing, researching and applying
computer-based methods to discover patterns in large educational data collections that
would otherwise be difficult or impossible to analyze [13,16]. The increasing interest in the
two fields is demonstrated by the increase in research of applying data mining methods to
data from a variety of educational repositories.

In many applications, computing data similarity is required and normally used by
Machine Learning (ML) algorithms, particularly those that deal with clustering, recom-
mendation and dimensionality reduction [14]. In education data mining, data similarity
methods have many applications, particularly in adaptive learning systems and recommen-
dation systems. For example, in automatic recommendation systems, similarity measures
are extensively used for clustering of educational items or users [17]. In addition, data sim-
ilarity measures are found to be useful for a better understanding of educational processes
and providing decision-makers with actionable insights [18].

The applications of data similarity to educational data have been reported in various
contexts. In the programming domain, data similarity approaches are explored to select
a set of the most relevant remedial programming items and worked-out examples to
support students who have trouble solving a code comprehension problem in the Java
language [19]. In the same domain, a content-based similarity approach is applied to
provides personalized access to a repository of programming examples through adaptive
visualization [20]. An additional example of data similarity application in the programming
domain is reported in [21], which focuses on similarity among non-graded items such
as an explanatory text and videos. To measure the similarity between educational items
involving both text and images, a similarity measure is proposed in [22] to measure the
similarity between items based on a representation computed by a neural network. The
proposed measure is suitable for the mathematical domain, where items containing both
text and images are commonly used. In the mathematical domain, the similarity of word
problems is specifically studied in [23]. Moreover, similarity and clustering of users in
mathematics learning system is studied in [24], where the whole processing pipeline for
computing similarity is described in detail.

Similarly, data similarity measures are also used to analyze educational item (ques-
tions, problems) similarities for many purposes: to be used as input with clustering or
visualization techniques [17]; to detect plagiarism in online exams, particularly cheating in
essay questions, multiple-choice questions, and fill-in-the-blank questions [25]; to measure
the degree of similarity for Indonesian essay assessment [26]; to group documents or
contributions to identify the sub-topics and topic evolutions in the graduate discussion
forums [27]; to compare students navigation behavior in different dimensions [28].
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The review of the above-related works reveals the wide variety of contexts where data
similarity methods can be employed, as well as the variety of data similarity measures
that can be applied. Another variety of choices in applying data similarity methods is
whether to compute data similarity via features or directly from the data. In the case
of computing data similarity from features, a transformation of the data is performed.
Moreover, the review reports that in most domains, measuring item similarity is not a
clearly defined problem, and therefore there is no single correct measure of data similarity;
a common practice is to use multiple measures. In these settings, it is hard to answer a
general question such as which measure is better or worse. Nevertheless, questions such as:
“Which choices in the similarity computation are the most important?”, “Which measures
are highly correlated (and thus it is not necessary to consider both of them)?”, “How much
data do we need for similarity measures to be stable?” can be explored [18].

Considering all the aforementioned drawn findings from the previous applications of
data similarity measures, this paper explores the application of data similarity measures in
a new educational context that is the correlation among educational objectives of academic
programs. The outcomes of this application would contribute to a better understanding of
the PEOs and provide useful actionable insights for the decision-makers for better planning
and implementation of academic programs.

3. The Methodology of Computing Data Similarity

Figure 2 shows the basic outline of the methodology of data similarity, which starts
with data collection, followed by data preparation, data similarity measure, and finally the
target application. In the first step, the raw data are collected and used to create the target
dataset. In the data preparation step, the target dataset is cleaned and preprocessed to
obtain consistent data. It also involves a transformation of the data into a feature matrix in
which rows correspond to data items and columns to features. Generally, the representation
of a feature matrix depends on the type of data and the application domain. It can be, for
example, based on the bag-of-words model, vector space model, etc.

Having obtained the features matrix, the data similarities can be computed from it. In
this step, a similarity measure is applied to compute the similarity of every pair of items by
computing the similarity between the vectors space models that represent this pair of items
in the feature matrix. The output of this step is a similarity matrix in which each value repre-
sents the degree of similarity between a particular pair of items. In data mining, computing
the similarity of vectors is a common operation with many choices available. The common
choices are cosine similarity, the Pearson correlation coefficient and Euclidean distance
(transformed into a similarity measure by subtraction). In the case of binary data, similarity
measures such as Pearson, Sokal, and Jaccard measures are applicable [14]. It is worthwhile
mentioning that the choice of data similarity measure is domain-specific, and therefore it
is difficult to give a verdict on a question such as which measure is better or worse in a
general setting. After the computed similarity matrix is obtained, it can be used by the
target applications. In this step, the similarity matrix is processed by other computational
algorithms, particularly ML algorithms such as clustering algorithms and dimensionality
reduction algorithms. Examples of target applications include adaptive learning systems
and automatic recommendations of activities. In addition, the computed similarity matrix
provides useful and actionable insights for the practitioners and decision-makers as well. In
the following section the details of applying the above-described methodology to compute
the similarity between the PEOs of engineering academic programs is given.
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4. Computing PEOs Similarity

The general methodology described in the above section is employed to answer the
research question on the correlations among PEOs of engineering programs as follows.

4.1. Raw Data Collection

The raw data are a collection of mapping data between PEOs and Student Outcomes
(SOs), ABET coined term of PLOs, of a set of engineering programs accredited by ABET-
Engineering Accreditation Commission (EAC). The data are extracted from the self-study
report of each program. The self-study report is a primary document submitted by a
program seeking accreditation. As per ABET-EAC, a program seeking accreditation must
develop its PEOs and map them to 11 SOs (a to k) developed by the commission. In this
work the PEOs-SOs mapping data are collected from the SSRs of 215 engineering programs
accredited by ABET-EAC between 2000 and 2019. It should be noted that collected raw
data have been used by the authors in several previous pieces of research [29,30], and more
details can be found in [31]. Figure 3 is a snippet of the PEOs-SOs data.
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4.2. Data Preparation

In this step, the selected data are cleaned and preprocessed to obtain consistent data.
The data cleaning involves substantial verification and validation of the content. The data
preparation involves transforming each PEO text into labels representing the graduate’s
attributes expressed in its text. For this purpose, a set of PEOs labels is developed. As
pointed out earlier, PEOs cover the followings attributes: technical skills, professional, ethi-
cal, communication aspects, management and leadership, lifelong learning and continuous
education, advanced and graduate studies pursuing and other aspects. Based on PEOs
wordings of several engineering programs, the following PEOs labels, as shown in Table 1,
have been identified.

Table 1. PEOs Label Set.

No PEOs Category PEO Label

1 Lifelong Learning LL
2 Communication C
3 Leadership L
4 Teaming T
5 Ethical Conduct EC
6 Professionalism P
7 Social and Community SC
8 Career Success CS
9 Technical Competency TC
10 Knowledge Competency KC
11 Graduate Studies GS
12 Others O

The identified PEOs label set is then used to annotate data instances with single or
multiple PEOs labels, and then each multi-label data instance is removed from the dataset.
Figure 4 shows a snippet of this annotated PEOs-SOs dataset. Using the annotated PEOs-SOs
dataset, PEOs feature matrix is computed as vector space models. The vector space model
of each PEO is computed as the relative frequencies of every SO over all its data instances.
Table 2 shows PEOs represented as vector space representations (features matrix).
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SC 0.01 0.01 0.08 0.06 0.07 0.20 0.08 0.21 0.07 0.17 0.03
CS 0.11 0.10 0.11 0.09 0.11 0.08 0.10 0.07 0.06 0.07 0.10
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KC 0.16 0.13 0.11 0.01 0.11 0.08 0.02 0.11 0.03 0.13 0.10
GS 0.12 0.13 0.10 0.04 0.12 0.05 0.11 0.04 0.12 0.07 0.09

4.3. PMs-PEOs Correlations Measuring

As mentioned above, in most domains, there is no single correct measure of data
similarity. Therefore, for some applications, it may be useful to work with several similarity
measures [18]. In this work, three data similarity metrics, namely Euclidean distance,
cosine similarity, and Manhattan distance, are applied [14,15,32].

4.3.1. Euclidean Distance

Euclidean distance (ED) measure is a standard metric for geometrical problems. It
is the straight-line distance between two data points and can be easily measured with a
ruler in two- or three-dimensional space. It is widely used in data mining tasks such as
clustering problems [33]. The Euclidean distance between two data points X = (x1 . . . xn)
and Y = (y1 . . . yn) is defined as follows:

ED(X, Y) =

√
n

∑
i=1

(xi − yi) (1)

An interesting property of the ED measure is that it is rotation-invariant, as the
straight-line distance between two data points does not change with the orientation of the
axis system [14]. This property means that transformations, such as Principal Component
Analysis, Singular Value Decomposition, or the wavelet transformation for time series, can
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be applied to the data without affecting the distance. The intuitive interpretability of the
ED measure is another interesting property. Despite this, the ED measure is not the most
relevant one, especially for the high-dimensional case, because of the varying impact of
data sparsity, distribution, noise, and feature relevance.

4.3.2. Manhattan Distance

The Manhattan distance (MD) measure is the “city block” driving distance in a region
in which the streets are arranged as a rectangular grid, such as the Manhattan Island of
New York City. The MD measure has much in common with the ED measure; in fact, they
are both particular cases of Minkowski distance [14]. Therefore, it has the same interesting
properties and rotation-invariant and interpretability as the ED measure and suffers in
high-dimensional cases. Given two data points X = (x1 . . . xn) and Y = (y1 . . . yn), the MD
measure is defined as follows:

MD(X, Y) =
n

∑
i=1

(xi − yi) (2)

4.3.3. Cosine Measure

The Cosine Similarity (CS) measure is mostly used in document similarity [15]. It computes
the angle between the two data points, which is insensitive to the absolute length of the vector.
Given the two data points in vector representation, X = (x1 . . . xn) and Y = (y1 . . . yn), the CS
measure is defined as follows.

CS(X, Y) =
∑n

i=1 xiyi

∑n
i=1 x2

i ∑n
i=1 y2

i
(3)

The CS measure is invariant to the rotation but is variant to linear transformations. It
is also independent of vector length [32].

5. Results and Discussion

This section presents and discusses the results of applying the three data similarity
measures to compute the similarity between PEOs. Tables 3–5 show the similarity of
PEOs based on the ED, MD and CS measures, respectively. For the sake of illustration, a
heatmap data visualization technique is used to represent the similarity values in different
colors. As mentioned above, the ED measures the straight distance between points, hence,
theoretically, its values fall in the range between zero and infinity. In Table 3, the ED’s
values range between 0 (identical pair of PEOs) and 0.43 (the most dissimilar pair of PEOs).
As for MD, this measures the distance between the vector space of two points in terms of
the number of horizontal and vertical units between them, hence, theoretically, its values
fall in the range between zero and infinity. In Table 4, the MD’ between the PEOs vector
spaces ranges between 0 (identical PEOs) and 1.35 (the most dissimilar pairs of PEO).
Finally, the CS measures the cosine of the angle between the vector spaces of two points,
hence, theoretically, its values fall in the range between zero and infinity. In Table 5 the CS’s
values of the PEOs vector space models range between 0.38 (the most dissimilar PEOs) to 1
(identical pair of PEOs).

Despite the different mechanisms of measuring similarity and different measurement
scales, of the three measures the heatmap visualization of the three measures reflects
the degree of consistency between them. Virtually, the three measures show a sort of
consistency among them in their evaluation of the similarity between PEOs. However,
to quantitatively evaluate the degree of consistency between the three measures, the
agreement analysis between them can be employed. Basically, there are two methods
for measuring the agreement between similarity measures [18]. The first method applies
a simple correlation, such as Pearson’s correlation, to measure the correlation between
the similarity matrices after flattening them into vectors. The second method is based on
generating ranking matrices from the similarity matrices of the measures and then compute
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the agreement between similarity measures based on the ranking matrices. In this work,
measuring the agreement based on the ranking is adopted, therefore the ranking matrices
of the three measures are computed, as shown in Tables 6–8.

Table 3. Euclidean distance among PEOs.

PEO LL C L T EC P SC CS TC KC GS

LL 0.00 0.39 0.29 0.32 0.40 0.14 0.24 0.19 0.24 0.22 0.17

C 0.39 0.00 0.29 0.26 0.41 0.32 0.36 0.35 0.41 0.43 0.36

L 0.29 0.29 0.00 0.23 0.23 0.19 0.22 0.30 0.41 0.39 0.36

T 0.32 0.26 0.23 0.00 0.29 0.25 0.33 0.22 0.31 0.36 0.29

EC 0.40 0.41 0.23 0.29 0.00 0.30 0.25 0.34 0.43 0.40 0.42

P 0.14 0.32 0.19 0.25 0.30 0.00 0.18 0.18 0.28 0.25 0.21

SC 0.24 0.36 0.22 0.33 0.25 0.18 0.00 0.26 0.35 0.27 0.31

CS 0.19 0.35 0.30 0.22 0.34 0.18 0.26 0.00 0.12 0.15 0.10

TC 0.24 0.41 0.41 0.31 0.43 0.28 0.35 0.12 0.00 0.12 0.15

KC 0.22 0.43 0.39 0.36 0.40 0.25 0.27 0.15 0.12 0.00 0.16

GS 0.17 0.36 0.36 0.29 0.42 0.21 0.31 0.10 0.15 0.16 0.00

Table 4. Manhattan distance among PEOs.

PEO LL C L T EC P SC CS TC KC GS

LL 0.00 0.85 0.85 0.79 1.02 0.38 0.63 0.51 0.69 0.53 0.50

C 0.85 0.00 0.81 0.54 0.90 0.69 0.89 0.72 1.00 0.99 0.88

L 0.85 0.81 0.00 0.69 0.57 0.54 0.58 0.98 1.35 1.17 1.09

T 0.79 0.54 0.69 0.00 0.70 0.65 0.81 0.50 0.81 0.87 0.72

EC 1.02 0.90 0.57 0.70 0.00 0.82 0.58 0.90 1.20 1.08 1.14

P 0.38 0.69 0.54 0.65 0.82 0.00 0.52 0.55 0.88 0.72 0.61

SC 0.63 0.89 0.58 0.81 0.58 0.52 0.00 0.72 0.99 0.80 0.86

CS 0.51 0.72 0.98 0.50 0.90 0.55 0.72 0.00 0.37 0.38 0.26

TC 0.69 1.00 1.35 0.81 1.20 0.88 0.99 0.37 0.00 0.37 0.33

KC 0.53 0.99 1.17 0.87 1.08 0.72 0.80 0.38 0.37 0.00 0.43

GS 0.50 0.88 1.09 0.72 1.14 0.61 0.86 0.26 0.33 0.43 0.00

Table 5. Cosine Similarity among PEOs.

PEO LL C L T EC P SC CS TC KC GS

LL 1.00 0.53 0.70 0.61 0.49 0.92 0.77 0.83 0.74 0.80 0.86

C 0.53 1.00 0.76 0.82 0.55 0.71 0.57 0.69 0.47 0.41 0.61

L 0.70 0.76 1.00 0.82 0.85 0.88 0.85 0.67 0.38 0.46 0.54

T 0.61 0.82 0.82 1.00 0.77 0.75 0.62 0.81 0.63 0.51 0.66

EC 0.49 0.55 0.85 0.77 1.00 0.74 0.83 0.65 0.42 0.49 0.43

P 0.92 0.71 0.88 0.75 0.74 1.00 0.88 0.85 0.65 0.72 0.80

SC 0.77 0.57 0.85 0.62 0.83 0.88 1.00 0.73 0.54 0.71 0.61

CS 0.83 0.69 0.67 0.81 0.65 0.85 0.73 1.00 0.94 0.90 0.95

TC 0.74 0.47 0.38 0.63 0.42 0.65 0.54 0.94 1.00 0.93 0.93

KC 0.80 0.41 0.46 0.51 0.49 0.72 0.71 0.90 0.93 1.00 0.94

GS 0.86 0.61 0.54 0.66 0.43 0.80 0.61 0.95 0.93 0.94 1.00



Appl. Sci. 2021, 11, 9623 10 of 15

Table 6. PEOs similarity ranking based on ED measure.

PEO LL C L T EC P SC CS TC KC GS

LL 1 10 8 9 11 2 6 4 7 5 3

C 8 1 3 2 9 4 7 5 10 11 6

L 7 6 1 5 4 2 3 8 11 10 9

T 9 5 3 1 6 4 10 2 8 11 7

EC 7 9 2 4 1 5 3 6 11 8 10

P 2 11 5 8 10 1 3 4 9 7 6

SC 4 11 3 9 5 2 1 6 10 7 8

CS 6 11 9 7 10 5 8 1 3 4 2

TC 5 9 10 7 11 6 8 2 1 2 4

KC 5 11 9 8 10 6 7 3 2 1 4

GS 5 10 9 7 11 6 8 2 3 4 1

Table 7. PEOs similarity ranking based on MD measure.

PEO LL C L T EC P SC CS TC KC GS

LL 1 10 8 9 11 2 6 4 7 5 3

C 9 1 3 2 8 4 7 5 10 11 6

L 7 6 1 5 3 2 4 8 11 10 9

T 10 2 3 1 5 6 9 4 8 11 7

EC 8 7 2 4 1 5 3 6 11 9 10

P 2 10 4 7 8 1 3 5 11 9 6

SC 5 10 3 8 4 2 1 6 11 7 9

CS 6 9 10 7 11 5 8 1 3 4 2

TC 5 9 11 7 10 6 8 2 1 4 3

KC 5 11 10 8 9 6 7 4 3 1 2

GS 5 9 10 7 11 6 8 2 4 3 1

Table 8. PEOs similarity ranking based on CS measure.

PEO LL C L T EC P SC CS TC KC GS

LL 1 9 10 8 11 2 6 4 7 5 3

C 6 1 5 2 9 3 8 4 11 10 7

L 7 6 1 5 3 2 4 8 11 10 9

T 8 3 5 1 6 4 10 2 9 11 7

EC 8 6 2 4 1 5 3 7 11 9 10

P 2 8 4 7 10 1 3 5 11 9 6

SC 5 10 3 8 4 2 1 6 11 7 9

CS 6 8 11 5 10 7 9 1 3 4 2

TC 5 9 11 6 10 7 8 3 1 4 2

KC 5 9 11 8 10 6 7 3 2 1 4

GS 5 9 10 7 11 6 8 2 3 4 1
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Based on the ranking matrices, the agreement between matrices of the three data
similarity measures are computed. Table 9 shows the mutual agreement between every
pair of measures in their measuring of the similarity between a particular PEO and the
other PEOs. It also shows the average agreement (last row) between every pair of similarity
measures across all of them. Obviously, CS indicates full agreement with ED for LL PEO
and with MD for L and SC PEOs. Interestingly, the CS measures show higher agreement
with ED and MD than the agreement between ED and MD.

Table 9. Computed agreements between similarity measures.

PEO ED & CS ED & MD MD & CS ED & MD & CS

LL 1 0.73 0.73 0.73

C 0.82 0.27 0.18 0.18

L 0.82 0.82 1 0.82

T 0.45 0.64 0.27 0.27

EC 0.73 0.64 0.82 0.64

P 0.36 0.45 0.82 0.36

SC 0.45 0.45 1 0.45

CS 0.73 0.55 0.45 0.45

TC 0.64 0.36 0.64 0.36

KC 0.55 0.82 0.45 0.45

GS 0.64 0.82 0.82 0.64

Average 0.65 0.6 0.65 0.49

In addition, the agreement across the three measures is computed (last column) for
each PEO and across all PEOs (which is 0.49). The highest agreement between the three
measures is in measuring the similarity between L and other PEOs, while the lowest
agreement is in measuring the similarity between T and other PEOs.

Despite the differences between the similarity measures in their evaluation of the
similarity among PEOs, the overall similarity matrix, which gives an overall estimation
of the similarity among PEOs based on the similarity matrices of the three measures, can
be computed. However, the values of the ED similarity matrix and MD similarity matrix
need to be normalized first so that their values fall in the range of 0 and 1. This can be done
using the following formula:

dNormalized(X, Y) =
1

1 + d(X, Y)
(4)

Then the overall similarity matrix can be computed as the average over the three
matrices, as shown in Table 10.

Table 10. Average similarity matrix.

PEO LL C L T EC P SC CS TC KC GS
LL 1.00 0.60 0.67 0.64 0.57 0.84 0.73 0.78 0.71 0.76 0.79
C 0.60 1.00 0.69 0.76 0.60 0.69 0.61 0.67 0.56 0.54 0.63
L 0.67 0.69 1.00 0.74 0.77 0.79 0.77 0.65 0.51 0.55 0.58
T 0.64 0.76 0.74 1.00 0.71 0.72 0.64 0.77 0.65 0.59 0.67

EC 0.57 0.60 0.77 0.71 1.00 0.68 0.75 0.64 0.52 0.56 0.53
P 0.84 0.69 0.79 0.72 0.68 1.00 0.80 0.78 0.65 0.70 0.75

SC 0.73 0.61 0.77 0.64 0.75 0.80 1.00 0.70 0.59 0.68 0.64
CS 0.78 0.67 0.65 0.77 0.64 0.78 0.70 1.00 0.85 0.83 0.88
TC 0.71 0.56 0.51 0.65 0.52 0.65 0.59 0.85 1.00 0.85 0.85
KC 0.76 0.54 0.55 0.59 0.56 0.70 0.68 0.83 0.85 1.00 0.83
GS 0.79 0.63 0.58 0.67 0.53 0.75 0.64 0.88 0.85 0.83 1.00
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As illustrated in Table 10, the similarity is high for the following pairs of PEOs, (CS, GS),
(KC, TC) and (TC, CS), while it is low for the pairs (EC, TC), (EC, GS), (L, TC). This is
expected, as the PEOs in the first group depend mostly on the soft skills SOs while the
PEOs in the second group depend on a different set of SOs skills. Additionally, the spectral
visualization of the similarity of each PEO with the other PEOs is shown in Table 11. A
closer look at the spectral representation of PEOs’ similarities disclose several interesting
aspects of PEOs correlations. First, the similarity between the spectral representation of
PEOs similarities of CS, TC, KC, and GS suggests that they are forming a cluster. This can
be interpreted by looking at the PEOs–PLOs mapping, from which it can be observed that
these PEOs are highly correlated with a set of PLOs (a, b, c, e, k) that is known as the hard
skills PLOs. By the same token, the following set of PEOs (C, L, T, EC, P and SC) show a
similarity in their spectral representation of PEOs similarities. Again, this suggests that
they are forming another PEOs cluster and can be interpreted by looking at the PEOs–PLOs
mapping, in which it can be observed that these PEOs are highly correlated with a set of
PLOs (d, f, g, h, i, j) that are known as the soft or professional skills PLOs. An interesting
observation of the tow cluster is that the correlations among the PEOs of the first cluster is
higher than the correlations among the PEOs of the second cluster.

Table 11. Spectral visualization of the similarity of each PEO with the other PEOs.

LL
P GS CS KC SC TC L T C EC

0.84 0.79 0.78 0.76 0.73 0.71 0.67 0.64 0.60 0.57

C
T L P CS GS SC LL EC TC KC

0.76 0.69 0.69 0.67 0.63 0.61 0.60 0.60 0.56 0.54

L
P SC EC T C LL CS GS KC TC

0.79 0.77 0.77 0.74 0.69 0.67 0.65 0.58 0.55 0.51

T
CS C L P EC GS TC SC LL KC

0.77 0.76 0.74 0.72 0.71 0.67 0.65 0.64 0.64 0.59

EC
L SC T P CS C LL KC GS TC

0.77 0.75 0.71 0.68 0.64 0.60 0.57 0.56 0.53 0.52

P
LL SC L CS GS T KC C EC TC

0.84 0.80 0.79 0.78 0.75 0.72 0.70 0.69 0.68 0.65

SC
P L EC LL CS KC T GS C TC

0.80 0.77 0.75 0.73 0.70 0.68 0.64 0.64 0.61 0.59

CS
GS TC KC P LL T SC C L EC

0.88 0.85 0.83 0.78 0.78 0.77 0.70 0.67 0.65 0.64

TC
CS KC GS LL P T SC C EC L

0.85 0.85 0.85 0.71 0.65 0.65 0.59 0.56 0.52 0.51

KC
TC GS CS LL P SC T EC L C

0.85 0.83 0.83 0.76 0.70 0.68 0.59 0.56 0.55 0.54

GS
CS TC KC LL P T SC C L EC

0.88 0.85 0.83 0.79 0.75 0.67 0.64 0.63 0.58 0.53

Finally, with regards to LL PEO, the spectral representation shows that it is mostly
correlated with the PEOs of the first cluster; however, its highest similarity with P PEOs
from the second cluster is notable. This is suggesting that LL is a common PEO which is
related to both PEOs clusters.

The spectral representation of the PEOs’ similarities can give an overall view on the
correlations among them. As shown in Table 11, some of these of these correlations are
intuitive and self-explanatory, such as TC and CS, because the technical competency is
essential for carrier success; KC and TC because the knowledge and technical competencies
have a reciprocal influence on each other. T and CS are also correlated because teaming



Appl. Sci. 2021, 11, 9623 13 of 15

skills become essential for career success, and T and C are also highly correlated because
communication skills are essential for teamwork. LL and P are highly correlated because
lifelong learning is indispensable to increasing the professionalism as well. However, some
PEOs correlations require further investigation because of unobvious intuitive connections
between them, such as CS and GS.

From a practical perspective, the above-drawn PEOs correlations provide actionable
insights for the systemization and optimization of various processes in the academic
programs, such as design, development, assessment and accreditation. The design of an
academic program is a top-down process that involves drafting its PEOs and matching
them to a predefined set of PLOs, and then design a program curriculum accordingly.
Given this top-down view of the academic program, it is obvious that the insights on the
PEOs correlations, located at the top level of the program, are useful for informing their
matching to PLOs and the design of program curriculum at the bottom level. For example,
the high correlation among the KC, TC, GS and CS PEOs suggests grouping the courses
that focus on their related skills in the curriculum together, as well as design correlated
course-level teaching and assessment activities accordingly. Another potential benefit of
the drawn PEOs correlations during the design stage of the program is the minimization
of the number of PEOs when drafting them. It is a recommended practice which can be
optimized in light of the drawn insights by drafting the highly correlated PEOs in one
objective, thus minimizing the number of PEOs.

Another important academic program process where the drawn insights on correla-
tions among PEOs could be used is the assessment of PEOs. It is an essential process for
maintaining the quality of an academic program and obtaining academic accreditation.
During the development of the assessment PEOs plan, the insights on the PEOs correlations
are a useful tool to optimize the plan in terms of the time and efforts required to implement
it. For example, instead of assessing all PEOs, it is possible to obtain an approximate
estimation of some PEOs based on the assessment results of others. This is particularly
useful when the assessment of some PEOs might be hindered by cost, data availability and
so forth.

The development process of academic programs involves reviewing the existing PEOs
and introducing changes, such as adding new PEOs or modifying the existing ones. In this
process, the insights on the PEOs correlations can be used to inform the developmental
decisions. For example, if the developmental decision is to add a new PEO to the existing
ones, the PEOs correlations can be used to predict the achievement of the newly added
PEOs based on their correlations to the existing ones. In this manner, the development
process of the academic program can be systematized and optimized.

The accreditation of academic programs is another process which can be optimized
and systematized by the insights on the PEOs correlations. In this process, the main
task of program evaluators is to evaluate the consistency and adequacy of the program’s
activities for achieving its PEOs and the validity of the assessment process as a whole.
With these insights in the minds of program evaluators, their assessment of a program’s
quality becomes more informative. For example, the strong correlations between LL and P
PEOs allows program evaluators to make assumptions on the degree of consistency and
organization between their supportive curricular or extracurricular activities. Furthermore,
these insights allow the program evaluators to make assumptions on the levels of PEOs
achievements and ultimately judge the quality of the program.

Another process that could benefit from the obtained insights on the correlations among
PEOs is the comparison between programs to understand the landscape of education in a
particular discipline, such as engineering. Certainly, knowing the similarities among PEOs
assists in evaluating the similarities/differences between programs at this level.

Finally, from a software development perspective, the obtained insights on the correla-
tions among PEOs can inform the process of developing computer-based systems that could
contribute to the development of computer-assisted academic program designs or accreditation.
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6. Conclusions

In this research, the correlations among the PEOs of OBE academic programs were
discovered using a learning analytics-based approach. Three data similarity measures,
namely ED, MD, CS, were applied to discover the correlation among a set of 11 PEOs
extracted and preprocessed from 215 engineering academic programs. The obtained results
provide different views of the correlations among PEOs from three different perspectives.
Although the three measures are different, the analysis of the agreement among them
shows a remarkable consistency in their evaluation of the PEOs correlations. Finally, the
average PEOs similarity matrix was computed, after normalizing the scale of measurement
of ED and MD to fall in the range 0 and 1. From the average similarity matrix, the spectral
similarity vectors of PEOs were drawn, from which two clusters of PEOs were identified.
The first cluster involves the PEOs that were highly mapped to hard skills PLOs, while
the second cluster involves the PEOs that were highly mapped to soft skills PLOs. It
also identifies several interesting PEOs correlations, which are intuitively interpreted, and
several PEOs correlation, which need further investigation on their causality correlations.
In addition to the practical benefits of the presented approach to the applications that
depend on computing similarity such as recommendation and visualization systems, the
discovered insights are useful knowledge for the academicians and decision-makers to
better understand, design and assess their programs.

Finally, this work can be extended in several directions. First, since this research
focuses on the engineering discipline, it can be replicated for other disciplines, such as
science, computing, art, etc. Secondly, the outcomes of this research, which are based
on quantitative analysis, pave a way for more investigations of the causal correlations
or prerequisite correlations among PEOs. Thirdly, based on this research, an interesting
correlation analysis between academic programs in a given discipline such as engineering
by different regions/countries (and/or by other properties) can be conducted.
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