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Abstract: The hanger often needs to be replaced many times during the operation period of hanger
arch bridges. To ensure the safety of the hanger replacement in the construction process of pocket
hanging, the structural response in the whole construction process needs to be precisely controlled.
In this paper, aiming at half-through arches with a suspended deck by cable hangers, the precise
displacement controlling method for hanger replacement of an arch bridge based on the pocket
hanging method has been proposed. Firstly, the equivalent model of an arch bridge in the hanger
replacement process is established, and the boundary conditions of the equivalent model are calcu-
lated precisely. Secondly, in the hanger replacement process, including old hanger demolition and
new hanger installation, the precise displacement expressions of the suspended deck are derived
on the basis of the equivalent model. Finally, the correctness and feasibility of the proposed precise
displacement controlling method are verified by the hanger replacement engineering of an arch
bridge. Through this research on the hanger replacement of an arch bridge, the equivalent model
adopted in this paper has been proven accurate, and only partial boundary conditions need to be
considered in practical engineering applications to get accurate results. Meanwhile, the calculation
results are accurate enough through the practical engineering verification, and the precise displace-
ment controlling method is feasible in the hanger replacement process of an arch bridge based on
the pocket hanging method. It is also found that satisfactory results can be achieved using hanger
demolition and installation by equal step length.

Keywords: arch bridge; hanger replacement; pocket hanging method; displacement controlling

1. Introduction

Arch bridges have been widely used for their extreme competitiveness among various
types of bridges due to their advantages, such as a large spanning ability, a beautiful shape,
and reasonable structural force [1–4]. According to an incomplete survey, over 600 arch
bridges have been built in China, in which the load must be transmitted through the hanger
whether it is half-through or through the arch bridge. Among the hanger components of
an arch bridge, hangers transmit wind or live loads on the deck to the main rib, which
are then transmitted to the earth. Hanger safety is thus directly related to the safety of the
entire bridge [5–8].

A hanger is usually designed as a replaceable part, and their design life is much shorter
than the design life of the bridge structure. Hangers located in a complex environment
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are not only subjected to constant load (i.e., structural weight) as well as alternating loads
(i.e., temperature, vehicles, wind, etc.), but also corrosive conditions such as humidity,
high chloride ions, and changing temperature [9,10]. These complex factors can lead
to the service life of the hangers (8~16 years) being much shorter than their design life
(i.e., 20 years) [11]. Thus, hanger replacement is a very common measure in the repair
process of arch bridges [12–15]. Even beam bridge structures such as reinforced concrete
bridges or steel bridges will fail or collapse due to material degradation, and some nec-
essary maintenance and reinforcement measures need to be taken during their service
period [16–19]. In China, more than 30 out of over 600 arch bridges have undergone
the hanger replacement process [12,20]. With the extension of service life, there will be
more and more arch bridges that need hanger replacement. The commonly used hanger
replacement methods include the temporary bracket method, temporary hanger method,
and pocket hanging method, of which the pocket hanging method has been widely used
due to its advantages such as a clear conversion system, reasonable structural force, and no
need to close traffic [21].

Suspenders are critical force transmission components in suspension and arch bridges,
which connect the girder to the main cable/arch. In recent years, a lot of research has been
carried out on issues related to cable replacement of cable-stayed bridges and suspension
bridges. Hossain et al. [22] summed up a cable replacement process for thae suspension
bridge. Ferreira et al. [23,24] and Simoes and Negrao et al. [25] presented an optimization
algorithm to solve the structural-control design problem of cable-stayed bridges and car-
ried out the static, dynamic, and erection stage analysis simultaneously. Hangers must
be replaced promptly when severe damage occurs. Sun et al. [12] proposed a replace-
ment method using temporary hangers and performed field implementation of hanger
replacement for a suspension. In order to ensure the safety and reliability of the cable
replacement, reasonable mechanical analysis and construction control should be carried
out on the cable replacement process. Yao et al. [26] adopted the finite element method on
Tianjin Yonghe bridge to simulate each stage of the cable replacement process; the dates of
tension, the alignment of the main beam, and the change of stress before and after the cable
replacement were compared and analyzed. Sun et al. [27] used Kalman’s filtering method
in the construction control for cable replacement combined with the cable replacement
project of Jiao-Ping Du cable-stayed bridge. The results showed that the cable tension of the
cable-stayed bridge was 2926 kN less than the design cable tension after changing the cable
of this bridge. In addition, considering the sustainability of safe operation during the entire
life of the structure, the optimization design of cable structures has gradually attracted
attention. Brown et al. [28] described the effort to replace all 72 of the stay cables of the
Hale Boggs Memorial Bridge. Moreover, on the stressing sequence of stays, Granata and
Recupero et al. [29] found that the geometry of the arch shape, the design of the arch-tie
joint, and the construction sequence can significantly modify the global behaviour in terms
of the stress state and deformed configuration. The determination of initial cable forces
in cable-stayed bridges is an important first step in design and analysis of the structure
under external loads [30].Then, they proposed a unified procedure for determining the
initial cable forces and for analyzing the entire sequence, and a forward procedure was im-
plemented to follow the actual sequence of construction by extending a procedure already
applied to concrete cable-stayed bridges [31,32]. Although cable-stayed bridges and arch
bridges have the same characteristics in terms of cable replacement, there are relatively few
studies on the replacement of arch bridge hangers.

Hanger replacement works are highly technical works requiring specialized equip-
ment, techniques, and engineering at all stages of the operation [33]. During the entire
hanger replacement process, the structural responses need to be controlled within a reason-
able range in order to reduce the internal force and linear deviation, which could ensure
that the structure does not crack and leads to reducing its bearing capacity due to excessive
deformation. In the hanger replacement process, the precise displacement control is very
critical, and the displacement often needs to be controlled within a reasonable range. At the
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same time, other structural responses such as internal force, stress, and so on could be also
controlled within a suitable range.

According to the existing research, the hanger replacement process of half-through
arches with a suspended deck by cable hangers is mainly simulated by the finite element
method (FEM), which mainly has the following two problems: (a) it is troublesome to
simulate the hanger replacement process of half-through arches with a suspended deck
by cable hangers, which has high requirements for engineers and technicians. Due to the
system conversion problems involved in the hanger replacement process, the correct results
cannot be obtained if it is handled improperly in the process of finite element simulation.
In the hanger replacement process, the stress system of the bridge structure would change.
In the old hanger demolition process, the cable forces of the old hanger are transferred
to the pocket hanging system step by step, while in the new hanger installation process,
the cable forces of the pocket hanging system are transferred to the new hanger step by
step. (b) It takes a lot of time to simulate the hanger replacement process of half-through
arches with a suspended deck by cable hangers. The hanger replacement process involves
geometric nonlinearity, which makes the single simulation time longer. In addition, the total
calculation time will increase due to the actual operation process often needing multiple
trial calculations for the cutting area of the old hanger and because the tension force cannot
be determined accurately in advance. To sum up, the existing calculation method of hanger
replacement cannot meet the actual engineering requirements. Therefore, it is necessary
to find an accurate and convenient calculation method. This paper will put forward a
calculation method based on precise displacement control for the hanger replacement
process of half-through arches with a suspended deck by cable hangers.

2. Theoretical Modelling Establishment of the Hanger Replacement Process

The principle of the pocket hanging method to replace a hanger is that the beam of
the hanger at the place where the hanger is to be replaced is pocket hung directly on the
arch rib by a wire rope, that is, the pocket hanging hanger, and then the steel wire is cut off
in batches. Every time the wire is cut, the system should be properly repaired to balance
the reduction of the cable force to be replaced. The new hanger is installed after removing
and replacing the hanger, and the new hangers are tensioned and unloaded at different
stages until the internal forces of the hangers are unloaded. The pocket hanging method
is a kind of hanger replacement method which can change and improve the structure
stress actively. The principle of “displacement control first, cable force control second” is
followed in the hanger replacement process of half-through arches with a suspended deck
by cable hangers. When the displacement is controlled within the range of resultant force,
the cable force can be within a reasonable range. The hanger replacement process based
on the pocket hanging method is shown in Figure 1. The precise control of displacement
would be particularly important in the hanger replacement process of half-through arches
by using the pocket hanging method [34,35].

2.1. Structural Equivalence

For the hanger arch bridge (as shown in Figure 2), the hanger elastic modulus is E, the
section area is A, the hanger length is LLi and LRi (i = 1, 2, . . . ), the length of the hanger to
be replaced is L, the bending moment of inertia of the main beam is EbIb, and the spacing
between the hanger is S.

Since the stiffness of arch ribs is much greater than that of the hanger and bridge
deck, the arch bridge girder can be equivalent to the multi-point elastic support continuous
beam (as shown in Figure 3) in the hanger replacement process of half-through arches with
a suspended deck by cable hangers. The spring stiffness on both sides of the hanger to
be replaced is KLi and KRi (i = 1, 2, . . . ) and the length of the hanger to be replaced is K.
According to the principle of equivalent stiffness, the stiffness of the spring is:

KXi =
EA
LXi

, K =
EA
L

, (1)
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where X = L or R, and i = 1, 2, . . . .
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The calculation is carried out when different numbers of hangers are left on both sides
of the hanger to be replaced, and it is found that k is basically unchanged when three or
more roots are left. With respect to the unit displacement applied downward to the lower



Appl. Sci. 2021, 11, 9607 5 of 17

end of the replaced hanger, the shear force k at the sections of CL and CR on both sides of
the hanger to be replaced can be obtained by the displacement method. When different
numbers of hangers are left on both sides of the hanger to be replaced, it is found that k is
basically unchanged when three or more hangers are left. It is a fixed constraint for the
main beam when two or more hangers are left on each side, so the deformation of the main
beam is basically the same, while k is directly related to the deformation of the main beam.
Therefore, k is as follows:

k = k1/k2, (2)

where
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It can be approximated that the length of each hanger is equal to that of the hanger
to be replaced when the length of the hanger has little difference; thus, k1 and k2 can be
expressed as follows:

k1 = 48EAEb Ib

(
2EAS3 + 3Eb IbL

)
, (3)

k2 = 7E2 A2S6 + 108EAEb IbLS3 + 36E2
b I2

b L2, (4)

2.2. Calculation of Hanger Removal Process

The hanger and some beam segments to be replaced can be taken out as shown in
Figure 4 in the process of hanger removal. The upper end of the hanger can be fixed at
the arch rib, and the lower end is connected to the pocket hanging tensioning system,
which includes a jack to hold the cross beam, while the main beam takes the beam section
between the sections of CL and CR on both sides of the hanger to be replaced. The stress on
the main beam segment is shown in Figure 5, which is subject to the force F of the hanger
to be replaced and the pocket hanging hanger force T, the shear force Q at the sections of
CL and CR, and the resultant force G of the pocket hanging system weight and the dead
weight of the main beam section. Next, the hanger removal process will be calculated take
this beam section as an example.
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2.2.1. Initial State

The initial state is the finished bridge state of half-through arches with a suspended
deck by cable hangers before the hanger replacement:

(a) Old hanger: elastic modulus for E, cross section area of Ag
0 , and cable length L.

(b) Pocket hanging hanger: elastic modulus for E′, cross section area of A′, cable
length L′g0 , shear force Qg

0 , and cable force Fg
0 .

According to displacement coordination and force balance, it has:

L′g0 =
Fg

0 L
EAg

0
+ L, (5)

Fg
0 = Qg

0 + G, (6)

2.2.2. The ith (i = 1, 2, . . . , N) Time Pocket Hanging

Let the pocket hanging force be Td
i , the internal force of the old hanger be Fd

i , the
stress-free length of the pocket hanging hanger be L′di , and the displacement in the process
of the ith time pocket hanging be xd

i after the ith pocket hanging is done.
For the displacement of the lower end of the pocket hanging hanger, it has:

xd
i =

(
Tg

i−1L′gi−1
E′A′

+ L′gi−1

)
−
(

Td
i L′di

E′A′
+ L′di

)
, (7)

Similarly, for the lower end of the old hanger, we can obtain the following equation:

xd
i =

(
Fg

i−1 − Fd
i

)
L

EAg
i−1

, (8)

According to the equilibrium of forces:

Fd
i + Td

i = Qd
i + G, (9)

where Qd
i = Qg

i−1 + kxd
i .

By combining Equations (7)–(9), the following equations can be obtained:

Fd
i = Fg

i−1 − Ag
i−1E

(
Fg

i−1 − G−Qg
i−1 + Td

i

)
β, (10)

L′di =
E′A′L

(
G + Qg

i−1 − Td
i − Fg

i−1

)
β + E′A′L′gi−1 + L′gi−1 ∗ Tg

i−1(
Td

i + E′A′
) , (11)

xd
i = L

(
Fg

i−1 − G−Qg
i−1 + Td

i

)
β, (12)

where β = 1/
(

Lk + Ag
i−1E

)
.
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2.2.3. The ith (i = 1, 2, . . . , N) Time Cutting

Let the area of the old hanger be Ag
i , the internal force of the pocket hanging hanger

be Tg
i , and the internal force and displacement of the old hanger be Fg

i and xg
i , respectively,

after the ith cutting of the old hanger is done.
The displacement of the lower end of the pocket hanging hanger satisfies the follow-

ing equation:

xg
i =

Td
i L′di

E′A′
−

Tg
i L′di

E′A′
, (13)

Similarly, for the lower end of the old hanger, we can obtain:

xg
i =

Fd
i L

EAd
i
−

Fg
i L

EAg
i

, (14)

According to the equilibrium of forces, it has:

Fg
i + Tg

i = Qg
i + G, (15)

where Qg
i = Qd

i + kxg
i .

Combined with Equations (13)–(15), the following can be obtained:

Tg
i =

(
Ad

i A′E′GL− Ag
i A′E′Fd

i L + Ad
i A′E′Qd

i L + Ad
i Ag

i EL′di Td
i + Ad

i LL′di Td
i k
)

γ, (16)

Fg
i = Ag

i

(
Ad

i EGL′di + A′E′Fd
i L + Ad

i EL′di Qd
i − Ad

i EL′di Td
i + LL′di Fd

i k
)

γ, (17)

xg
i = LL′di

(
Ad

i G− Ag
i Fd

i − Ad
i Qd

i + Ad
i Td

i

)
γ, (18)

where γ = 1/
[

Ad
i

(
Ag

i EL′di + A′E′L + LL′di k
)]

.

2.2.4. Displacement Control

According to the above calculation, the accumulative displacement Xd
i of the lower

end of the hanger to be replaced after the ith (i = 1, 2, . . . , N) time pocket hanging is
completed can be expressed as:

Xd
i = δ(i− 1)∑i−1

n=1

(
xd

n + xg
n

)
+ xd

i , (19)

where δ(i− 1) is the Dirac function, that is:

δ(i− 1) =
{

1, i = 1
0, i 6= 1

, (20)

The accumulative displacement Xg
i of the lower end of the hanger to be replaced after

the ith (i = 1, 2, . . . ,) time cutting is completed can be expressed as:

Xg
i = ∑i

n=1

(
xd

n + xg
n

)
, (21)

Xd
i , Xg

i and the control displacement threshold [D] need to satisfy the following rela-
tionship:

Xd
i ≤ [D], Xg

i ≤ [D], (22)

where the value of [D] is as follows:

[D] = min(10 mm, S/1000), (23)
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2.3. Calculation of the New Hanger Installation Process

The installation of the new hanger is essentially the reverse process of the hanger
removal. However, the tension process during the installation of the new hanger is the
same as that of the unloading process, because the pocket hanging hanger is carried out
through the jack pine oil without the need to cut it.

2.3.1. Initial State

The initial state is the state before the new hanger is installed:
(a) New hanger: elasticity modulus is En, cross-sectional area is An, and cable length

is Ls
0.

(b) Pocket hanging hanger: elasticity modulus is E′, cross-sectional area is A′, cable
length is L′s0, shear force is Qs

0, and cable tension is Ts
0 .

Since the new hanger is installed after the old hanger is removed, then there is:

L′s0 = L′dN , Ts
0 = Tg

N , (24)

According to the displacement coordination and force balance, it has:

Ls
0 =

Ts
0 L′s0

E′A′
+ L′s0, (25)

Ts
0 = Qs

0 + G, (26)

2.3.2. The ith(i = 1, 2, . . . , Nn) Times Tension of the New Hanger

After the ith times tension of the new hanger, let the new hanger internal force be Fz
i ,

the pocket hanging hanger internal force be Tz
i , the unstressed lengths of the new hanger

and pocket hanging hanger be Lz
i , L′zi , respectively, and the displacement of the ith times

tension of the new hanger be xz
i . There is no difference between this process and the ith

times of the pocket hanging; therefore, the derivation is not repeated and there are:

Tz
i = Ts

i−1 − E′A′
(
Ts

i−1 − G−Qs
i−1 + Fz

i
)

βz, (27)

Lz
i =

En AnL′si−1
(
G + Qs

i−1 − Fz
i − Ts

i−1
)

βz + En AnLs
i−1 + Ls

i−1 ∗ Fs
i−1(

Fz
i + En An

) , (28)

xz
i = L′si−1

(
Ts

i−1 − G−Qs
i−1 + Fz

i
)

βz, (29)

where βz = 1/
(

L′si−1k + E′A′
)
.

2.3.3. The ith(i = 1, 2, . . . , Nn) Times Unloading of the Pocket Hanging Hanger

After the ith times unloading of the pocket hanging hanger, let the new hanger internal
force be Fs

i , the pocket hanging hanger internal force be Ts
i , the unstressed lengths of the

new hanger and pocket hanging hanger be Ls
i , L′si , respectively, and the displacement of

the ith times tension of the new hanger be xs
i .

Fs
i = Fz

i − En An(Fz
i − G−Qz

i + Ts
i )βs, (30)

L′si =
E′A′Lz

i
(
G + Qz

i − Ts
i − Fz

i
)

βs + E′A′L′zi + L′zi ∗ Tz
i(

Ts
i + E′A′

) , (31)

xs
i = Lz

i (Fz
i − G−Qz

i + Ts
i )βs, (32)

where βs = 1/
(

Lz
i k + En An

)
.
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2.3.4. Displacement Control

Through the above calculation, it can be seen that after the ith (i = 1, 2, . . . , Nn) times
tension of the new hanger, the accumulative displacement of the lower end of the hanger is:

Xz
i = δ(i− 1)∑i−1

n=1(xz
n + xs

n) + xz
i , (33)

After the ith (i = 1, 2, . . . , Nn) times unloading of the pocket hanging hanger, the
accumulative displacement Xs

i of the lower end of the hanger to be replaced is:

Xs
i = ∑i

n=1(xz
n + xs

n), (34)

Xz
i , Xs

i , and control displacement threshold [D] need to satisfy the following relationship:

Xd
i ≤ [D], Xg

i ≤ [D], (35)

3. Case Study

A half-through concrete-filled steel tube truss arch bridge is shown in Figure 6, whose
main clear span is 190 m, the rise-span ratio is 1/4.5, the arch axis is hingeless catenary, and
the arch axis coefficient m = 1.167. An arch rib is a concrete-filled steel tube truss structure
of the uniform section, and the cross section adopts ϕ820 × 12 mm and ϕ820 × 14 mm.
The steel tubes form the top and bottom chord bar of the arch rib, and the section is 4.3 m
high and 2.0 m wide. There are 27 hangers on each side of the main bridge, with an equal
spacing of 5.1 m. The bridge was opened to traffic in December 2003, and there were some
conditions such as a damaged sheath of the hanger, stagnant water at the anchor head, and
a large deviation of the cable force of part of the hanger after 13 years of operation.
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Figure 6. Bridge elevation.

The bridge hangers were replaced in 2016 with the pocket hanging method and the
upper and lower hangers were adopted as a pair to replace at the same time, which are
composed of two ϕ60 mm steel-core wire ropes (6 × 37 S + IWR) symmetrically mounted
on the arch rib, two I36b I-shaped steel pocket hanging beams, four sets of tension jacks,
and QMV.DHM15-6 loose prevention anchorage with a low retraction anchor belt.

A vertical force of 1 KN was applied to the lower end of the hanger to be replaced
(hanger #10), and the displacement of the bridge deck at the lower end of hanger #10 with
different hangers on both sides of hanger #10 was calculated by the force method, as shown
in Figure 7. The displacement of the bridge deck at the lower end of hanger #10 varied
with the number of reserved hangers on both sides of hanger #10 as listed in Figure 7.
It was found that when two or more hangers were left on both sides of hanger #10, the
displacement of the bridge deck at the lower end of hanger #10 was basically unchanged
through calculation. Therefore, only two hangers on each side of the hanger to be replaced
can meet the process needs in practical application.
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Figure 7. The displacement of the bridge deck at the lower end of hanger #10 varying with the
number of reserved hangers on both sides of hanger #10.

This study aimed to implement the hanger replacement procedure of pocket hanging
described by a new method of displacement control, and the precise application procedure
on the actual bridge is given as follows: Figure 8a shows the bridge deck test site at the
displacement of the lower end of the hanger and Figure 8b shows the cable force test of the
hanger. The influence of temperature is usually a difficult factor in the construction control.
The temperature is changeable, which has an important influence on the stress and linearity
of the bridge structure. Especially for the concrete-filled steel tubular arch bridge, the
influence of temperature on the displacement is very significant. In this hanger replacement
engineering application, temperature sensors were set to monitor the temperature of the
bridge cross section, and the temperature simulation was carried out in the form of integral
heating and uniform distribution in the finite element model.
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Figure 8. The hanger replacement process by the pocket hanging method: (a) displacement measurement and (b) cable
force test.

3.1. Old Hanger Demolition Process

The removal process of hanger #10 was calculated by the equations in Section 2.2. The
pocket hanging and cutting processes were divided into five steps with the same step size,
that is to say, the pocket hanging force of each stage increased by 20% of the internal force
of the hanger to be replaced, and the cutting area of each stage was 20% of the area of the
hanger to be replaced.

The displacement of the bridge deck at the lower end of the hanger and the arch rib
displacement at the corresponding part of the hanger were monitored in the process of the
hanger removal, in which the displacement of the lower end of the hanger was measured
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by a high precision Leica electronic level LS15 with a precision of 0.2 mm per kilometer
round trip. The displacement of the arch rib at the corresponding point of the hanger was
measured by a TS15A total station, with a test accuracy of 0.5 s, as shown in Figure 8a.

It was found that the displacement difference of the arch rib at the corresponding place
of the hanger to be replaced was very small before and after the hanger was removed, less
than 0.2 mm according to the displacement test results, which also verifies the correctness
of the assumption that the arch rib has no deformation in the theoretical model in this
paper. The test result of the bridge deck displacement at the lower end of the hanger to
be replaced is exhibited in Figure 9. As can be observed in Figure 9, the displacement
calculated in this paper is very close to the measured value, which verifies the correctness
of the theoretical calculating method.
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Figure 9. Test results of bridge deck displacement at the lower end of the hanger to be replaced in
different cases.

It can be seen from Table 1 that (1) the deformation of the main beam shares part of
the pocket hanging force in the pocket hanging process, so that the change of the internal
force of the hanger to be replaced was less than that of the pocket hanging force. (2) The
internal force of the pocket hanging hanger was gradually increased, while the internal
force of the hanger to be replaced was gradually reduced whether it was pocket hanging or
cutting (see Figure 10), which is also the reason why the old hanger could be removed after
only a few gradings by the pocket hanging method. (3) The displacement was upward
when the pocket hanging was carried out, while it was downward when the cutting was
carried out. Therefore, the cumulative displacement was small after a pocket hanging and
cutting, and it can be seen that the maximum cumulative displacement after all levels of
cutting was 0.77 mm. (4) Since the internal force of the cut wire is shared by the remaining
wire when cutting, the downward displacement during cutting will always be less than the
upward displacement during pocket hanging; as a result, the accumulated displacement
after each cutting stage increased gradually, and the maximum cumulative displacement
was 2.60 mm, which was less than that of threshold [D] = min(10 mm, S/1000) = 5.1 mm.
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Table 1. Calculation results of the removal process in different cases during the old hanger demolition process.

Cases Ti [N] Ai [m2] Fi [N] L
′

i [m] xi [mm] Xi [mm]

Basic parameter E = 2.05 × 1011 Pa, L = 27.10 m, E’ = 2.05 × 1011 Pa, A’ = 0.0037 m2,
Eb = 2.06 × 1011 Pa, Ib = 0.035 m4, S = 5.10 m

Initial state 0 0.0047 9.63 × 105 27.13 0 0
1st pocket hanging 1.93 × 105 0.0047 8.96 × 105 27.12 1.88 1.88

1st cutting 2.33 × 105 0.00376 7.58 × 105 27.12 −1.45 0.43
2nd pocket hanging 3.85 × 105 0.00376 7.13 × 105 27.11 1.59 2.02

2nd cutting 4.28 × 105 0.00282 5.67 × 105 27.11 −1.53 0.48
3rd pocket hanging 5.78 × 105 0.00282 5.31 × 105 27.10 1.69 2.18

3rd cutting 6.23 × 105 0.00188 3.77 × 105 27.10 −1.62 0.56
4th pocket hanging 7.70 × 105 0.00188 3.52 × 105 27.10 1.81 2.37

4th cutting 8.19 × 105 0.00094 1.88 × 105 27.10 −1.72 0.65
5th pocket hanging 9.63 × 105 0.00094 1.74 × 105 27.09 1.95 2.60

5th cutting 1.01 × 105 0 0 27.09 −1.83 0.76

Note: Ti : internal force of the pocket hanging hanger; Ai : the area of the hanger to be replaced; Fi : the internal force of the hanger to be
replaced; L′i : the unstressed length of the pocket hanging hanger; xi : the displacement in the current case; Xi : the cumulative displacement.
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3.2. New Hanger Installation Process

The installation process of the new #10 hanger was calculated in five stages with the
same step size based on the equations in Section 2.3, that is, the pocket hanging force and
unloading force of each stage were 20% of the initial internal force of the pocket hanging
hanger, whose calculated results are shown in Table 2 and Figure 11. The internal force
was controlled by a hydraulic jack in the process of hanger tension and unloading force.

It can be seen from Table 2 that the internal force increase of the new hanger was
basically the same as the internal force decrease of the pocket hanging hanger after two
rounds of tensioning and unloading, while the accumulative displacement showed an
alternating trend of rise and fall, and the rise and fall were basically the same when
the new hanger was installed by means of equal step length tensioning and unloading.
The maximum accumulative displacement was 3.12 mm, which meets the requirements.

3.3. Compared with the FEM

In order to verify the practicability, convenience, and accuracy of the proposed method,
the hanger replacement process of half-through arches with a suspended deck by ca-
ble hangers was also simulated by FEM. The three-dimensional finite element model
was formed in Midas Civil (2018) as shown in Figure 12; the whole model consisted of
1786 nodal points, 80 truss elements, 2735 beam elements, and 370 plate elements. The
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hangers are represented with truss elements, the deck is described by plate elements, while
others are represented with beam elements. The materials of the modal are listed in Table 3.
In addition, the boundary conditions imposed on the end of the arch rib and the bottom of
the pier in the model were all fixed constraints.

Table 2. Calculation results of the removal process in different cases during the new hanger installation process.

Case Ti [N] Ai [m2] Fi [N] L
′

i [m] xi [mm] Xi [mm]

Basic parameter En = 2.05 × 1011 Pa, An = 0.0042 m2

Initial state 0 1.01 × 106 27.126 27.090 0 0.76
1st tension 2.03 × 105 9.55 × 105 27.118 27.090 2.13 2.90
1st unload 2.49 × 105 8.11 × 105 27.118 27.097 −1.45 1.45

2nd tension 4.06 × 105 7.65 × 105 27.111 27.097 1.65 3.10
2nd unload 4.56 × 105 6.09 × 105 27.111 27.104 −1.59 1.52
3rd tension 6.09 × 105 5.64 × 105 27.105 27.104 1.60 3.12
3rd unload 6.59 × 105 4.06 × 105 27.105 27.111 −1.60 1.52
4th tension 8.11 × 105 3.61 × 105 27.098 27.111 1.60 3.12
4th unload 8.62 × 105 2.03 × 105 27.098 27.118 −1.60 1.52
5th tension 1.01 × 106 1.58 × 105 27.092 27.118 1.60 3.12
5th unload 1.07 × 106 0 27.092 27.126 −1.60 1.52

Note: Fi : the internal force of the new hanger; Ti : the internal force of the pocket hanging hanger; Li : the unstressed length of the hanger; L′i :
the unstressed length of the pocket hanging hanger; xi : the displacement in the current case; Xi : the accumulative displacement.
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Figure 11. Bridge deck displacement test results at the lower end of the new hanger in different cases.

Table 3. Materials of the model.

Material Type Applicable Parts Modulus of Elasticity [kN/m2] Bulk Density [kN/m3]

16Mn Arch rib 2.10 × 108 76.98
OVMLZM7-55III Old hangers 2.05 × 108 78.5

Finished deformed bar Temporary hangers 2.06 × 108 100.7
OVMLZM7-55IV New hangers 2.05 × 108 78.5

C50 Deck 3.45 × 107 26
Q345 Main girders and crossbeams 2.06 × 108 100.7
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In the hanger replacement process of half-through arches with a suspended deck
by cable hangers, there are two important steps: old hanger cutting and new hanger
installation. The finite element simulation is as follows:

(1) In the FEM, the cutting of the old hanger actually involves the simulation of the
geometric nonlinearity. It is noted that the mentioned nonlinearity refers to the
geometric nonlinearity caused by the cross-sectional area change of the hanger and
the non-stress length change of the hanger in the hanger demolition and tension
process. It is usually time-consuming to simulate the nonlinearity by the finite element
method, and there is no good solution for the simulation of the non-stress length
change of the hanger in the finite element method. However, the proposed method in
this paper can not only accurately calculate the results, but is also more efficient.

(2) In order to simplify, several repeated elements are usually established at the same
position of the old hanger. These elements have the same parameters except the cross-
sectional area. The cutting process of the old hanger is simulated by activating the
hanger corresponding to the area of the construction stage in different construction
stages and passivating the hanger of the previous construction stage. It is also
important to note that the element needs to be activated along the initial tangential
displacement of the member.

(3) It is relatively easy to simulate the process of the installation of the new hanger
because it does not involve the geometric nonlinearity of the structure. However, the
method of external force replacement is needed when the temporary hanger force is
transformed into the new hanger force. It is also noted that the hanger replacement
implies a mutual effect in the side hangers. This is a linear effect, and a secondary
effect of nonlinearity can depend only on the dissipative role of the attachments,
joints, and operative methodologies, which is not considered in this study but will be
discussed in a future study.

The finite element simulation was carried out on a T4900d-21 Lenovo microcomputer:
the operating system was Windows 10 64 bit; the processor was a i7-7700, 4 core, 8 thread,
8 MB LEVEL 3 cache, and the highest frequency was 4.5 GHz; the memory model was a
DDR4 with a capacity of 8.00 GB; and the video card model was an NVIDIA GeForce GT
730 with a capacity of 2048 MB and a RAMDAC frequency of 400 MHz.

The calculation results of the bridge deck displacement at the lower end of the hanger
under different working conditions during the removal of the hanger and the installation of the
new hanger are shown in Tables 4 and 5, respectively. FMD = (FEM−Measured)/Measured
× 100, PMD = (Present paper−Measured)/Measured× 100.

Through the calculation results, it can be seen that:

(1) The trend of the finite element calculation results was basically consistent with the
measured results, but the deviation between the measured and FEM results was still
large, up to 10%. The main reason is that there were some differences in the material
parameters and boundary conditions between the finite element model and the actual
structure. However, if one wants to make the parameters in the finite element model
consistent with the actual structural, a lot of field tests and calculation work would
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be required, so FEM is not conducive to engineering applications in simulating the
hanger replacement process.

(2) It took 55 min and 25 min, respectively, to remove the hanger and install the new
hanger by the finite element simulation. However, only a small amount of calculation
time was needed to use the proposed method. At the same time, the results calculated
by this method were closer to the measured values than the FEM, and the maximum
error was only -3.94%. Thus, it was proved that the proposed method is fast and
accurate.

Table 4. Calculation results of the bridge deck displacement at the lower end of the hanger under different working
conditions during hanger removal.

Working Condition 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−
Measured [mm] 1.88 0.42 2.1 0.49 2.12 0.54 2.34 0.63 2.56 0.77

FEM [mm] 1.75 0.4 2.16 0.47 2.24 0.59 2.53 0.6 2.61 0.7
FMD [%] −6.8 −6 3.02 −3.3 5.26 9.68 8.11 −4.5 2.26 −9.8

Present paper [mm] 1.88 0.43 2.02 0.48 2.18 0.56 2.37 0.65 2.6 0.76
PMD [%] −0.1 −0.1 3.94 1.18 −2.5 −3.5 −1.1 −3.1 −1.6 0.92

Table 5. Calculation results of the bridge deck displacement at the lower end of the hanger under different working
conditions in the new hanger installation.

Working Condition 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−
Measured [mm] 2.83 1.43 3.19 1.55 3.03 1.55 3.19 1.48 3.04 1.51

FEM [mm] 3.05 1.31 3.39 1.45 3.27 1.6 3.05 1.59 3.22 1.37
FMD [%] 7.97 −7.8 6.54 −6.8 8.1 3.49 −4.2 7.19 6.07 −9.7

Present paper [mm] 2.9 1.45 3.1 1.52 3.12 1.52 3.12 1.52 3.12 1.52
PMD [%] −2.5 −1.7 2.74 2.37 −3 1.74 2.09 −2.6 −2.8 −0.5

4. Conclusions

The precise displacement control of the bridge deck at the lower end of the hanger
is very critical during the hanger replacement process of half-through arches with a sus-
pended deck by cable hangers by using the pocket hanging method. The method of hanger
replacement based on precise displacement control is proposed in this paper. Firstly, the
variation coefficient of shear versus displacement on both sides of the hanger to be replaced
were calculated and the hanger was separated from the overall model in order to establish
the equivalent model of the hanger to be replaced. Secondly, the structural response of the
hanger replacement process and the new hanger installation process were obtained on the
basis of the equivalent model. Finally, an actual hanger replacement of an arch bridge was
adopted to verify the correctness and feasibility of the proposed method. The following
conclusions can be drawn:

(1) The adopted equivalent model of hanger replacement by separating from the overall
model in this paper was accurate, and only partial boundary conditions need to be
considered in practical application to get accurate results.

(2) In the hanger replacement process of an arch bridge based on the pocket hanging
method, the cumulative displacement increased and decreased alternately, and the
corresponding variation values were basically the same during the new hanger in-
stallation process using equal step tensioning and unloading, which would achieve a
satisfactory result and meet the requirements.

(3) Although the trend of the finite element calculation results was consistent with the
measured results, the deviation between them was still large. By comparison, the
calculated result using the proposed method were fast and accurate enough through
the practical engineering verification, and the hanger replacement was feasible under
the precise displacement control.
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