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Abstract: The power consumption model can be represented in multiple dimensions, and it is
proliferating to include structured and unstructured data. Dealing with such heterogeneous data and
analyzing it in real-time is an ongoing challenge in the energy sector. Moreover, converting these
data into useful information remains an open research area. This study focuses on modeling realistic
and efficient power consumption data management in the heterogeneous environment for the Iraq
energy sector and suggested a novel hybrid load forecasting model. The proposed system is named
the Power Consumption Information and Analytics System (PIAS), which can perform various roles
such as data acquisition from mechanical and smart meters, data federation, data management, data
visualization, data analysis, and load forecasting. The proposed system has a four-tier framework
(Data, Analytics, Application, and Presentation). Each layer is discussed in detail in this study to
overcome the anticipated challenges. Furthermore, this study discusses the proposed system by
applying two case studies. The first case study discusses power consumption data management,
while the second introduces a novel hybrid load forecasting model using Fuzzy C-Means clustering,
Auto Regressive Integrated Moving Average (ARIMA), and Gradient Boosted Tree Learner. The
dataset used in this forecasting is based on a 1-year duration dated 1 January 2019 to 31 December
2019, on an hourly basis (365 * 24) for the Baghdad governorate. The results showed high accuracy in
load forecasting with improved error rates (MAPE, MAE, and RMSE) achievements in comparison
with other evaluated models such as standalone ARIMA and Gradient Boosted Trees methods.

Keywords: smart grid (SG); big data analytics; fuzzy C-means; ARIMA; gradient boosted tree;
load forecasting

1. Introduction

Modern technology in the energy sector is currently on the rise with the emergence of
digital twin, smart grid, Internet of Things, big data analytics, machine learning, and artifi-
cial intelligence. These technologies have enabled the efficient utilization and management
of resources and effective monitoring and control of the energy sector. However, substantial
work needs to be conducted for developing countries to adopt these technologies in their
energy sector. Due to various constraints on the economy and infrastructure, it is difficult
for developing countries to efficiently manage the generation and distribution of power.
Big data analytics is an emerging concept that aims to solve several problems currently
faced in the world [1]. As the name suggests, big data can be defined as a huge dataset
with great variety and is growing fast. It can be characterized based on the 7 Vs: Volume,
Velocity, Variety, Variability, Veracity, Visualization, and Value. [2]. Big data analytics has
the potential to accurately identify trends and concepts related to human behavior and
the environment. Big data can be retrieved from various sources such as local databases
and social media platforms, where an enormous amount of data is available for analysis
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or solving problems, such as the energy sector usage, and specifically to solve the energy
crisis [3]. Energy’s big data defines the system of big data technology applied to the energy
sector. Additionally, energy’s big data has made an immense contribution in managing
huge datasets containing information about energy consumption patterns, energy demand,
etc., enabling the sector to bridge the demand and supply gap [4]. Different data types,
such as operational data, line data, transformer data, and load data can be collected and
used together to enable the entire grid system to act intelligently. Stored data can be used
to predict customer profiling, automatic demand response, efficient energy planning, and
adequate pricing to enable reduced losses and conserve more energy.

Big data analytics have been incorporated with smart grids to improve power distri-
bution efficiency while optimizing energy consumption [5]. It can be divided into three
mains stages: data collection, communication, and pre-processing. Data collection can be
conducted using smart devices integrated into the grid, i.e., sensors, Phasor Measurement
Units (PMU), smart meters, etc. [6]. The collected data are then communicated via different
wireless and wired communication technologies such as Power Line Communication (PLC),
WiFi, etc. [7]. The data also require a pre-processing procedure to sort, clean, and transform
them into an asset for efficient use. Big data analytics can also help detect faults through an
automated system that is usually impossible in conventional systems.

Moreover, it can also facilitate real-time monitoring of all the consumers, hence
obtaining accurate data related to power consumption patterns and eventually performing
load profiling and forecasting accordingly [8]. All these features result in optimizing power
consumption while reducing the demand–supply fluctuations. Power consumption has
become one of the most significant concerns of developing countries, especially after the
energy crises that occurred during the 1970s [9]. Considering the situation, countries
worldwide are continually striving to make all possible efforts to track and optimize their
power consumption. In this situation, Machine Learning (ML) and Artificial Intelligence
(AI) approaches have been the biggest breakthrough that facilitate modeling, predicting,
and designing an energy system that eventually optimizes power consumption. It has
been established that ML and AI can be integrated into energy systems (primarily grids),
where they can act smartly to reduce energy losses, improve efficiency, and collect real-time
data [10]. AI can be integrated into different electrical grid units, such as generation,
distribution, and consumption, to collect data that are later used to make automated
decisions without human support [11]. While highlighting the significance of ML, Salam
and El Hibaoui [12] stated that forecasting power consumption is one of the essential tasks
that offer intelligence to utilities and facilitates them in bringing improvements to the
system’s performance. All these tasks are only possible through the implementation of ML.
Based on this evidence, it can be affirmed that ML has a great role in optimizing power
consumption, specifically through forecasting. However, AI technology facilitates solving
different power system problems by forecasting, scheduling, planning, and controlling
using the stored data. The selection of an appropriate algorithm is determined by several
factors, including the nature of the data, homogeneity, and features. This paper proposes an
effective power consumption data management system for a hybrid mechanical and smart
meter environment, using the Iraqi energy sector as a case study. The proposed system,
abbreviated as PIAS, offers an effective methodology for data gathering and pre-processing.
It will create an efficient database that can perform different types of functionalities. It also
includes data analytic capability, which can increase productivity and data control in the
energy sector. The main contributions of this proposed system are highlighted as follows:

• The Capability of Heterogeneous Data Acquisition and Data Federation

In developing countries such as Iraq, there is a state of instability and unpredictability
due to a huge gap between reality (mechanical meters) and ambition (smart meters) in
terms of shifting cost and time in addition to logistical difficulties. Additionally, data
uncertainty results from decades of manual meter reading [13,14]. This situation continues
to the time of this study, so embarking on any transformation process will take years,
especially with 5 million subscribers that are constantly growing. The need to build an
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efficient system capable of dealing with the current situation (mechanical meters) and
prospective (smart meters) has emerged. The literature evaluated suggested employing
data mining approaches to integrate data from heterogeneous surroundings [15], while
another researcher developed a tensor-based big data management scheme to reduce data
divergence in datasets obtained from various meters [16]. Despite the fact that the majority
of these researchers showed promising suggestions for data management in heterogeneous
environments, they assumed the existence of a set of physical databases or datasets without
suggestions on how the data coming from the mechanical meters can be processed. The
suggested PIAS system in current research is designed to address this challenge, where
it acts as a data collector or data acquisition point in such heterogeneous environments.
The system is designed to handle data from various sources, such as offline data (sources
mechanical meters) and real-time data (smart meters) through API Gateway; moreover, the
proposed PIAS is designed to offer multi-structured data in a unified database scheme. The
federation of data obtained from different structures can enhance the proposed scheme and
unstructured data, which are heterogeneous. This type of federation can be used to create
correlations and dependencies among variables that allow the data to become dynamic
visualization, informative, and comprehensible.

• A Hybrid Load Forecasting Model (Clustering, Historical Data, and External Factors)

The literature that has been reviewed suggested a hybrid load forecasting model
by applying historical data analytics and/or clustering such as Nepal et al., Japan [17]
and Sulandari et al., Indonesia [18], or historical data with/without combination with
external factors such weather conditions, such as He, F. et al., China [3] and S. Karthika
et al., India [19]. Our research proposes a novel hybrid load forecasting model combin-
ing fuzzy C-means for data clustering and auto-regressive integrated moving average
(ARI‘MA) for historical load data analytics. Additionally, the system is complemented
with Gradient Boosted Tree Learner external factors weather conditions analytics. The
suggested PIAS system database is integrated with the Knime analytics platform [20]. The
Knime platform can perform real-time analytics of high-volume data and predict power
consumption through its many plugged-in machine learning and artificial intelligence
algorithms, depending on users’ specific purposes. As a result, the system can enhance the
load forecasting modeling, and this will contribute positively to helping make the right
determinations for the decision maker to save time and costs in the energy sector in Iraq.

The rest of the paper is structured as follows. Section 2 elaborates on Iraq’s energy
sector as a case study and Section 3 discusses the most relevant related works. Section 4
explains the proposed PIAS throughout many sub-sections such as data, analytics, appli-
cation, and presentation. Sections 5 and 6 discuss the results obtained through two case
studies. Finally, Section 7 concludes the paper.

2. Problem Statement: A Case Study for Energy Sector in Iraq

The energy crisis is one of the world’s major problems, and the case is ultimately
worse for developing countries such as Iraq that do not have efficient and advanced energy
systems. For the Iraq case study, the energy sector’s challenges can be divided into direct
and indirect factors.

2.1. Direct Factors

Infrastructure is considered one of the most critical factors for any energy sector’s
success [3]. Despite this knowledge, developing countries often suffer from backwardness
in this aspect. Specifically, in Iraq, energy infrastructure is not in a very good condition
based on the many conducted field visits, views, and discussions. This is due to the lack of
funds and unstable political conditions. According to the Iraqi Ministry of Energy, Iraq has
about 5 million registered subscribers in the distribution sector. Around 95% of them are
managed by the ministry using mechanical meters, while the remaining 5% are handled by
other private companies using electronic or smart meters. To handle this large number of
power consumption subscribers and reading values from a huge number of mechanical
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meters, the main issue is mandatory physical or manual reading. This is a big challenge,
especially with the limited human resources and the digital transformation requirement
for these manual readings. [13]. The Iraqi ministry of electricity lacks an efficient system to
satisfy their actual needs. Therefore, a gap between the demand in the distribution sector
and resource allocation in the generation sector also exists [14].

Moreover, the number of subscribers is bound to increase dramatically. In the case of
Iraq, there are many unregistered subscribers in the distribution sector. Hence, the power
consumption demand in Iraq will increase exponentially, further widening the energy
production and consumption gap. As a result, the Iraqi ministry has an ambitious plan to
transform the current mechanical meters’ data extraction by incorporating smart meters
and a smart grid into their architecture.

2.2. Indirect Factors

Iraq has an unbalanced supply and demand for energy. The uncertain political
situation and the impact of wars have severely affected the energy sector. Iraq has the
second-largest oil reserves, unfortunately, they are not managed efficiently [13]. Iraq is in
the rehabilitation stage after the civil war that had hit the country from 2014–2017. This
war had caused severe damage to energy infrastructure, making it fall short in its energy
supply. After Iraq was fully liberated in 2017, it had only one-fifth of its transmission
system in operable condition, and 4.5 Gigawatt of generating capacity was damaged [14].
Currently, Iraq is revamping its power generating capacity and the transmission system, for
which a significant investment is being made. The country is also working on its security
mechanisms to ensure a safe oil supply to revamp its energy sector [13–21].

Furthermore, Iraq has an enormous potential to attract foreign investors in its energy
and oil industry due to the large oil reserves. However, since 2003 Iraq has faced various
wars that did not allow the country to grow according to its potential [13]. Therefore, there
is a great need for an efficient energy system that considers all the above circumstances.

3. Related Works

A wide range of applications has been proposed or discussed over the past ten years.
They have been categorized into three main types: namely application, approach, and area
of interest. For application, examples are forecasting, predictions, clustering, control, data
management, and monitoring, big data analytics, and other applications. The approach
includes time-series, regression, descriptive statistics, neural networks, decisions tree, and
many hybrid machine learning approaches) [22]. Meanwhile, for the area of interest, some
examples are generation, transmission, distribution and consumption, and the trading
sector. Additionally, another emerging classification is based on the scope of the network
that these applications can operate in, such as Home Area Networks (HANs), Neighbor
Area Networks (NANs), and Wide Area Networks (WANs) [23]. This wide and varied
vision horizon leads to the emergence of applications in different fields that may share
some general characteristics, but each case can be considered unique due to the diversity
and the difference of data types or the purpose for which it is created. In this context,
many studies have contributed to the discussion of the challenges facing energy sectors.
In this section, we focused on the most related works to our case study. It is divided into
two main categories: (i) existing and potential applications in power consumption for
both data management and load forecasting and (ii) challenges of applications in power
consumption.

3.1. Existing and Potential Applications in Power Consumption for Data Management

Big data analytics techniques are becoming a norm globally, especially in the de-
veloped countries. Therefore, power systems applications were introduced for various
purposes in the energy sector. Power systems have become increasingly efficient since
the concept of machine learning is integrated with power consumption. Moreover, the
increased reliance on advanced infrastructure such as Smart Grid (SG) leads to the in-
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creasing number and quality of power applications, which work collaboratively to make
power consumption more efficient [24]. Typically, SGs consist of smart devices like smart
meters, sensors, two-way communication channels, and advanced control systems that
enable effective power management. These SGs have brought substantial advantages for
the suppliers and consumers as it enables them to predict the cost of energy, load, and
demand [24,25]. Furthermore, smart meters in SG are integrated with multiple sensors
to track power usage data and e-pricing details to the electricity company and conserve
energy by monitoring their real-time usage. This saves a substantial amount of money for
the consumers and lessens the electricity suppliers’ burden, who work tirelessly to bridge
the gap between energy supply and demand [26].

Additionally, the presence of a heterogeneous environment of smart and mechanical
meters adds a lot of challenge to any data management proposed system. Juan I. Guerrero
et al. [15] proposed an efficient system to integrate data into heterogeneous environments
based on data mining techniques. While Sun, L. et al. [27], proposed a method to ma-
nipulate the growing smart grid data by treating it as outlier data (a data that differs
exceptionally from other observations), then categorize them into outlier rejection and
outlier mining groups based on data-driven analytics and data mining techniques.

Moreover, D. Kaur et al. [16] proposed a tensor-based big data management scheme to
reduce the data divergence problem in the dataset generated from diverse meters. Likewise,
Xia, H et al. [28] proposed a system that can extract good quality data from a large-scale
heterogeneous database environment resulting from multiple data sources. This study
suggests using edge computing infrastructure and a unified data representation model for
data integration. In addition, Dhupia B. et al. [29] suggested using many other big data
techniques and/or many other machine learning approaches for data integration purposes
in heterogeneous environments. Although most of these studies presented a promising
result in heterogeneous environments, they have only discussed the existence of a set of
physical databases or datasets of smart meters with different data structures, and without
addressing the handling of the data when a structural database is lacking such as when
data are transferred or generated from mechanical meters. Therefore, a heterogeneous
environment and diverse data without a digital transformation structure due to mechanical
meters strongly motivate further study.

3.2. Existing and Potential Applications in Power Consumption for Load Forecasting

A variety of applications have significantly added various beneficial features to the
smart grid, hence making the system more user-friendly [30]. By predicting the parameters,
consumers and suppliers can adapt their behavior to keep power consumption efficient
while avoiding losses. these applications have been implemented in various areas of
power consumption that bring several benefits to consumers. One of the most famous
implementations is the concept of smart homes that control all the electrical appliances to
enable highly efficient consumption. It also connects these electrical appliances to various
sensors from where data are collected and sent to the distributors, who can then use the
data for predictive analysis [22–30]. Smart homes are becoming increasingly popular
in developed countries because they provide a high level of automation in controlling
electrical appliances while ensuring that energy is not wasted by unnecessarily turning
on the appliances [31]. Moreover, smart homes also allow users to track their energy
usage at any time to monitor and control their energy bills. Therefore, smart homes make
power consumption very efficient while reducing energy costs [24–32]. These existing and
potential applications are highly effective in solving some of the energy problems, but there
is still a need for more research to handle the energy problems that are more prevalent in
developing countries.

Moreover, many ML and AI algorithms have been used to develop forecasting appli-
cations, such as Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural
Networks (ANN), Linear Regression (LR), and Fuzzy Logic (FL) [33], while forecast tech-
niques are a complementary part of designing and operating power systems and planning
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in the energy sector. The forecasting techniques can be classified into three main areas,
namely long-term load forecasting (LTLF) for yearly observations, medium-term load
forecasting (MTLF) for monthly observations, and short-term load forecasting (STLF) for
daily or weekly observations. [30–34]. The suitable algorithms, techniques, and observed
periods for load forecasting will fully depend on the forecast horizon type and the features
of the data. In this study, we focused on STLF as it is more relevant to our collected
dataset volume. In Japan [17], STLF is performed using a hybrid K-means clustering and
ARIMA for load forecasting for one hour ahead; the results showed high accuracy in load
forecasting with the proposed method. In Indonesia [18], a hybrid methodology using
linear Recurrent Neural Networks (RNN) has been proposed for short-term forecasting to
overcome the shortcomings of each method. Although hybrid algorithms can give good
results, the accuracy was unclear in this study.

Aside from that, in China [3], another hybrid method with a decomposition-based
quantile regression forest has been proposed, where the results show the proposed model-
ing can acquire the narrowest prediction intervals at various confidence values. Likewise,
in India [19], a hybrid STLF using the ARIMA-SVM model has been proposed, where
the results show an ideal situation, where the study was based not only on energy con-
sumption data but also on external factors such as weather. Moreover, in the Russian
Federation [35], many algorithms have been proposed, such as long short-term memory
(LSTM), artificial neural networks (ANN), and support vector machine (SVM) regression
for different periods. It was found that SVM regression gives 21% better accuracy in the
power consumption forecasting problem, while in Argentina [36], a hybrid ARIMA and
Regression Tree (RT) models have also been used for STLF, although this study relied on an
interval-valued time-series dataset. The proposed models show good accuracy. The most
related works are summarized in Table 1.

3.3. Challenges of Applications in Power Consumption
3.3.1. Energy Efficiency Monitoring and Management

Although smart grid and big data analytics can bring a great revolution to the energy
sector, it has challenges and constraints that make its employability a complex endeavor.
The most immediate constraint is the overhaul of the conventional infrastructure that
would require a high cost [37]. Apart from this, the smart grid and big data analytics
have other challenges to their application, owing to complex systems [38]. Smart grids
use various smart components that work together to form a system. However, these
components working under different environmental conditions is challenging as various
devices can become damaged under harsh conditions. This situation makes it more difficult
for developing countries to monitor and manage energy efficiency adequately.

In addition to this, security is one of the most significant concerns of smart grids
and big data analytics. Smart grids collect huge volumes of data from their consumers
stored in databases and other areas, such as cloud platforms, prone to cyber-attacks [26].
Additionally, smart systems can gather different types of data about the consumers that may
also include their private information, and this can undermine their privacy. Additionally,
trust is an issue in this regard as consumers may not want to equip their houses with
smart devices that continuously store and share their information with others, i.e., power
managing authorities [30].
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Table 1. Summary of Most Recent Short-Term Forecasting (STLF).

Reference Country Forecasting
Techniques Dataset Result and Finding Limitations Accuracy

This work Iraq

A hybrid load
forecasting model

using fuzzy c-means
clustering, ARIMA,

and gradient-boosted
tree model.

(FCM-ARIMA-GBTL)

Power
consumption
data, weather

data

The results showed
high accuracy in load
forecasting with the
proposed method

(FCM-ARIMA-GBTL)
which gives improved

MAPE, MAE, and
RMSE achievement in
comparison with other
evaluated models such
as ARIMA and Gradient

Boosted Trees alone.

The need for
more historical
data to improve

accuracy.

Presented in
results section

Ref. [17],
2020 Japan

A hybrid model
comprising a

clustering technique
and the Auto

Regressive Integrated
Moving Average
(ARIMA) model.

(K-means—ARIMA)

Power
consumption data

The results show that a
combination of

clustering and the
ARIMA model has

proved to increase the
performance of the

forecasting model more
accurately than that
using the ARIMA

model alone.

Forecasting per
hour per

day from 6 to 9
AM is used,

which may cause
uncertainty in the
results due to an
incomplete cycle.

MAPE = 2.7

Ref. [18],
2020 Indonesia

A hybrid
methodology—

Linear Recurrent
Formula (SSA-LRF)

and Neural Networks
(NN)

Power
consumption data

The study showed ideal
results, as it relies only
on energy consumption
data without indicating
any external factors that

may increase or
decrease energy
consumption.

The performance
in

implementation
of hybrid

methodology

Not provided

Ref. [3], 2019 China

A hybrid method
with a

decomposition-based
quantile regression

forest

Power
consumption
data, weather

data

The results show that
the hybrid method can

improve prediction
accuracy and providing

more prediction
information.

Not specified MAPE = 0.48

Ref. [19],
2018 India

A hybrid Short Term
Load Forecasting

using ARIMA-SVM.

Power
consumption
data, weather

data

The proposed
ARIMA-SVM gives very
good accuracy in STLF,
especially if it was fed

by external factors such
as weather conditions.

The need for
more historical
data to improve

the accuracy.

MAPE = 4.15

Ref. [35],
2019

Russian
Federation

Long short-term
memory (LSTM)
artificial neural

networks (ANN), and
support vector
machine (SVM)

regression

Power
consumption data

The results showed
superiority for artificial
neural networks (ANN),

and support vector
machine (SVM)

regression for time
series forecasting

The need to
increase the
amount of

training data to
improve

prediction
accuracy

MAPE range
from 0.11 to 0.54

for different
periods

Ref. [36],
2020 China

A hybrid ARIMA and
regression tree (RT)

models
(ARIMA—RT).

Interval-valued
time-series

dataset of the
energy sector.

The results show that
the

ARIMA-RT model has a
strong ability to capture
the nonlinear part of the

time-series dataset.

The period for
which the model
was applied was
not sufficiently

appropriate

MAPE = 0.56

3.3.2. Power Consumption and Big Data Analytics Processing

Big data requires a very efficient and fast communication system to communicate
at a high speed with minimum latency to gain optimum efficiency [39]. In developing
countries, a fast communication system may not be available or feasible. Hence, integrating
big data analytics in the energy sector poses a big challenge. Furthermore, big data
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technologies must handle large data from various sources, which require very large and
efficient databases to store and retrieve data during operations. A system’s ability to
transport and process the data may become a bottleneck if the rate is slow, making the
smart grid work inefficiently [37]. Moreover, most of the devices used in big data analytics
technologies, such as sensors, operate on batteries that consume energy. The more devices,
the higher the energy consumption [40]. The availability and implementation of these
devices is also a challenge as they require experts and professionals to deploy and manage
the smart devices, which seems quite challenging in Iraq. Additionally, data retrieval is also
challenging, especially in remote areas, where an extensive network would have to be laid,
thus requiring extra cost [41–44]. In short, these smart systems’ actual power consumption
is unknown, and there is a need for thorough research to determine the actual consumption
of these devices so that the accurate implementation feasibility of big data analytics can
be determined.

4. The Proposed System

The system has been named the “Power Consumption Information & Analytics Sys-
tem (PIAS)”. The proposed system can deal with various data types in a heterogeneous
environment by hosting the data in two independent databases, namely (i) a structured
database for mechanical meters after the digital transformation process and data cleaning
process, and (ii) an unstructured (NoSQL) database for smart meters. Meanwhile, the inte-
gration is carried out through the system back-end through API and system interfaces that
have access to each independent database. The system retrieves the power consumption
data from different geographic regions and can be coupled with other information such
as climatic conditions. It is structured into four tiers: the data, analytics, application, and
presentation tiers. The design is based on a serverless infrastructure design as a block of
services suggested in a recent study [45], which also states the scalability and performance
discussion in more detail. Figure 1 shows the PIAS tiers diagram.

Figure 1. PIAS Tiers Diagram.

4.1. Data Tier Structure

The data tier consists of structured and unstructured databases. The structured
database will be concerned with many processes such as historical data cleaning and
pre-processing. Aside from that, online data that can directly be injected by API Gateway,
as shown in Figure 1, will be dedicated to subscriber information management only.
In contrast, the second part of the data tier contains the time-series database (No-Sql)
unstructured database where the data are stored and retrieved in both hot and cold form
from the API for all objects connected to our systems. Data are kept independent from
the analytics, application, and presentation tiers [46]. The data tier works on the data
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persistence mechanisms that include database servers, file shares, etc. Data persistence
mechanisms are enclosed by the data access layer that reveals the data. The data access layer
provides an API to the application tier that shows the methods of managing stored data
without revealing or creating dependencies on the data storage mechanisms. This allows
the data tier to be updated or changed without affecting the application tier clients [47].
However, the cost is incurred by the separation of tier to bring further scalability and
maintainability improvements. These costs include the model’s implementation costs and
operational costs that ensure the model’s higher accuracy and efficiency. The proposed
framework was built using an SQL server database that employs the following operations
to operate the proposed structure. These processes allow the data to be ready for further
processes in the analytics tier and application tier, so the proposed model can achieve its
objectives and is easily scalable to more resources and information. The following steps
have been applied in the data tier using the structured query language (SQL):

• Step 1: Database Scheme creation: Structure definition, data format, and correlation
among the tables

• Step 2: Data Acquisition: The collected data can be inserted into the database using
many techniques, such as API Gateway, links to other databases as well as direct
import to the data files, and direct reading from smart meters through PLC, the Data
Concentrator Unit (DCU), and GPRS, in addition to reading offline data (mechanical
meters) through the PIAS mobile application, as shown in Figure 2a,b. This mobile
app is designed to work offline, connected to our system through API Gateway
with the capability of reading the meter’s value from the image of mechanical meter
measurement. The identified measurement value is transferred to a digital value and
stored in the mobile devices which were used at the time of reading. Then, the stored
data are sent along with the unique ID of each subscriber and meter ID to the PIAS
through API Gateway when the mobile device is connected to any internet network.
This will effectively reduce human errors in reading the values and reduce the costs
required for this process.

• Step 3: Data manipulation: Create, read, update, and delete (CRUD) operations of any
data from the database.

• Step 4: Querying: Retrieval of stored data to be used by the analytics and application tier.
• Step 5: Integration of security modules: Authorizing access to the data and ensuring

which data to reveal.

Figure 2. Cont.
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Figure 2. PIAS Data Acquisition. (a) Acquisition Block Diagram. (b) Process Diagram.

4.2. Analytics Tier Structure

Data analytics is the core tier of the system because it enables the data to be analyzed
and used for further predictions [48]. This tier uses real-time analytics to perform analysis
of any events right after their occurrence. This process requires an efficient structure to
monitor many events to perform an efficient analysis [49,50]. In this context, the big data
must be partitioned to evaluate the model. Data partitioning is a critical process that makes
the data more powerful by dividing them into smaller pieces. This data are then used
for various purposes to improve data functionality, such as improvements in prediction
accuracy [51]. Our study suggests using the Knime analytics platform in the analytics tier
to make the system more efficient. Knime can perform real-time analysis of high-volume
data and predict power consumption through its many plugged-in machine learning and
artificial intelligence algorithms, depending on specific purposes. One of the features is to
forecast future energy consumption and conditions. Figure 3 shows the top view of the
process flow in the PIAS analytics tier.

4.3. Application Tier Structure

The application tier is the third tier of the proposed application, and it is the logic
tier that contains the business logic. This tier controls the application’s functionality by
performing detailed processing while interacting with the data tier to process the cus-
tomer’s information [52]. It ensures that the customer’s queries are effectively transmitted
to the analytics and database tier, hence enabling them to retrieve the desired information.
Moreover, the application tier is a core part of the application, where logical decisions are
made, and problems are solved [53]. The business rules and algorithms are built into this
tier by writing the application tier in programming languages such as C# and ASP.net.
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Figure 3. PIAS Data Analytics Process Flow.

This activity’s main objective is to provide the user with the desired results [54]. This
tier is also known as server back-end development. A part of the application works at the
back of the application without letting the user know about the processes being performed.
The proposed application’s portal system is the application tier that forms the basis of all
the operations being performed by the application. All the user’s information input into
the application must pass the logic gateway, i.e., application tier, to display the correct
information to the user. For example, when the user logins to the portal using their User
ID and password, the information is sent to the application tier, where it is processed to
check if the user has entered both fields correctly. If the fields match, the user is granted
access to his account, and if the fields do not match, the user is denied access. Similarly,
several other logical operations are carried out by the application tier. Therefore, it can
be regarded as the application’s brain. The application tier also sends commands to the
database tier and analytics tier to retrieve the right data from the information and analytics
presentation [55].

4.4. Presentation Tier Structure

The presentation tier is part of the PIAS application, which is visible to the user. It is
the outermost tier of the application and performs its critical task by displaying information
and retrieving queries from the user [56]. The presentation tier has a user interface, which
can be various types of graphical user interface (GUI) and API gateway. The GUI is the most
common and user-friendly interface, while API is used as a gateway to connect another
database or objects with the right authorities and keys [57]. The presentation tier interacts
with the user to input and relate to the application tier to pass it. The application tier then
logically processes the information and performs the desired operations by interacting
with the database tier and analytics tier that performs the functions to achieve the desired
results [58]. These results are then sent to the presentation tier, which displays them to the
user in various formats such as graphs, tables, and charts as an interactive visualization
shown in Figure 1 (PIAS Tiers Diagram).
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5. Results and Discussion (Case Study 1)

This section discusses the proposed system through the implementation of first case
study, which it discusses data quality, PIAS web interface, and data visualization.

5.1. Case Study 1: Data Management

The data were produced by the Iraqi Ministry of Electricity (MOELC) [59]. It is
available on the Iraqi ministry of electricity’s main website. The original consumption
dataset included 9 months of monthly aggregated reading values (one read per month/per
subscriber) for a total of 5,189,000 mechanical meters. Each meter also provides nine (9)
subscription information parameters. The data covers insights from the four seasons, as
it starts from winter (January–February) to spring (March–May), summer (June–August),
and the beginning of autumn (September). The summary of the dataset is referred to in
Table 2.

Table 2. Dataset Profile Information.

Language English

Privacy Private
Source and Ownership Iraqi Ministry of Electricity (MOELC).

Sampling 5,189,000 subscribers
Sampling After Data Cleaning 1,445,000 Active subscribers

Data Collection Period January 2019 to September 2019
Database Type CSV and Microsoft SQL Database

Parameters 9
Disc Size Around 3.5 GB

The information obtained from the mechanical meters lacks detailed information,
where it only includes reading value per month as a dynamic parameter and lacks im-
portant time-series (timestamps) or cluster information. These can be considered as a
limitation in the current case study, but using PIAS, other objectives can still be achieved.
Moreover, any database design should consider the ability to deal with heterogeneous
data types resulting from current mechanical meters and the possibility of having smart
meters soon. The presence of heterogeneous data leads to the need to go through a delicate
transition phase, i.e., processing the current mechanical meter data, while the gradual
replacement takes place on and shifts to smart meters in the future. This process can take
many years and can be considered as another limitation in the current study. In addition to
that, the nature of the data and its dimensions are different, as the smart meters possess an
average of 20 to 30 different pieces of information about power consumption over time,
while the mechanical meter only has reading value and date of physical data.

5.1.1. Data Quality and Design Structure

To overcome the above limitations, this study proposes to isolate data in the transi-
tional phase instead of data integration itself, i.e., designing two independent databases
constructed of a structured database for mechanical meters and an unstructured database
for smart meters until the transition phase to smart meters is fully completed. As a result,
the system will fully operate using the unstructured database in the future, while the struc-
tured database will be converted into historical data. Many procedures must be completed
before these data can be ready for any following processes such as data visualization and
data analysis. These procedures are further elaborated as follows:

a. Design an independent structured database to host mechanical meter data and an
independent unstructured database (NoSQL) to host future smart meter data. The
unstructured database will have a dynamic scheme with horizontal scalability, as it
can be a document, key-value, images, or wide column store, which can be modified
at any stage. This scheme will be fully dependent on the future controls that are
set by the ministry of electricity requirements, where both databases are connected
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through the API gateway of our system. The system can access both databases with
an integrated interface through the PIAS’s front-end. This proposed design gives the
capability to host data from various sources such as mechanical and smart meters
independently but integrated into the system’s back-end through API and the front
end of the system using GUI.

b. Data Quality: Data cleaning and data pre-processing will be applied before any
data import process. These processes will be only applied to mechanical meter
data in the offline form (i.e., after manual reading and direct data feeding or digital
transformation through the mobile application platform designed specifically for
this purpose) or any other historical data form. This process can also be used to
migrate the historical data, while the real-time data from smart meters will be a
direct injection into our unstructured database through an enterprise API. Moreover,
this process can remove irrelevant and obsolete data in historical data from the
mechanical meters. These might include inactive accounts, missing information,
closed accounts, or empty accounts from the dataset. A powerful cleaning procedure
with Microsoft SQL was used to gain clean data. For the case study, a meter must
fulfill the following four requirements to be considered. After the cleaning process
was completed, 1,445,000 active and clean record entries of subscribers (mechanical
meters) were retrieved. The following steps have been followed to ensure the
data quality:

• Step 1: Check if the basic account information has been updated in the last
15 years.

• Step 2: Check if the account opens or active flags.
• Step 3: Check and remove special characters such as (\.|\,|\!|\@|\#|\‘|\~|

\$|\%|\ˆ|\+|\/|\-|\&|\*|\(|\)|_|\+| |\=|\[|\]|\{|\}|\:|\”|\;|\’|\,|
\.|\/|\<|\>|\?)

• Step 4: Check and remove white spaces such as the word tab and new line spaces.
• Step 5: Check if some record fields contain letters and numbers together; this

must be split and standardized.
• Step 6: Check if any record fields need type conversion.
• Step 7: Check if the account has any missing or empty information.
• Step 8: Recheck the database normalization and unify the lookup table value.
• Step 9: Check and remove any duplicates account records (merge, update

and/or isolate the duplicate records).

c. Additionally, the structured database can be joined to the climate condition data [60]
where the subscribers’ information was linked to the climatic data that was retrieved
from the Iraqi Weather Authority. In this work, the database source can either be
by direct data injection or automated link via the API gateway of the proposed
system. The climatic information is comprised of parameters such as maximum
and minimum temperature, average temperature, amount of rainfall, humidity, and
the length of daytime. The climatic data were collected simultaneously with power
consumption data to determine an effective and accurate link between the two
datasets. Figure 4 shows the step-by-step data cleaning and pre-processing process
that was applied to the collected raw data. Moreover, additional fields were added to
the database to create the final structure. These fields are comprised of information
such as personal information, address, and the subscriber’s geographical location,
which will be used for the proposed PIAS later.
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Figure 4. Data Cleaning and Pre-processing.

The designed structured database has two main tables and five lookup tables, as
seen in Tables 3 and 4. It includes the reading information tables linked to the account
information table by a unique identifier (GUID) with (many-to-one) relationships to enable
multiple readings for the same account over time. Information such as reading value is a
dependent variable in our model, while the maximum temperature, minimum temperature,
average temperature, amount of rainfall, humidity, and the length of daytime are the
independent variables.

Table 3. Account information parameters.

Parameters Descriptions

GUID Unique identifier—Primary Key
Acc. Num. Account Number

Region Account Province (Fifteen provinces in Iraq)—Lookup Table
Met. Num. Meter Number

Acc. Type Account Type (Household, Commercial, Agricultural, Unclassified, Governmental,
Industrial)—Lookup Table

Sub. Num. Subscriber Number
Phase Number of Phase per Subscriber (Single-phase or Tri-phase)—Lookup Table
Status Meter status: Open or Close—Lookup Table

Managed by Managed by (Managed by Local company, Managed by Ministry of Electricity)—Lookup Table

Table 4. Reading Information Parameters (Many to One).

Parameters Description

GUID Unique identifier—Primary Key
Account_ GUID Unique identifier for each account (Many to one linked to Table 3)—Foreign Key

Read value Read value
read date Date of Each Reading

Maximum_Temperature Maximum Temperature
Minimum_Temperature Minimum Temperature

Daily_Mean Daily Mean
Average_Rainfall Average Rainfall

Averag_Rainy_Days Average Rainy Per Days
Average_Relative_Humidity Average Relative Humidity

d. Basic statistical analysis can be applied to the variables of the clean dataset. Table 5
shows the statistical analysis of the dataset variables after pre-processing and linking
to climatic information, where the skewness was used to measure the symmetry of a



Appl. Sci. 2021, 11, 9600 15 of 33

dataset [61]. A higher value of these parameters means the data have high divergence.
Similarly, skewness was used to describe our dataset; skewness of zero means that
it is symmetrical, whereas a positive value means a shift towards the right side and
a negative value towards the left [61]. Furthermore, kurtosis was used to measure
the ‘tiredness’ of data or measure the data distribution peak [34]. A high kurtosis
means that data are highly tailed and vice versa. The kurtosis is used to measure
the degree of a distribution’s peaks. A kurtosis value close to (0) means that normal
distribution is observed, a kurtosis value lower than (0) means the distribution has a
light tail, and a kurtosis value larger than (0) represents a distribution with heavier
tails. Moreover, a scatter matrix was used to determine the correlation between the
variables and identify the correlation’s nature (if it exists) between the variables [62].
Figure 5 below shows the scatter matrix of the temperature variables used in this
research. The range of reading values is from 0.5 to 1.0, against which other variables
are plotted in the diagram. The daily mean temperature lies in the range of 4.999 to
39.000 and shows an increasing trend. The graph also shows positive correlations
between several variables that can act as predictive indicators for the future.

Table 5. Statistical Analysis of Dataset.

Min Max Mean Std. Deviation Variance Skewness Kurtosis

Read value
(Energy consumption) 36,835 64,344 51,896.4 5479.97 30K+ −0.58 0.50

T. max 12 54 32.79 11.14 124.18 −0.26 −1.31
Daily mean 5 39 23.93 10.14 102.78 −0.28 −1.41

T. min 2 30 17.69 8.43 71.15 −0.32 −1.38
Av. rainfall 0 111 18.46 27.21 740.21 1.92 2.96

Av. Rainy days 0 10 2.61 2.89 8.37 0.73 −0.64
Av. humidity 20 76 40.63 19.55 382.38 0.36 −1.48

Sunshine hours 192 353 283.65 59.93 3592.02 −0.27 −1.44

Figure 5. Scatter Matrix as Visual Indicators.

5.1.2. PIAS Web Interface

PIAS is a web-based application that allows users to access their accounts at any place.
The most common feature in the presentation tier is the interactive buttons that perform the
users’ desired operations [63,64]. The application’s main interface allows the user to enter
their account credentials to access the account. Additionally, the user who logs into the
account can choose several options, such as account information, subscriber information,
reading the information, etc., that can be accessed. For example, by choosing the reading
information option, the user can view the period’s power consumption information. The
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application interface allows the user to select the period of choice and view the power
consumed for that period while seeing the future forecast based on past trends. The user
can also view the month’s expected bill and detailed information about the peak hours
of power consumption. It also shows climatic data to the users and their link with power
consumption. All this information is displayed to the user in a compact and legible form,
i.e., through graphs and tables to easily comprehend and optimize the power consumption
information, decreasing the energy bills. The presentation tier is the most significant
and essential part of the application’s visualization that shows information to the user
in an interactive manner. The proposed PIAS portal’s web interfaces will allow users to
access and gain information about various parameters such as energy consumption and
climatic changes. The users’ accounts will be encrypted using a protected password so that
no one else can access the client’s portal, hence protecting the client’s information from
unauthorized access. The portal interface is very user-friendly, which allows the user to
access the account very quickly.

Figure 6 shows the portal’s main dashboard that the users can view after signing into
their account. This dashboard displays the information about the subscriber’s account
and other details such as location, electricity supplier, and the type of energy phase used.
Moreover, the dashboard also has a “reading information” tab that displays information
about the subscriber’s power consumption in a specified period, along with the future
forecasts. This also helps the subscribers to estimate their monthly bills. By keeping
track of power consumption data, monthly bills can be saved and managed. Additionally,
the subscriber can also determine the peak time of usage that will promote more efficient
electricity use during that period, conserving a significant amount of monthly consumption.

Figure 6. Main Dashboard of PIAS.

In Figure 7, the “account information” tab shows all the subscriber’s account details.
This information includes account number, subscriber number, meter number, account
type, phase name, account status, and managed by name. Additionally, the GPS location of
each meter will be recorded by PIAS along with complete account profile information and
meter maintenance history. Furthermore, PIAS offers the feasibility of updating the power
consumption reading information without having any difficulty synchronizing with the
smart meters’ API gateway to automatically update records through PIAS RESTful API.
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Figure 7. Update Account Information on PIAS.

5.1.3. Data Visualization

The PIAS visualization shows the data after they were analyzed and compared with
the hypothesis to testify their validity [65]. Moreover, the application’s visualization
displays the result in graphs and tables that summarize the lengthy information in a
compact form that is easy to be understood by the user. The information displayed
includes the data about the climate of various geographic locations of Iraq. The climatic
information consists of the data about rainfall, temperature, and humidity in various
Iraq cities. The visualization dynamics enable the desired data to be retrieved by the
user to perform a descriptive analysis [65]. Therefore, visualization is a critical feature
that enables easy and fast analysis of huge power consumption and climatic data. The
dynamic chart below displays how the data are presented by visualization in an intelligible
format. Microsoft’s Power BI tools have been used in the proposed model as interactive
visualizations and business intelligence tools to represent the digital data after passing all
the previous operations such as the organization and cleaning processes.

Figure 8 shows the geographical distribution of different parameters such as popu-
lation, distribution of rainfall, average maximum temperature, and the average reading
value for different regions of Iraq. The general average was calculated and represented in a
circle representing the different regions and governorates from the north, center, and south.
The bigger the circle, the higher the rates (population, rainfall, etc.) are distributed on the
interactive map.
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Figure 8. Distribution of Population Density, Average of Rainfall Intensity, An Average of Maximum Temperature, and
Consumption Read Value Over Different Iraqi Region.

The temperature and the amount of rainfall that affect the energy consumption rate
in different seasons can be extracted through the map, where the northern governorates
record lower energy consumption than their central or southern counterparts, with a higher
average temperature and a lower precipitation rate despite some northern governorates
having a higher population. This can considerably help the Iraqi Ministry of Electricity to
effectively supply and plan the power generation as well as give information on expected
power consumption. Additionally, putting this information together gives a more in-
depth insight into decision making in the energy sector. In the available dataset, the GPS
information for each account is not provided. The map can be more dynamic and detailed
if GPS information is available.

Another approach to review and analyze the obtained data is the interactive view. A
dynamic analysis of different cities is a highly significant feature of the proposed system,
where the decision maker can view the analytical data for several different regions from one
dynamic view. With dynamic analysis, the authority can view various climatic conditions
and power consumption information simultaneously in graphs. It will allow them to
analyze various regions’ energy conditions accurately. Moreover, it will also enable the
ministry to accurately analyze the energy demand while making an effective future plan to
meet rising power demands. Figure 9 shows an example of a dynamic analysis of different
Iraqi regions. The analysis of the data obtained in dynamic analysis supports the research
hypotheses reviewed in a previous section; as shown by the dynamic interfaces below,
the rate of energy consumption decreased when we are facing a decrease in temperatures
and vice versa during different seasons of the year, and this is evident in the ninth-month
readings. Although the reduction is minimally affected by the rate of consumption, it is
expected to continue with the decrease in temperatures in the winter season.
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Figure 9. Dynamic Analysis of Rainfall Distribution and Minimum Temperature and Account Types
Over Region and Months.

To promote a deeper understanding of the strength of the data visualization and
analyzed results, a dynamic analysis of three major cities of Iraq, Nineveh (Mosul City),
Baghdad, and Basrah, was performed. These three cities were chosen based on the popula-
tion density, as they are considered the three largest cities in Iraq, and their geographical
location is distinctive (north, center, and south of Iraq, respectively) with three different
climatic conditions in temperatures, the amount of rainfall and the number of daylight
hours in the day. Figure 10 shows the dynamic analysis of the monthly average rainfall,
monthly average read value, and monthly average minimum temperature in Baghdad.
The figure shows that rainfall is highest in January, February, and March. Read value does
not show much fluctuation and remains almost constant for the last nine months, with
the highest value recorded in August. Baghdad shows the highest minimum temperature
in July and August and has the lowest minimum temperature in January and September,
offset by a decrease in energy consumption rates.

Figure 10. Dynamic Analysis of The City of Baghdad.

Figure 11 shows Basrah’s dynamic analysis with the highest rainfall in January with
no rainfall from May to September. It has the same trend of reading value as Baghdad, i.e.,
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uniform, and has the highest minimum temperature in August, with the lowest in January
and September, which is also offset by a decrease in energy consumption rates.

Figure 11. Dynamic Analysis of Basrah City.

Figure 12 shows the dynamic analysis of Nineveh city (Mosul). Unlike Baghdad and
Basrah, it has the highest rainfall in February, with no rainfall from June to September.
Again, the read value trend remains the same for Mosul, i.e., uniform, and has the highest
minimum temperature in August, with the lowest in January.

Figure 12. Dynamic Analysis of Nineveh (Mosul City).

The results reinforce the following understanding that the rate of power consumption
is greatly affected by different climate conditions, where consumption rises as the tempera-
ture rises, and the power consumption decreases with lower temperatures recorded. It was
also noticed that the power consumption increases gradually whenever there is a decrease
in the rainfall rate. All of this strengthens the research hypotheses, as the researcher could
predict power consumption rates by linking them with different climatic condition data.

6. Results and Discussion (Case Study 2)

This section discusses the proposed system through the implementation of a second
case study, which discusses the data analytics for load forecasting.



Appl. Sci. 2021, 11, 9600 21 of 33

6.1. Case Study 2: Data Analytics (Load Forecasting)

Due to the lack of sufficient time-series information in Case Study 1, for data analytics
of load forecasting, we have obtained another dataset from the Iraqi Ministry of Electricity.
The dataset contained the power load specific to the Baghdad Governorate for 12 months
of 2019 (1 January 2019 to 31 December 2019) and distributed according to a timestamp in
a matrix of 24 h per day. The summary of the dataset is shown in Table 6.

Table 6. Power Load Dataset Profile Information.

Language English

Privacy Private
Source and Ownership Iraqi Ministry of Electricity (MOELC).

Sampling One Year for Baghdad Governorate
(24 H*365 D)

Data Collection Period 1 January 2019 to 31 December 2019
Database Type CSV

Parameters (Load value Per Hour, Max, Min, AV Degree
Per days)

Disc Size Around 65 KB

6.1.1. The Proposed Model

In this research, we proposed a novel approach for the load forecasting of the Baghdad
governorate using a hybrid model encompassing a fuzzy C-means clustering (FCM), the
Auto Regressive Integrated Moving Average (ARIMA) model, and Gradient-Boosted Tree
Learner (GBTL). The proposed method consists of five stages, as shown in Figure 13.

Figure 13. The Proposed Model.
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• First Stage (Data Reading and Preparation): data can be imported directly or linked
to different databases through the internal API of our system and integrated and
connected with the Knime platform. The next step is to un-pivot data from a 365/24
matrix to an hourly data form, 365*24. Figure 14 shows the daily Baghdad gover-
norate load distribution (kW) for 2019, while Figure 15a,b show the hourly Baghdad
governorate load distribution (kW) for 2019; in addition, we are checking missing
values and normalization the load value between 0 and 0.5. Moreover, to handle rapid
or irregular fluctuations and outliers (irregular patterns). Additionally, we applied
outlier detection to smooth our data for the next stage process.

• Second Stage (Data Clustering with FCM): our novel approach includes clustering
data of an entire period, i.e., for 365*24 (8760 H) of 2019. The clustering analysis is
an unsupervised method that behaves as a keystone in data analysis developments,
which is especially helpful in an irregular patterns dataset. For that, FCM cluster-
ing was used to discover a set of homogeneous patterns in a heterogeneous load
dataset [30]. The number of eight cluster groups that share the same characteristics
in load was appropriate for the entire period, where each data input (value) is as-
signed, a likelihood score appropriate to that cluster. The formula of FCM is given in
Equation (1) [30]. Figure 16 shows the cluster group membership.

J(U, V) =
N

∑
i=1

C

∑
k=1

U(i, k)m D(i, k)2 (1)

where:

• Xi = {X1, X2, , Xn}: the input value
• U(i, k) is the membership value of the element Xi in a cluster with center Vk, 1 ≤ i ≤ N;

1 ≤ k ≤ C
• The bigger U(i, k) is, the higher the degree of confidence that the element Xi belongs

to the cluster k.
• m is the fuzzification coefficient of the algorithm.
• Third Stage (Signal Decomposition): to provide a good benchmark for our forecasting,

the seasonality inspection and a decomposition signal model have been applied to
each cluster. A decomposition signal is a process of extracting the information from the
reading value data over time (yt), into a much smaller component, such as (i) seasonal-
ity (St ), which represents the major spike in the autocorrelation of the data over time,
(ii) trend (Tt), from fitting a regression model of data over time, and (iii) residual (Rt),
the component for further analysis, which represents the remaining data over time
(Equation (2)). The knime auto decomposition signal (loess regression) was applied
with max observation lags of 100, lag step of 1, and correlation cut-off value of 0.5.
This will automatically check the tested signal for trend, seasonality, and the residual.
We can inspect seasonality in a time series in an Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF). The regular and unregular peaks in the plot
can give information about seasonality, which can be eliminated by differencing the
data at the lag with the highest correlation. An example from Cluster 0 can be seen in
Figure 17a–c to show the decomposition signal, ACF and PACF, respectively.

yt = St + Tt + Rt (2)

• Fourth Stage (ARIMA Model): After observation and removing the trend (Tt) and
seasonality (St) from our main signal, the residual (Rt) will pass to the next node
which is used as the training data for the forecasting model. The ARIMA models have
been used to forecast a given time series dataset based on its historical values. As
we have one year period in an hourly based time stamp, our proposed model can
predict the load of one value which represents one hour ahead, or one day ahead,
24 h value, or one week ahead, 168 h value, etc. The time, date, or period that needs
to be forecast can be controlled before the ARIMA model is applied. Cases such as
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a certain day or a certain period must be considered along with selecting the right
cluster that they belong to. An ARIMA consists of two parts: an autoregressive (AR)
model where the variable depends only on its lags, and a moving (MA) model [34]
that combines the dependence between observation and residual of the forecast errors.
ARIMA is written with the notation ARIMA (p,d,q), where ‘p’ represents the number
of lag observations, ‘d’ represent the number of differences necessary to make the
dataset stationary, and ‘q’ represents the size of the moving average window. The
formula of ARIMA is given in Equation (3).

Yt = c +∅1Yt−1 + · · ·+∅pYt−p + θ1 et−1 + · · ·+ θq et−q + et (3)

where:

p = is the order of the autoregressive part.
q = is the order of the moving average part.
c = constant.
et = residuals (error in time t).

Figure 14. Daily Baghdad Governorate Load Distribution (KW) for 2019.

The process of choosing the appropriate values for the ARIMA model (p,d,q) param-
eters is very important since all the prediction values will depend on these values. To
find the best ARIMA (p,d,q) parameters for this dataset, we fit different ARIMA models
using auto function and select the model with the minimum Akaike Information Criteria
(AIC) value. The AIC is an estimator of the relation quality of statistical models for a given
dataset. Table 7 shows the parameters (p,d,q) of the best fit model for each cluster training
dataset, where it was calculated using the auto.arima function in a Python programming
language. A lower AIC value indicates a better fit model. When the series is found to be
stationary (by using the auto.arima function), then the “d” parameter can be chosen to be
zero in the ARIMA model.
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Figure 15. (a) Hourly Baghdad Governorate Load Distribution (MW) in 24-Hour Box-plot; (b) Hourly Baghdad Governorate
Load Distribution (KW) for 2019.
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Figure 16. Cluster Group Membership based on load values.

Table 7. Akaike Information Criteria and Best ARIMA (p,d,q) for Each Cluster.

(p,d,q) AIC

Cluster 0 (3,0,4) 5518.749

Cluster 1 (1,0,3) 5252.404

Cluster 2 (3,0,2) 8001.193

Cluster 3 (1,0,4) 6900.293

Cluster 4 (2,0,3) 5301.737

Cluster 5 (4,0,3) 10,274.279

Cluster 6 (3,0,1) 7033.124

Cluster 7 (4,0,2) 5924.249

The auto.arima function is valuable for the following reasons: the forecasting process
needs a fast and flexible performance process on a daily, weekly, or monthly basis, and
it need advance experience by the user to make sure it selects the appropriate value of
these parameters. Furthermore, fitting a model normally takes heavy effort; the automated
procedure is preferable to manual techniques for determining the proper value of these
parameters (p, d, and q), which can result in more reliable forecasting results.

The next step is the analysis of the residuals of the ARIMA model by using a test
such as ACF, Histogram, and Ljung–Box statistics to see if the residuals are white noise.
Figure 18a–c show the analysis of the residuals of Cluster 0.
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Figure 17. (a) Signal, Trend, and Seasonality Differences of Cluster 0; (b) The Autocorrelation (ACF) of Decomposition
Signal of Cluster 0; (c) The Partial Autocorrelation Function (PACF) of Decomposition Signal of Cluster 0.
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Figure 18. Analysis of The Residuals of Cluster 0.

• Fifth Stage (GBTL Model): the ARIMA model can only predict value based on its
previous lags (historic data), while no other assumptions are considered, such as
weather conditions or any other external factors. Therefore, external variables might
improve the forecast accuracy. Consequently, the residuals error resulting from the
previous step will pass to the GBTL model to be trained and predicted with external
factors such as Maximum, Minimum, and Average Degree. The Gradient-Boosted
Trees model has multiple XT

t features to predict Xt . The target variable then adds
to the predictor sequentially to ensemble data while following the same sequence to
correct the preceding predictors [15]. The GBTL can be represented mathematically, as
given in Equation (4).

Xt = Xt + ∝ ∗ δ Σ
(

XT
t − Xt

)2
/δ Xt (4)

where:
XT

t = the target values, Xt = the prediction values and ∝ = learning rate
The gradient-boosting model is supportive in our case, as it is an easy-to-read algo-

rithm and gives efficient interpretations. The GBTL prediction result for the residuals error
will be added to the load predicted using ARIMA as given in Equation (5). Figure 19a,b
show the actual and the forecasting load of cluster 0. The proposed method tested using
the Knime analytic platform using a computer with an Intel CPU Core i7-7500U 2.7 GHz
and 16 GB RAM. The execution time of the proposed model was around 30 s.

Ft = Yt + Xt (5)

where:

Ft = the overall forecasting results.
Yt = the forecasting result from the ARIMA model.
Xt = the forecasting result from the GBTL model.
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Figure 19. (a) The Actual Load (KW) of Cluster 0; (b) The Forecasting Load (KW) of Cluster 0.

The observations from Figure 19a,b show a perfect match between the actual load
and the forecasting load, and this is an indication of the high accuracy of the proposed
mode, and that the dependence on external factors such as weather conditions enhance the
improvement of the forecasting model invariably.
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6.1.2. Model Evaluation

After training a model, the next step is scoring the model to evaluating the proposed
model. This evaluation, conducted by computing various statistics such as the Mean Abso-
lute Percentage Error (MAPE), was calculated using the formula shown in Equation (6),
where an MAPE value (<10) means highly accurate forecasting, MAPE between (10 and
20) means good forecasting, MAPE value between 20 and 50 reasonable forecasting, and
MAPE higher than (50) mean weak forecasting [35]. In addition, a Mean Absolute Error
(MAE) to measure inaccuracy in the data was used. The difference between actual values
and accurate values is known as the absolute error, and the average of these absolute
errors is known as the mean absolute error [66,67]. It can be calculated using the formula
shown in Equation (7). Moreover, the Mean Squared Error (MSE) was used to measure the
difference between prediction and the actual value, the average of the squared absolute
errors. It is calculated by first squaring the absolute error and then taking their average [66].
The formula is shown in Equation (8). Additionally, Root Mean Squared Error (RMSE) is
used to measure the error between the actual data and the model of estimation [54–66].
It is calculated by simply taking the root of MSE. It can be calculated using the formula
shown in Equation (9).

MAPE = Σ
[
(pi− ri)

pi

]
× 100%

n
(6)

MAE =
Σ(pi− ri)

n
(7)

MSE =
Σ(pi− ri)2

n
(8)

RMSE =
2

√
Σ(pi− ri)2

n
(9)

where:

n = number of times the summation iteration happens.
pi = actual value.
ri = forecast value.

For a comprehensive study, the same dataset is trained and predicted using the
ARIMA model and GBTL independently. Table 8 shows the three-model evaluation, i.e.,
the Proposed Hybrid Model, ARIMA, and GBTL where MAPE, MAE, and RMSE were
used to evaluate the process. The results show that our proposed model gives better results
where lower MAPE is obtained. It can be concluded that the proposed methods have the
highest accuracy. Additionally, very low values can be observed in MAE and RMSE to
indicate a high forecasting accuracy.

Table 8. The Model Evaluation.

Proposed Model
(ARIMA-GBTL) ARIMA GBTL

Cluster 0
MAPE 0.298241254 1.595470053 2.102847728

MAE 0.000802411 0.010943998 0.009823649

RMSE 0.001040184 0.013007015 0.012507055
Cluster 1

MAPE 1.268934292 4.565898212 3.116166309

MAE 0.001681791 0.010046462 0.01249306

RMSE 0.002270159 0.012239579 0.014918207
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Table 8. Cont.

Proposed Model
(ARIMA-GBTL) ARIMA GBTL

Cluster 2
MAPE 0.725948449 2.22781236 2.675913816

MAE 0.000863562 0.008580184 0.009404522

RMSE 0.001135038 0.010676258 0.011427171
Cluster 3

MAPE 0.391079094 2.21031944 1.746144331

MAE 0.000506608 0.009794827 0.010266868

RMSE 0.000657717 0.011536968 0.012405158
Cluster 4

MAPE 0.319013042 2.019749556 6.070942807

MAE 0.00073605 0.010264597 0.011093827

RMSE 0.000970941 0.01241723 0.013213787
Cluster 5

MAPE 0.551668786 2.668732358 6.894689216

MAE 0.000929249 0.008082002 0.008988616

RMSE 0.001226214 0.009605795 0.010734888
Cluster 6

MAPE 0.412275984 1.925889028 2.076377338

MAE 0.000967922 0.009308634 0.009529595

RMSE 0.00125275 0.011249835 0.011664366
Cluster 7

MAPE 0.112522215 1.089237343 1.144672198

MAE 0.00042932 0.005786312 0.005946305

RMSE 0.000661391 0.008060203 0.008308765

7. Conclusions

The current grid system in developing countries still has many limitations, such as
manual data collection, leading to data uncertainty. Moreover, the dataset obtained from
MOELC could only access the governorate level in the distribution section. Currently,
the cluster information is not available to the Iraqi MOELC. Our PIAS was presented to
perform different roles, such as data acquisition, data federation, data management, data
visualization, data analytics, and load forecasting. This system considers the potential use
of smart meters in the future, where the cost will be very high without prior planning or
preparing an advanced system to deal with the massive digital transformation and big
data. Moreover, big data analytics has a prospective opportunity to solve many challenges,
especially in developing countries. Meanwhile, the integration between data federation
and big data analytics in smart grids (SG) could boost growth in the energy sector and
reduce expenses, time, and effort, and enhance and develop knowledge in this sector. The
PIAS is designed on top of a series of operations that preceded it, such as data quality of
heterogeneous data collected from different sources. Different techniques based on real
datasets were used to verify and validate the PIAS system.

The first presented case study confirmed that the proposed system can be used to
overcome challenges such as heterogeneous data acquisition and data federation. The
second presented case study introduced a novel hybrid load forecasting model using fuzzy
C-means clustering before applying ARIMA and the Gradient-Boosted Tree Learner model
(FCM-ARIMA-GBTL). The proposed model improves the load forecasting performance
in terms of Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE) rather than when using the ARIMA or GBTL model
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alone. Additionally, this study can be expanded in the future to override many other
challenges such as reducing power loss and monitoring loss and thefts between generation,
transportation, and distribution lines. Although maintaining simplicity is an advantage in
a time-series dataset, it is also possible to perform many other artificial intelligence models
such as Recurrent Neural Network (RNN), long short-term memory (LSTM), and Support
Vector Machine (SVM).
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