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Abstract: This paper proposes the design of a mixed-mode universal biquad configuration, which 
realizes generic filter functions in all four possible modes, namely voltage mode (VM), current 
mode (CM), transadmittance mode (TAM), and transimpedance mode (TIM). The filter architecture 
employs two voltage differencing buffered amplifiers (VDBAs), two resistors and two capacitors, 
and can provide lowpass (LP), bandpass (BP), highpass (HP), bandstop (BS), and allpass (AP) bi-
quadratic filtering responses without any circuit alteration. All passive elements used are 
grounded, except VM. The circuit not only allows for the electronic tuning of the natural angular 
frequency (ωo), but also achieves orthogonal tunability of the quality factor (Q). It also provides the 
feature of availability of output voltage at the low-output impedance terminal in VM and TIM, and 
does not require inverting-type or double-type input signals to realize all the responses. Moreover, 
in all modes of operation, the high-Q filter can be easily obtained by adjusting a single resistance 
value. Influences of the VDBA nonidealities and parasitic elements are also discussed in detail. 
PSPICE simulations with TSMC 0.18-µm CMOS process parameters and experimental testing re-
sults with commercially available IC LT1228s have been used to validate the theoretical predic-
tions. 

Keywords: active filter; mixed mode; universal biquadratic filter; voltage differencing buffered 
amplifier (VDBA) 
 

1. Introduction 
The design and synthesis of active frequency-selective filters have a very significant 

role in the areas of continuous-time signal processing, instrumentation and measurement 
applications, and wireless communication. In recent years, the design of general 
mixed-mode universal biquadratic filters with input voltages and/or currents and output 
voltages and/or currents has received a lot of attention from researchers. Considering the 
nature of input and output signals, the filters can be classified into four possible modes, 
i.e., voltage mode (VM), current mode (CM), transadmittance mode (TAM), and tran-
simpedance mode (TIM). The VM and CM operations perform frequency filtering be-
havior on voltage and current signals, respectively. The TAM and TIM operations can be 
used as bridges for connecting a VM filter to any of the CM circuits and vice versa. Ac-
cordingly, the mixed-mode universal filters that provide all generic filtering responses in 
all four modes increase the versatility and flexibility of practical filtering applications and 
requirements. Consequently, these filters are worthy of investigation and research. 
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Therefore, in the recent past, several structures realizing mixed-mode universal biquad-
ratic filters with a variety of high-performance active elements have appeared in the lit-
erature [1–46]. Table 1 presents a comparative study of earlier-reported mixed-mode 
universal filters based on various types of high-performance active components. A deep 
investigation of the available literature reveals that several exemplary filter topologies 
introduced in [1,12,16,19,21,26,29,31,32,37,39,43,44] do not provide the different filtering 
responses in all four modes of operation. In [1–7,9–13,17,18,20,25,27–30,32,36,38,40,41], 
they require more than two active components for the design. The use of more active 
components results in higher power dissipation and a large chip area. Additionally, a 
multitude of the previously discussed mixed-mode filters [3–
8,10,12,16,18,22,23,25,27,31,35,36,38,41,42,44,45] employ an excessive number (at least 
five) of passive components. It has been observed that the realizations of [3–8,12,14–
16,18,21–24,26,27,31,33–35,37–39,41–43,45,46] still used some floating passive compo-
nents, which is unfavorable from integrated circuit (IC) implementation viewpoint. To 
obtain various filtering responses or to change the operating mode, the designs in 
[5,7,27,32,42] need structural modification with a programmable switching technique. 
This technique needs to employ some external switches, which practically lead to in-
creasing switching noise. The filter structures given in [3–
8,10,12,16,18,22,23,25,31,35,36,38,41] do not provide the feature of inbuilt tunability of 
filter parameters. Furthermore, the important filter parameters, i.e., natural angular fre-
quency (ωo) and quality factor (Q), for the circuits [1,5–7,12,13,15–
17,19,20,23,30,33,34,37,38,41] are interactive. Although the circuits of [4,13,22,25,27,30–
32,38] allow the realization of different functions of the universal filter with the same 
topology, they employ two different types of active components, which are not modular, 
and increase the complexity of the resulting circuit. In other works 
[8,16,19,24,26,33,39,43,45,46], some mixed-mode universal filters based on a single active 
element were previously reported. However, the active devices used for these realiza-
tions are complex active components, resulting in a complicated internal structure 
[8,24,33,39,43,45,46]. Furthermore, the single active element-based filter circuits 
[16,26,39,43] function only in dual modes of operation. Therefore, it should be concluded 
that the filter structures presented in [1–46] suffer from one or more of the following 
disadvantages: (i) inability to realize various filtering responses in all four possible 
modes; (ii) use of a greater number of active components; (iii) use of an excessive number 
of passive components; (iv) use of ungrounded passive elements; (v) need of some ex-
ternal switches; (vi) lack of built-in tuning capability; (vii) inability to control ωo and Q 
independently; (viii) use of a complex active building block; (ix) need for inverting-type 
or double-type input signals. 

Due to its simple structure, versatility, and CMOS integrability, the voltage differ-
encing buffered amplifier (VDBA) is an alternative and suitable active building block for 
biquad filter solutions [47]. Interestingly, the internal circuit architecture of the VDBA 
block consists of an operational transconductance amplifier (OTA) and a voltage follower 
(VF) [48,49]. This simple circuitry implementation leads to low power consumption and 
small chip area requirements. Therefore, in this work we adopt the advantages provided 
by the VDBA device to design a mixed-mode universal biquad filter. The designed filter 
topology possesses the following salient properties: (i) use of a reasonable number of ac-
tive and passive elements (i.e., two VDBAs, two resistors, and two capacitors); (ii) capa-
bility of realizing universal biquadratic filter functions in all four modes; (iii) employ-
ment of all grounded passive elements, except for VM; (iv) exhibits inbuilt tuning capa-
bility; (v) noninteractive control of Q; (vi) low-output impedance for VM and TIM oper-
ations. The functionality of the circuit has been evaluated through simulation results 
based upon TSMC 0.18-µm 1P6M CMOS technology parameters, and furthermore 
through the experimental measurements of the commercially available integrated circuit 
(IC), LT1228. Additionally, all properties of the proposed mixed-mode filter are men-
tioned and compared with the previous related works in Table 1. Furthermore, Table 2  
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Table 1. A comparison chart of previously related mixed-mode universal biquad filters. 

Related 
Works/ 

Year 
Configuration 

Number of Components 
Used Filter Functions Realized Grounded 

Passive 
Elements 

Inbuilt 
Tunability 

Independent 
Control of 
ωo and Q 

Need for 
Inverting or 

Double 
Input 

Signal(s) 
Active Passive VM CM TAM TIM 

[1]/2003 MISO OTA = 6 C = 2 all five all five -- -- yes yes no no 
[2]/2003 MIMO DO-CCCII = 4 C = 2 LP, BP, HP LP, BP, HP LP, BP, HP, BS LP, BP, HP yes yes yes no 
[3]/2004 MISO CCII = 5 R = 7, C = 2 all five all five all five all five no no yes no 

[4]/2004 MISO CCII = 6, 
DO-CCII = 1 R = 8, C = 2 all five all five all five all five no no yes yes 

[5]/2005 SIMO CFOA = 4 
R = 9, C = 2, 
switch = 1 all five all five all five all five no no no no 

[6]/2006 SIMO FTFN = 3 R = 3, C = 2 LP, BP, HP LP, BP, HP BP, HP LP, BP no no no no 

[7]/2006 MISO CCII = 3 R = 4, C = 2, 
switch = 2 

all five all five all five all five no no no no 

[8]/2009 SIMO/MISO FDCCII = 1 R = 3, C = 2 all five all five BP, HP all five no no yes no 
[9]/2009 SIMO MO-CCCII = 5 C = 2 LP, BP, HP LP, BP, HP LP, BP, HP LP, BP, HP yes yes yes no 

[10]/2009 SIMO DVCC = 3 
R = 3, C = 2, 

MOS = 6 LP, BP, BS all five all five LP, BP yes no yes no 

[11]/2009 MISO OTA = 5 C = 2 all five all five all five all five yes yes yes yes 
[12]/2009 MISO MO-CCII = 3 R = 3, C = 2 -- all five -- all five no no no no 

[13]/2010 MISO 
OTA = 3, 

DO-OTA = 1, 
MO-OTA = 1 

C = 2 all five all five all five all five yes yes no yes 

[14]/2010 MISO/MIMO DO-CCCII = 2 R = 2, C = 2 all five all five all five all five no yes yes no 
[15]/2010 SIMO CCCCTA = 2 C = 2 LP, BP all five all five LP, BP no yes no no 
[16]/2010 MISO/MIMO SCFOA = 1 R = 3, C = 2 all five LP, BP, BS -- -- no no no yes 
[17]/2011 SIMO CCCCTA = 3 C = 2 LP, BP, HP all five all five LP, BP, HP yes yes no no 
[18]/2011 SIMO DDCC = 3 R = 4, C = 2 all five all five all five all five no no yes no 
[19]/2011 MISO MO-CCCCTA = 1 C = 2 -- all five -- all five yes yes no no 
[20]/2013 MIMO MO-CCCII = 4 C = 2 all five all five all five all five yes yes no yes 
[21]/2013 MISO/MIMO VDTA = 2 C = 2 all five -- all five -- no yes yes no 
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[22]/2016 MIMO FDCCII = 1, 
DDCC = 1 R = 6, C = 2 all five all five all five all five no no yes yes 

[23]/2016 MIMO FDCCII = 2 R = 5, C = 2 all five all five all five all five no no no no 
[24]/2016 MISO/MIMO MCCTA = 1 R = 2, C = 2 all five all five all five all five no yes yes no 

[25]/2016 MISO DP-CCII = 6, 
MO-CCII = 2 

R = 4, C = 2 all five all five all five all five yes no yes yes 

[26]/2016 SIMO VDTA = 1 R = 1, C = 3 LP, BP, HP LP, BP, HP -- -- no yes yes no 

[27]/2016 SISO DPCF = 5, 
VF = 2 

R = 4, C = 2, 
switch = 3 all five all five all five all five no yes yes no 

[28]/2017 SIMO CCCCTA = 3 C = 2 all five all five all five LP, BP, HP yes yes yes no 
[29]/2017 SIMO VDTA = 3 C = 2 LP, BP, HP -- all five -- yes yes yes no 

[30]/2017 SIMO OTA = 3, 
MO-OTA = 3 

C = 2 all five all five all five all five yes yes no no 

[31]/2017 SIMO DVCC = 1, 
MO-CCII = 1 R = 4, C = 2 -- all five -- all five no no yes no 

[32]/2017 SIMO 
OTA = 1, 

MO-OTA = 3 
C = 2, 

switch = 1 -- LP, BP, HP LP, BP, HP -- yes yes yes no 

[33]/2017 MISO DXCCDITA = 1 R = 2, C = 2 all five all five BP, HP all five no yes no yes 
[34]/2017 MISO DO-CCCII = 2 R = 1, C = 2 all five all five BP, HP all five no yes no yes 
[35]/2018 SIMO FDCCII = 2 R = 4, C = 2 all five all five all five all five no no yes no 
[36]/2018 MISO DVCC = 5 R = 5, C = 2 all five all five all five all five yes no yes no 
[37]/2018 SIMO VDGA = 2 C = 3 LP, BP, HP LP, BP, HP -- -- no yes no no 
[38]/2019 SIMO VCII = 3, I-CB = 1 R = 3, C = 3 LP, BP, HP HP, BS, AP LP, BP, HP LP, BP, HP no no no no 
[39]/2019 MISO VD-DXCC = 1 R = 2, C = 2 all five all five -- -- no yes yes yes 
[40]/2020 MISO OTA = 5 C = 2 all five all five all five all five yes yes yes no 
[41]/2020 MISO/MIMO DDCC = 3 R = 4, C = 2 all five all five all five all five no no no no 

[42]/2020 SIMO/MISO EXCCTA = 2 R = 4, C = 2, 
switch = 1 

all five all five all five all five no yes yes no 

[43]/2020 SIMO VDGA = 1 R = 2, C = 2 LP, BP, HP LP, BP, HP -- -- no yes yes no 
[44]/2020 MISO VD-DDCC = 2 R = 3, C = 2 all five -- all five -- yes yes yes no 
[45]/2021 MISO/MIMO VD-EXCCII = 1 R = 3, C = 2 all five all five all five all five no yes yes no 
[46]/2021 MISO/MIMO EX-CCCII = 1 R = 1, C = 2 all five all five all five BP, HP no yes yes yes 
Proposed 

circuit 
MISO/ 
SIMO 

VDBA = 2 R = 2, C = 2 all five all five all five LP, BP yes 
(except for VM) 

yes yes no 
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Notes: “ -- ”: not provided, MISO: multiple-input single-output configuration, MIMO: multiple-input multiple-output configuration, SIMO: single-input multiple-output 
configuration, SISO: single-input single-output configuration, OTA: operational transconductance amplifier, DO-OTA: dual-output OTA, MO-OTA: multiple-output 
OTA, DO-CCCII: dual-output second-generation current-controlled conveyor, MO-CCCII: multiple-outputs current-controlled conveyor, CCII: second-generation current 
conveyor, DO-CCII: dual-output CCII, MO-CCII: multiple-output CCII, FDCCII: fully differential current conveyor, CFOA: current feedback operational amplifier, 
SCFOA: specific CFOA, FTFN: four-terminal floating nullor, DVCC: differential voltage current conveyor, DDCC: differential difference current conveyor, VD-DDCC: 
voltage differencing DDCC, CCCCTA: current-controlled current conveyor transconductance amplifier, VDTA: voltage differencing transconductance amplifier, MCCTA: 
modified current conveyor transconductance amplifier, DXCCDITA: dual X current conveyor differential input transconductance amplifier, DP-CCII: digitally pro-
grammable current conveyor, DPCF: digitally programmable current follower, VF: voltage follower, VDGA: voltage differencing gain amplifier, VD-DXCC: voltage dif-
ferencing dual X current conveyor, VCII: second-generation voltage conveyor, I-CB: inverting current buffer, EXCCTA: extra X current conveyor transconductance am-
plifier, VD-EXCCII: voltage differencing extra X CCII, EX-CCCII: extra X CCCII. 

Table 2. Performance comparison of the proposed filter with the recently proposed VDBA-based biquad filters. 

Related 
Works/ 

Year 
Configuration 

Number of Components 
Used 

Filter Functions Realized 
Grounded 

Passive 
Elements 

Inbuilt 
Tunability 

Independent 
Control of 
ωo and Q 

Need for 
Inverting or 

Double 
Input 

Signal(s) 
Active Passive VM CM TAM TIM 

[50]/2009 SIMO FB-VDBA = 2 R = 4, C = 2 LP, BP, HP -- BP, HP -- no yes no no 

[51]/2012 MISO VDBA = 2 

Figure 3: 
C = 2 all five -- -- -- no yes no yes 

Figure 4: 
R = 1, C = 2 all five -- -- -- no yes yes no 

[52]/2016 MISO VDBA = 2 C = 2 all five -- -- -- no yes no yes 
[53]/2016 MISO VDBA = 2 C = 2 all five -- -- -- no yes no yes 

[54]/2017 SISO VDBA = 1 R = 3-4,  
C = 2 LP, BP, HP -- -- -- no yes yes no 

[55]/2017 MIMO VDBA = 2 C = 2 LP, BP, HP, BS -- -- -- no yes no no 
[56]/2018 SIMO DO-VDBA = 1 R = 2, C = 2 -- all five -- -- no yes yes no 
[57]/2020 MISO VDBA = 2 C = 2 all five -- -- -- no yes yes yes 
[58]/2021 MISO VDBA = 2 C = 2 LP, BP, HP, BS -- -- -- no yes yes no 
Proposed 

circuit 
MISO/ 
SIMO 

VDBA = 2 R = 2, C = 2 all five all five all five LP, BP yes 
(except for VM) 

yes yes no 

Notes: FB-VDBA: fully balanced voltage differencing buffered amplifier, DO-VDBA: dual-output voltage differencing buffered amplifier. 
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presents a comprehensive comparison illustrating the superiority of the proposed 
mixed-mode universal filter over the earlier reported relevant VDBA-based biquad con-
figurations [50–58]. As can be observed, no earlier VDBA-based filter realization can be 
operated in all four modes of operation. The passive components used for their realiza-
tions are all floating. Although the works proposed in [54] and [56] use a single VDBA as 
an active element, they suffer from operating in only a single mode and using at least 
four floating passive components. 

The paper is organized as follows, Section 2 describes the VDBA. The proposed 
mixed-mode universal filter is proposed in Section 3. The non-ideal gain effect, sensitiv-
ity performance, and parasitic impedance effect are investigated in Sections 4 and 5, re-
spectively. The simulation results are given in Section 6, while the practical circuit im-
plementation and the experimental results are presented in Section 7. Finally, the paper is 
concluded in Section 8. 

2. VDBA Description 
The electrical symbol of the VDBA is shown in Figure 1. The defining characteristic 

of the VDBA can be described by the following matrix equation: 

    
    
    
    −
    
       

0 0 0 0
0 0 0 0

0 0
0 0 0

p p

n n

m mz z

w w

i v

i v= .
αg αgi v

βv i

, (1) 

where gm is the transconductance gain of the VDBA. The transconductance gm, as usual, 
can be tuned by a bias current or voltage, thereby imparting tunability to the structure. 
Further, α and β are the non-ideal transconductance gain and nonideal voltage gain, re-
spectively. These non-ideal gains can be defined as α = (1 + εα) and β = (1 + εβ), in which 
the tracking errors are identified as |εα| << 1 and |εβ| << 1. Accordingly, the values of α 
and β are ideally equal to unity. 

 
Figure 1. Electrical symbol of the VDBA. 

As mentioned above, the VDBA block comprises two essential circuit blocks: an 
OTA and a VF [47,48]. The simple CMOS implementation of the VDBA used in this work 
is shown in Figure 2, in which the OTA consists of transistors M1-M6; and it is followed by 
a VF formed by transistors M7–M14. A pair of diode-connected PMOS active load (M3–M4) 
is driven by a source couple pair (M1–M2). The transconductance gain (gm) of the OTA 
stage can be externally tuned by the bias current (IB), as described by the following ex-
pression: 

 
 
 

=m n B
Wg K I
L

, (2) 

where Kn = μnCox is the transconductance parameter, and (W/L) is the ratio of the 
width-to-length of the transistors M1 and M2. Note from Equation (2) that the transcon-
ductance gm is electronically adjustable utilizing IB. 

Further, the voltage drop across the grounded impedance at terminal z (vz) is then 
conveyed to the w terminal with a unity voltage gain by the VF. Thus, the nega-
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tive-feedback loop established by M7-M11 provides a very low output impedance at the w 
terminal. For the simulation purpose, the TSMC 0.18-μm level 7 CMOS model parameter 
has been employed, where the transistor aspect ratios are given in Table 3. 

 
Figure 2. Possible CMOS realization of the VDBA. 

Table 3. Transistors’ aspect ratios in Figure 2. 

Transistors W(μm)/L(μm) 
M1-M2, M5, M7-M8, M12-M13 2.4/0.18 

M3, M9, M14 5/0.18 
M4, M10 5.2/0.18 

M6 3.25/0.18 
M11 10/0.18 

3. Proposed Mixed-Mode Universal Biquad Filter 
The proposed configuration, which is realized by two VDBAs, two resistors, and 

two capacitors, is shown in Figure 3. It is important to note that, in this realization, the 
resistors R1 and R2 are permanently grounded. From the proposed circuit in Figure 3, the 
universal biquadratic filter operated in all four possible modes is available as follows. 

 
Figure 3. Proposed mixed-mode biquadratic filter using VDBAs. 

 For VM operation: Assuming ideal VDBA (i.e., α =β = 1) and setting iin = 0, the gen-
eral voltage biquadratic transfer functions of this MISO filter can be obtained as 
follows. 
• With vin = v1 (input voltage) and v2 = v3 = v4 = 0 (grounded), then the LP response 

is realized as: 
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 
 
 

1 2

1 2
( ) = =

( )

m m

out
LP VM

in

g g
C CvT

v D s
. 

(3) 

• With vin = v2, v1 = v3 = v4 = 0, and gm2 = 1/R2, then the BP response is realized as: 

 
 
 

2

2
( ) = =

( )

m

out
BP VM

in

g s
CvT

v D s
. 

(4) 

• With vin = v4, and v1 = v2 = v3 = 0, then the HP response is realized as: 

2

( ) = =
( )

out
HP VM

in

v sT
v D s

. (5) 

• With vin = v1 = v4, and v2 = v3 = 0, then the BS response is realized as: 

 
 
 

2 1 2

1 2
( )

+
= =

( )

m m

out
BS VM

in

g gs
C CvT

v D s
. 

(6) 

• With vin = v1 = v3 = v4, v2 = 0, and gm2 = 1/R2, then the AP response is realized as: 

   
−    
   

2 2 1 2

2 1 2
( )

+
= =

( )

m m m

out
AP VM

in

g g gs s
C C CvT

v D s
. 

(7) 

where 

   
   
   

2 1 2

2 2 1 2

( ) = + + m mg gsD s s
R C C C

.
 

(8) 

Under appropriate conditions, the proposed circuit realizes all five generic biquad-
ratic filter responses at vout, which are taken from the w-terminal of VDBA2. Thus, the 
voltage output of the circuit has a very low output impedance, which is suitable for VM 
cascadability. Moreover, in this MISO configuration, there is no requirement for negative 
and double input voltage signals to realize the desired filter responses. 

 For CM operation: If v1 = v2 = v3 = v4 = 0 (grounded), the CM biquad transfer functions 
for this SIMO filter, attained from the circuit analysis of Figure 3, are given by 

 
−  

 
1 2

0
1 2

( ) = =
( )

m m

LP
LP CM

in

g gH
C CiT

i D s
, 

(9) 

 
 
 2 2

( ) = =
( )

BP
BP CM

in

s
R CiT

i D s
,
 

(10) 
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and 

2

( ) = =
( )

HP
HP CM

in

i sT
i D s

,
 

(11) 

where H0 is the passband gain equal to 1/gm2R1. Additionally, for R1 = 1/gm2, the BS current 
response can be realized by connecting the appropriate output currents as iBS = iHP – iLP. In 
the same way, the AP response can also be obtained by the interconnection of LP, BP, and 
HP responses as iAP = iHP – iBP – iLP. 

 For TAM operation: With vin = v3 and v1 = v2 = v4 = 0, then we obtain the TAM filter 
functions as follows: 

 
 
 

1 2
1

1 2
( ) = =

( )

m m

LP
LP TAM

in

g gH
C CiT

v D s
, 

(12) 

 
−  

 
2

2 2
( ) = =

( )
BP

BP TAM
in

sH
R CiT

v D s
, 

(13) 

− 2
2

( ) = =
( )

HP
HP TAM

in

i H sT
v D s

, (14) 

( )
 
 −  

2 1
2

1 1 2
( )

+
= =

( )

m

LP HP
BS TAM

in

gH s
i i R C C

T
v D s

,
 

(15) 

and 

( )
 

− −  
2 1

2
2 2 1 1 2

( )

+
+

= =
( )

m

LP BP HP
AP TAM

in

gsH s
i i i R C R C C

T
v D s

.
 

(16) 

Equations (12)–(16) represent the TAM filter functions of the LP, BP, HP, BS, and AP 
responses with controllable passband gains, respectively. Gain constants can be defined 
as H1 = 1/R1 and H2 = gm2. It should also be noted from Equations (15) and (16) that a sim-
ple component matching condition (R1 = 1/gm2) is required in the case of BS and AP filter 
realizations. 

 For TIM operation: With all input voltages kept grounded (v1 = v2 = v3 = v4 = 0), the 
configuration in Figure 3 now works in TIM. For this operation, the circuit will re-
alize only two LP and BP biquad filter functions without the requirement of any 
component matching constraints. The TIM transfer functions related to the outputs 
vout and vo(TIM) of the circuit are given by 
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and 
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where H3 = R2. 
In all the above working modes, the important filter characteristics ωo and Q ac-

cording to Equation (8) are found as: 

1 2

1 2

= 2 = m m
o o

g gω πf
C C

,
 

(19) 

and 

1 2 2
2

1

= m mg g CQ R
C

.
 

(20) 

Inspection of Equations (19) and (20) reveals that the characteristic frequency ωo can 
be tuned electronically through the transconductance gmi (i = 1, 2) of the corresponding 
VDBA. Moreover, the filter parameter Q is independently controllable by the R2. Hence, 
the high-Q filter could be conveniently obtained by simply adjusting a single resistance 
R2. 

4. Analysis of the Non-Ideal Gain Effect and Sensitivity Performance 
Considering only the influence of the non-ideal gains (α =β ≠ 1), the characteristics ωo 

and Q of the proposed filter will be modified as: 

1 2 1 1 2

1 2

= m m
o

α α β g gω
C C

,
 

(21) 

and 

1 2 1 1 2 2
2

1

= m mα α β g g CQ R
C

,
 

(22) 

where αi and βi (i = 1, 2) are the parameters α and β of the i-th VDBA, respectively. 
The sensitivity analysis of ωo and Q with respect to active and passive components is 

also carried out, and the calculation results are obtained as: 

1
21 2 1 1 2

= = = = =o o o o o

m m

ω ω ω ω ω
α α β g gS S S S S , (23) 

1
2

−
1 2

= =o oω ω
C CS S , (24) 

1
21 2 1 1 2

= = = = =
m m

Q Q Q Q Q
α α β g gS S S S S , (25) 

and 
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1
2

− −
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= =Q Q
C CS S .

 
(26) 

It can be easily deduced that all the sensitivity coefficients of ωo and Q are not 
greater than one in all four modes of operation. 

5. Analysis of the Parasitic Impedance Effect 
In this section, the effect of various parasitic impedances of the employed VDBA on 

the performance of the proposed mixed-mode universal filter in Figure 3 is to be ana-
lyzed. In practice, the non-ideal VDBA model with its various terminal parasitics is rep-
resented in Figure 4. It appears that the finite parasitic resistances and capacitances at the 
p, n, and z terminals are in the form [Rp//(1/sCp)], [Rn//(1/sCn)], and [Rz//(1/sCz)], respec-
tively, while the low-value serial resistance (Rw) appears at the w terminal. Ideally, these 
parasitic values are assumed to be Rp = Rn = Rz = ∞, Rw = 0, and Cp = Cn = Cz = 0. Under the 
effect of these parasitics, the non-ideal denominator of all transfer functions in all four 
working modes becomes: 

( )( )′ ′ ′ ′ ′ ′ ′2
2 1 1 2 1 1 2 2 1 2 1 2 2 1( ) = + + +1 +1 +n z z w p m m zD s s R R C C sR C sR C sR C g g R R ,

 
(27) 

where R′2 = R2 // Rz2 // Rn1, C′1 = C1 + Cz1, and C′2 = C2 + Cz2 + Cn1. Equation (27) illustrates 
that the order of the filter function is modified due to the parasitic pole ωparasite, (i.e., ωparasite 
= 1/Rw1Cp2). However, this effect can be diminished if the proposed circuit is designed to 
operate at a useful frequency much less than ωparasite or under the following condition: ω << 
0.1ωparasite. As the term (sRw1Cp2 + 1) is made close to unity, Equation (27) can be further 
simplified to 

 
   ′
 ≅  ′ ′ ′ ′ ′    
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(28) 

 
Figure 4. Non-ideal equivalent circuit of the VDBA. 

From Dn(s), the expressions for ωo and Q in the presence of parasitic impedances are 
thus obtained as: 

′
′ ′

1 2
2 1

1 2

1+
=

m m
z

o

g g
R Rω

C C
,
 

(29) 

and 
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Therefore, it may be concluded that the parasitic effects on the ωo and Q would be 
alleviated if the following designs must be satisfied: 

maximum (R1, R2) << parasitic resistances (Rn1, Rp2, Rz2), (31) 

and 

minimum (C1, C2) >> parasitic capacitances (Cn1, Cz1, Cz2). (32) 

6. Simulation Results 
The functionality of the proposed mixed-mode universal filter in Figure 3 was vali-

dated by the PSPICE circuit simulation program. The VDBA was modeled using the 
CMOS structure mentioned in Figure 2 with ±V = 0.75 V and IA = 15 µA. In all simulations, 
the capacitor values were chosen with C1 = C2 = 50 pF. The circuit was designed for fo = 
ωo/2π = 1.52 MHz and Q = 1; the active and passive components were chosen as: gm1 = gm2 = 
0.48 mA/V (IB1 = IB2 = 50 µA), and R1 = R2 = 2 kΩ. Figures 5 and 6 illustrate the ideal and 
simulated LP, BP, HP, BS, and AP frequency responses for VM and TAM (i.e., when the 
input is voltage), respectively. Figure 7 shows the ideal and simulated LP, BP, and HP 
gain responses for CM and LP and BP in TIM (i.e., when the input is current). The simu-
lated fo of the BP filter was measured as 1.44 MHz, which is an error of 5.26% concerning 
its theoretical value. The simulation results of Figure 6 also show that the passband gain 
H1 of the LP response for TAM is obtained as −66 dBS, which depends on H1 = 20 log10 
(1/R1). Similarly, the passband gains H2 for BP, HP, BS, and AP responses are the same as 
the gain H1 of the LP filter because of H2 = 20 log10 (gm2) due to gm2 = 1/R1. 

To examine the transient behavior of the proposed filter, the LP, BP, and HP re-
sponses were carried out for the VM operation. The sinusoidal input voltage of 50 mV 
(peak) at a frequency of 1.52 MHz was applied and the corresponding output current 
waveforms are given in Figure 8. As can be monitored, the phase differences between the 
input and LP, BP, and HP outputs are found to be −92.73°, 5.45°, and 87.29°, which are 
consistent with ideal values equal to −90° 0°, and 90°, respectively. The percentages of the 
total harmonic distortion (THD) for the three filter outputs are 0.22% for LP, 1.12% for BP, 
and 0.64% for HP. In addition, the THD variations of the LP, BP, and HP output voltages 
on the input signal amplitudes are also shown in Figure 9. It is shown that when the ap-
plied input signal amplitude increases by 100 mV (peak), the THD values are within 
2.2%. Through the simulation results, the circuit has a total power consumption of 0.373 
mW. 

As indicated in Equations (19) and (20), the parameters ωo and Q of the proposed 
filter can be set orthogonally. Figure 10 shows the Q-factor adjustability of the BP re-
sponses in VM for various values of R2. In this case, the Q-factors are set as 0.5, 2.4, 9.5, 
and 95.5 with the R2 value of 1 kΩ, 5 kΩ, 20 kΩ, and 200 kΩ, respectively. The results 
demonstrate that the high-Q tuning can be achieved by adjusting R2 without influencing 
fo. Figure 11 represents the VM gain responses of the BP filter for three different values of 
IB and R2. The BP filter is designed for fo = 1.12 MHz, 2.15 MHz, and 3.72 MHz, while 
keeping Q fixed at 9.5. Table 4 gives the component values used in Figure 11 and the 
corresponding calculated and simulated fo. 
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Table 4. Details of component settings used to obtain a specified fo in Figure 11. 

IB = IB1 = IB2 
(μA) 

gm = gm1 = gm2 
(mA/V) 

R2  
(kΩ) 

fo (MHz) Deviation  
in fo (%) Ideal Value Simulated Value 

30 0.37 25.7 1.12 1.09 2.67 
100 0.67 14 2.15 2.24 4.18 
300 1.17 8.12 3.72 3.52 5.38 

 

 
 

(a) (b) 

 
(c) 

Figure 5. Ideal (dashed line) and simulated (solid line) frequency responses for VM: (a) LP, BP and 
HP; (b) BS; (c) AP. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Ideal (dashed line) and simulated (solid line) frequency responses for TAM: (a) LP, BP 
and HP; (b) BS; (c) AP. 
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(a) 

 
(b) 

Figure 7. Ideal (dashed line) and simulated (solid line) frequency responses for CM and TIM: (a) 
LP, BP, HP in CM; (b) LP and BP in TIM. 

 
Figure 8. Transient analysis responses of the proposed filter in VM. 
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Figure 9. THD variations of the LP, BP, and HP output waveforms in VM. 

 
Figure 10. Simulated BP gain responses in VM for variation in Q with fo = 1.52 MHz. 

 
Figure 11. Simulated BP gain responses in VM for variation in fo with Q = 9.5. 



Appl. Sci. 2021, 11, 9606 17 of 27 
 

To study the effect of temperature variations, the proposed filter was analyzed un-
der various ambient temperatures. Figure 12 demonstrates the simulated frequency re-
sponses of the AP filter in VM for different temperatures (0 °C, 20 °C, 50 °C, 75 °C, and 
100 °C). At the natural angular frequency fo = 1.52 MHz, the simulation results show that 
the gain and phase responses lie within the range of –1.3 dBV to –2.7 dBV, and –184° to –
228°, respectively. This variation does not have a strong effect on the gain and phase re-
sponses of the circuit. The noise behavior of the proposed filter versus the frequency has 
also been evaluated, as shown in Figure 13. The output voltage noises of the BP filter at 
the frequency of 1.52 MHz were found to be 20.50 nV/Hz1/2 for VM and TIM operations, 
while the output current noises for CM and TAM were 8.45 pA/Hz1/2. 

 
Figure 12. Simulated AP frequency responses for various temperatures (0 °C, 20 °C, 50 °C, 75 °C 
and 100 °C). 

 
Figure 13. Output voltage and current noises for the BP filters in VM, TIM and CM, TAM. 

The Monte Carlo statistical analysis of the proposed filter is next performed to per-
ceive the effects of the passive component deviations on the filter performance. Statistical 
analysis with 5% random deviation in both resistor and capacitor values was performed 
simultaneously for 200 samples. The results for LP, BP, and HP responses in VM opera-
tion are achieved as in Figure 14. Additionally, the corresponding histogram demon-
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strating the fo variations in BP output is shown in Figure 15. According to the statistical 
results, the mean, median, and standard deviation were, respectively 1.50134 MHz, 
1.49936 MHz, and 53.2151 kHz, which implies that the proposed filter exhibits a reason-
able sensitivity figure to the passive component tolerances. This further validates the 
robustness of the design. 

 
Figure 14. Monte Carlo statistical analysis results for LP, BP, and HP responses in VM. 

 
Figure 15. Histogram of fo distribution of the BP filter in VM. 

7. Experimental Results 
The features of the proposed mixed-mode universal filter configuration in Figure 3 

were also verified by laboratory experiments using a commercially available IC LT1228 
from Linear Technology [59]. Figure 16 shows the PCB realized for measurement pur-
poses. The supply voltage used was ±5 V. The experimental setup of the proposed 
mixed-mode universal filter utilizing the PCB board in Figure 16 is also shown in Figure 
17. In CM and TIM measurements, an additional AD844 and a conversion resistor RC 
were employed to perform the voltage-to-current conversion (V-to-I), where RC = 1 kΩ. 
On the other hand, to obtain CM and TAM filter results, two AD844s and a resistor RC 
were employed as a current-to-voltage converter (I-to-V). The passive and active com-
ponents were selected as R1 = R2 = 1 kΩ, C1 = C2 = 100 pF, and gm1 = gm2 = 1 mA/V (IB1 = IB2 = 
100 µA, where gmi = 10IBi). As a consequence, the theoretical filter parameters for this de-
sign were fo = 1.59 MHz and Q = 1. Figure 18 shows the experimental measurements in the 
time domain of the input and output responses in VM operation, for a 50 mV (peak) si-
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nusoidal input voltage (vin) at 1.59 MHz. The corresponding spectral analyses of the vout 
were also measured, and the results are provided in Figure 19. The measured results in-
dicate that the THD figures for the LP, BP, HP, BS, and AP output responses were found 
to be 1.23%, 2.05%, 1.78%, 0.87%, and 2.04%, respectively. Hence, they have no significant 
distortion that can be observed in our frequency range of interest. The experimental re-
sults of Figure 19 also show that the spurious-free dynamic range (SFDR) for the cases of 
LP, BP, HP, BS, and AP were determined to be 40.70 dBc, 34.60 dBc, 38.07 dBc, 44.82 dBc, 
and 34.66 dBc, respectively. 

 
Figure 16. PCB of Figure 3 used for experimental verification. 

 
Figure 17. Experimental setup for measuring the CM, TAM, and TIM filter results. 

Furthermore, the ideal and experimental results of the frequency-domain responses 
obtained from the VM, CM, TAM, and TIM filters are given in Figures 20–23, respec-
tively. The results of Figures 20–23 show that a good agreement between experimental 
measurements and theoretical predictions can be observed, as desired. Additionally, the 
experimental THD variations of the BP output in all modes of operation are plotted for 
various input signal amplitudes at f = 1.59 MHz, as given in Figure 24. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 18. Measured time-domain waveforms of the proposed VM filter: (a) LP; (b) BP; (c) HP; (d) BS; (e) AP. 
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(a) (b) 

  

(c) (d) 

 
(e) 

Figure 19. Measured frequency spectrum of vout of the proposed VM filter: (a) LP; (b) BP; (c) HP; (d) BS; (e) AP. 
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(a) 

 
(b) 

 
(c) 

Figure 20. Ideal (dashed line) and measured (solid line) frequency responses for VM: (a) LP, BP and 
HP; (b) BS; (c) AP. 
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Figure 21. Ideal (dashed line) and measured (solid line) frequency responses for CM. 

 
Figure 22. Ideal (dashed line) and measured (solid line) frequency responses for TAM. 

 
Figure 23. Ideal (dashed line) and measured (solid line) frequency responses for TIM. 
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Figure 24. Measured THD values of the BP outputs for various sinusoidal input signals at a fre-
quency of 1.59 MHz. 

8. Conclusions 
In this work, a mixed-mode universal filter configuration has been proposed based 

on only two VDBAs, two grounded resistors, and two capacitors. The proposed circuit is 
capable of realizing all five biquadratic filtering functions in VM, CM, and TAM opera-
tion. In TIM operation, the circuit can realize LP and BP responses. The circuit satisfies 
the major advantages simultaneously such as (i) employment of grounded passive 
components, except for VM operation; (ii) having electronic tunability for ωo; (iii) inde-
pendent controllability of its quality factor; (iv) unemploying inverting-type or dou-
ble-type input signals; (v) having low output impedance for VM and TIM operations; (vi) 
low active and passive sensitivity features. The high-Q filter can be easily achieved 
through a single resistance adjustment. The mathematical analyses such as non-ideal 
gains, sensitivity performance and parasitic analysis along with the numerical simula-
tion results and experimental measurement results are shown, in order to strengthen the 
design idea. 
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Symbols 
The following symbols are used in this manuscript: 

α non-ideal transconductance gain 
β non-ideal voltage gain 
εα tracking error of transconductance gain 
εβ tracking error of voltage gain 
Kn transconductance parameter of the transistor 
µn mobility of the carriers 
Cox gate-oxide capacitance per unit area 
W effective channel width 
L effective channel length 
Ω Ohm 
dBV voltage decibel 
dBA ampere decibel 
dBS siemens decibel 
dBΩ Ohm decibel 
dBc decibels relative to the carrier 
V/Hz1/2 the unit of a noise voltage 
A/Hz1/2 the unit of a noise current 
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