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Abstract: For harvest automation of sweet pepper, image recognition algorithms for differentiating 
each part of a sweet pepper plant were developed and performances of these algorithms were com-
pared. An imaging system consisting of two cameras and six halogen lamps was built for sweet 
pepper image acquisition. For image analysis using the normalized difference vegetation index 
(NDVI), a band-pass filter in the range of 435 to 950 nm with a broad spectrum from visible light to 
infrared was used. K-means clustering and morphological skeletonization were used to classify 
sweet pepper parts to which the NDVI was applied. Scale-invariant feature transform (SIFT) and 
speeded-up robust features (SURFs) were used to figure out local features. Classification perfor-
mances of a support vector machine (SVM) using the radial basis function kernel and backpropaga-
tion (BP) algorithm were compared to classify local SURFs of fruits, nodes, leaves, and suckers. Ac-
curacies of the BP algorithm and the SVM for classifying local features were 95.96 and 63.75%, re-
spectively. When the BP algorithm was used for classification of plant parts, the recognition success 
rate was 94.44% for fruits, 84.73% for nodes, 69.97% for leaves, and 84.34% for suckers. When CNN 
was used for classifying plant parts, the recognition success rate was 99.50% for fruits, 87.75% for 
nodes, 90.50% for leaves, and 87.25% for suckers. 

Keywords: NDVI; image processing; SURF; SIFT; SVM; BP algorithm; performance; sweet pepper; 
deep neural network 
 

1. Introduction 
In South Korea, the need for automation of physically demanding agricultural labor 

is increasing because of the aging agricultural workforce and the growing proportion of 
women among the agricultural workforce [1]. In agricultural work such as weeding and 
pruning, the technology to distinguish and classify plant parts is necessary for automation 
of various agricultural tasks. Classification of plant parts can be performed using an im-
age recognition technology. Once an image of a recognition target is obtained, pre-pro-
cessing to extract the interested region is performed. The process of recognizing an object 
and transforming it into a suitable format to be processed with a computer is then per-
formed by dividing the features of the recognition target within the area of interest [2]. 

Machine vision is a useful tool for plant recognition and identification [3]. To extract 
leaves and canopies, various algorithms such as Active Shape Model [4], Color Segmen-
tation [5] using an RGB-D (Red, Green, Blue Depth) Camera, Support Vector Machines 
[6], Clustering Algorithm [7], Watershed Algorithm [8–10], and genetic algorithm [11] 
have been proposed and successfully used to recognize plant parts in the image. Machine 
recognition has been effectively used to analyze the shape and growth status of crops in 
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fields such as plant phenomics. PhenoAIxpert (LemnaTec, Aachen, Germany) is using 
machine recognition technology to acquire plant phenotypic information in an image-
spectral acquisition chamber. In addition, PlantScreen (Photon Systems Instruments, 
Drásov, Czech Republic) acquires an image and spectral information of plants and uses 
machine recognition technology to select excellent plants based on plant shape and spec-
tral response information. However, plant parts recognized via images have been ac-
quired in a controlled experimental environment rather than in the field where plants are 
actually grown. In the actual farm field, the canopy, including leaves, does not exist alone. 
A group of plants can form a colony to affect image recognition, making it difficult to 
clearly differentiate plant parts [12]. 

Various methods such as vegetation index [13] have been used to measure crop 
productivity on a farm and to diagnose crop growth. Silva et al. (2016) conducted an ex-
periment to confirm the water stress of soybeans through NDVI (Normalized Difference 
Vegetation Index) images and confirmed a significant correlation between water stress 
and the NDVI of soybeans from each experiment [14]. To introduce plant shape recogni-
tion technology through images, it is necessary to distinguish targeted plant parts from 
the surrounding background. In a real farm field, it is easy to misread the contrast of an 
object because of lighting, sunlight, and shadow, which significantly lower the recognition 
rate of an object [15]. To improve the recognition rate of an object in an image, various 
methods such as Bayesian-classifier [16] and Clustering [17] using machine learning have 
been proposed. Methods for improving the recognition rate of objects in images have been 
evaluated for their accuracies in a competition called ILSVRC (ImageNet Large Scale Vis-
ual Recognition Challenge) [18]. Prior to 2012, when machine learning was predominant, 
the average recognition rate was below 75%. In 2012, Krizhevsky et al. [19] proposed a 
convolutional neural network (CNN), an artificial neural network model, and showed a 
recognition rate of 85%, exceeding the existing recognition rate. Since 2012, various artifi-
cial neural network models have been proposed, showing recognition accuracy exceeding 
95%, which is comparable to human recognition accuracy [20]. An artificial neural net-
work is a pattern recognition method inspired by the interconnection of neurons in the 
human nervous system. A general artificial neural network consists of an input layer, a 
hidden layer, and an output layer. Each layer includes neurons [21]. Neurons between 
neighboring layers are connected by weights. Input values are learned by changing 
weights through repeated learning. The larger the number of hidden layers, the more 
complex the data that can be modeled. When the number of hidden layers is two or more, 
it is called a deep neural network [22]. It is necessary to apply an artificial neural network 
model to recognize the shape of a plant through an image. Pound et al. [23] proposed a 
method of classifying wheat grains, nodes, and leaves using a CNN (Convolution Neural 
Network) but analyzed wheat as a learning factor in a controlled indoor environment. To 
recognize the shape of plants in an environment where actual plants are grown, color-
based 3-dimensional fruit recognition [24], fruit recognition using an LED reflected light 
and color model [25], color information obtained from an RGB-D camera, and recognition 
of the fruit stalk by classifying the surface normal vector and curvature into Support Vec-
tor Machines [26] have been reported. However, the shape of the plant based on color 
information could not be recognized because nodes and leaves had the same color infor-
mation. 

Therefore, the purpose of this study was to develop an image processing algorithm 
that classifies plant parts, and the target of classification was paprika, which has various 
colors of fruits such as red, yellow, orange, and green. Sweet pepper is one of the most 
cultivated greenhouse crops in South Korea [27]. This study aimed to develop image pro-
cessing algorithms to classify plant parts for automation of sweet pepper farming tasks 
such as weeding, pruning, and fruit thinning. Another aim of this study was to evaluate 
performances of these algorithms. Detailed study objectives are as follows: 
1. To recognize the shape of sweet pepper in a farm environment, classify each part, 

and develop an image processing algorithm to classify sweet pepper parts for Plenty 
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(red sweet pepper), President (yellow sweet pepper), and Derby (orange sweet pep-
per) varieties. 

2. To classify sweet pepper parts with the NDVI (Normalized Difference Vegetation 
Index) by dividing the targeted area using k-means clustering and morphological 
skeletonization followed by extraction of local features using SIFT (Scale-Invariant 
Feature Transform) and SURF (Speeded-Up Robust Features). 

3. To evaluate performances of developed algorithms such as the BP (Backpropagation) 
algorithm and the SVM (Support Vector Machine) algorithm for classifying each part 
(leaf, node, stem, and fruit) compared to a deep neural network algorithm. 

2. Materials and Methods 

2.1. Hardware Composition 
The sweet pepper greenhouse maintained a temperature between 20 and 30 °C and 

a relative humidity between 60 and 80% [28]. A Blackfly BFLY-U3-13S2C-C color camera 
(Teledyne FLIR LLC, Wilsonville, OR, USA) was selected to obtain images in the sweet 
pepper greenhouse (Table 1). The operating temperature range of the selected camera was 
0–45 °C. The humidity was 20–80%. Most images were in the 400–950 nm range to analyze 
the NDVI. The image sensor used in this study acquired images from 400 to 950 nm (Fig-
ure 1). 

Table 1. Specifications of the Blackfly BFLY-U3-13S2C-CS color camera. 

Model Imaging Sensor Resolution 
Operating 

Temperature 
Operating 
Humidity 

Blackfly BFLY-
U3-13S2C-CS 

Sony ICX445, 
1/3”, 3.75 µm 

1288 × 964 
(30 FPS) 

0–45 °C 20–80% 

 
Figure 1. Spectral sensitivity of the imaging sensor, Sony ICX445. 

The standard size of the passage width of the sweet pepper greenhouse was 1.6 m. 
The width between crops not interrupted by sweet pepper crops when moving from one 
passage to another was 1.0 m [29]. The planting density ranged from 3.3 to 3.5 stems/m2 
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[30]. The spacing of sweet pepper nutrient solution beds based on the planting density 
was within 0.3 m. An 8 mm lens was selected to acquire images of the sweet peppers 
planted at intervals of 0.3 (the minimum) to 1.0 m (the maximum). The size of the Sony 
ICX445 image sensor on the selected camera was 1/3”. The field of view (FOV) according 
to the working distance using an 8 mm lens is shown in Figure 2. The distance between 
the pupils of human eyes ranges from about 60 to 75 mm [31]. Thus, the distance between 
cameras was set to 70 mm to acquire sweet pepper images (Figure 3). According to Figure 
2, the area of the imaging system in this study overlapped from a maximum of 530 to a 
minimum of 230 mm. The average length of sweet pepper leaves was 223 mm. The aver-
age leaf width was 121 mm [32] and the average diameter of sweet pepper fruit was 80.92 
mm, suitable for obtaining overlapping images of each sweet pepper part at the corre-
sponding distance. 

 
Figure 2. FOV of 8 mm lens and overlapping area of vision system. 

(a) (b) 

Figure 3. A structure for image acquisition (a) and image acquisition in the greenhouse (b). 

The device for obtaining images of the sweet peppers was designed as shown in Fig-
ure 3a. Figure 3b shows image acquisition. The sweet pepper was planted in nutrient so-
lution beds. The minimum height of the nutrient solution beds was 0.1 m and the camera’s 
FOV at 1 m was 0.6 m. Thus, the height of the camera from the ground was set at 0.7 m. 
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In addition, halogen lamps were selected as image light sources. Three lamps each were 
installed on the upper side and the lower side for lighting. A halogen lamp 44870 WFL 
(Osram, Munich, Bavaria, Germany) was selected as an image light source to assist image 
acquisition in order to obtain an image from the 435–950 nm region. The selected lamp 
had a brightness of 680 lm of 50 W and a color temperature of 3000 K. Halogen lamps have 
a broad spectrum from visible light to infrared regions [33]. For image analysis using the 
NDVI, a band-pass filter from the 435 to 950 nm region of BP-Series (Midwest Optical 
Systems, Palatine, Illinois, USA) was used. Specifications of the band-pass filter used are 
shown in Table 2. 

Table 2. Specifications of the band-pass filter used by the system. 

Model Useful Range FWHM 1 Tolerance Peak Transmission 
BP470 435−495 nm 85 nm +/−10 nm >90% 
BP500 440−555 nm 248 nm +/−10 nm >85% 
BP505 485−550 nm 90 nm +/−10 nm >90% 
BP525 500−555 nm 80 nm +/−10 nm >90% 
BP635 610−650 nm 65 nm +/−10 nm >90% 
BP660 640−680 nm 65 nm +/−10 nm >90% 
BP695 680−720 nm 65 nm +/−10 nm >90% 
BP735 715−780 nm 90 nm +/−10 nm >90% 
BP800 745−950 nm 315 nm +/−10 nm >90% 

1 FWHM: Full-Width Half-Maximum. 

2.2. Sweet Pepper Part Classification Process 
When growing sweet pepper, to promote its growth, reduce damage caused by pests 

and diseases, and increase fruit yield, it is necessary to remove old leaves at the lower part 
and suckers that occur between central stems and nodes [28]. In order to automate agri-
cultural tasks such as pruning and harvesting, it is important to detect the branching point 
of the central stem and nodes, the sucker that is a shoot of new growth from the nook 
where a branch splits in two and a piece of the plant that gardeners remove in the pruning 
process. In this study, local features of sweet pepper were used for the classification of 
plant parts such as fruits, stems, leaves, and nodes from obtained images to differentiate 
them by each part. First, the harvesting image was pre-processed through the NDVI to 
remove noise such as the background image. Fruit, stem, leaf, and node were segmented 
through k-means clustering. Skeletonization of each segmented part was performed 
through a morphological method. Local features from the skeletonized image were then 
figured out using SIFT and SURF algorithms. Numbers of local features of fruits, stems, 
leaves, and nodes were then compared to confirm local features. The extracted local fea-
tures were classified through the SVM and BP classifier algorithms. Their classification 
performances were compared. In addition, a CNN (Convolutional Neural Network), a 
type of deep neural network, was implemented to differentiate fruits, nodes, leaves, and 
suckers of sweet pepper. Its classification performance was compared to that of the SVM 
or BP classifier algorithm. Figure 4 shows the whole classification process for plant parts. 
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Figure 4. The classification process of sweet pepper plant parts. 

2.2.1. Pre-Processing for Differentiation of Stems and Leaves from Backgrounds Using 
the NDVI 

Silva et al. [14], Story et al. [34], and Yu [35] analyzed plants using their differences 
in light transmittance and reflectance according to plant wavelength. Figure 5 shows an 
image in the visible spectrum band and images using band-pass filters of 695, 735, and 
800 nm. 

 
(a) (b) 
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(c) (d) 

Figure 5. Spectrum images using band-pass filters of (a) visible spectrum, (b) 695, (c) 735, and (d) 
800 nm. 

Plants have a different reflectance for each wavelength band. Sweet pepper stems 
and leaves were separated from the background by analyzing images from 470 to 800 nm. 
The NDVI used the difference in reflectance for each wavelength band to distinguish 
plants from non-plants. As shown in Figure 6, 695, 735, and 800 nm sectors (hereinafter, 
group A) and 470, 500, 505, 525, 635, and 660 nm sectors (hereinafter, group B) were ana-
lyzed to select a wavelength band suitable for the imaging system of this study. Using 
Formula (1) based on the NDVI, differences between A and B sectors were investigated. 

 
(a) (b) 

Figure 6. Image comparison between (a) images of 695, 735, and 800 nm wavelength and (b) images at 470, 500, 505, 525, 
635, and 660 nm wavelength. 

𝑓 𝐴 − 𝐵𝐴 𝐵 255 (1)

where A = image at 695, 735, and 800 nm; B = image at 470, 500, 505, 525, 635, and 660 
nm, and 𝑓 = NDVI image (Rouse et al. [36]) 

After obtaining the ratio of the difference and the sum of images of groups A and B, 
it was multiplied by 255, normalized to a size between 0 and 255, and then visualized. The 
quality of the normalized image was evaluated using Peak Signal-to-Noise Ratio (PSNR), 
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the maximum signal-to-noise ratio. Figure 7a is an image in the visible ray region, which 
is a reference for comparing image quality and differences of images by wavelength bands. 
Figure 7b shows the loss degree by PSNR. 

(a) (b) 

Figure 7. Reference image for PSNR comparison (a) and PSNR images by difference of wavelength 
(b). 

PSNR was measured using a total of 180 NDVI images (10 images from each band). 
A value with a high average of PSNR from each band difference was selected as an image 
for the NDVI. An image with a higher PSNR value meant less distortion during image 
conversion to image of higher quality. Leaves and stems were separated in the sweet pep-
per harvesting image using differences between groups A and B with high PSNR values. 
Local features of leaves, stems, and nodes were then extracted from separated regions to 
detect sweet pepper leaves, stems, and nodes within the image. 

2.2.2. Image Segmentation by k-Means Clustering 
In this paper, the image that underwent the pre-processing of separating targeted 

objects from the background was segmented through k-means clustering, which was first 
proposed by Lloyd [37]. In the farm image, colors of the same objects can have various 
color distributions depending on nutrition and growth conditions, lighting, sunlight, and 
shadows. Therefore, if the image was segmented using a simple binarization method, it 
was difficult to accurately classify targeted objects. When segmentation by k-means clus-
tering was performed, color segmentation of targeted objects was possible rather than 
performing segmentation using a single threshold value. 𝑚𝑖𝑛 𝑥 −𝑚∈  (2)

where 𝑥 = image pixels to be clustered; 𝑚  = the center of clusters; 𝑘 = the number of 
randomly assigned clusters at the beginning. 
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In the clustering algorithm (Equation (2)), k-means clustering made a starting point 
at an arbitrary position as many as the initial number of k. Based on this, the distance 
between each data point was calculated using the Euclidean distance and clustered at the 
nearest initial point. A position at which the average point of the image pixels divided 
into clusters was obtained. It became a new center point. This process was repeated until 
the average position of all clusters did not change by performing clustering. In this paper, 
the number of clusters, k, was designated as 3 using HSV color information known to be 
stable upon lighting changes rather than RGB (Red, Green, Blue) color information. Three 
clusters were then obtained for fruits, stems, and leaves images with the background sep-
arated. For sweet pepper under cultivation, 400 sweet pepper cultivation images of 1288 
× 964 pixels were obtained at 680–800 mm. The ratio of width and length was equally 
divided into 4 parts as shown in Figure 8. Numbers of fruits, stems, leaves, and suckers 
lost during image segmentation in each area were then measured. 

 
(a) (b) 

Figure 8. Pictures of each part before image segmentation (a) and after image segmentation (b). 

2.2.3. Extracting Local Features 
Chatbri et al. [38] compared local features of objects generated by contour detection 

and skeletonization of the image to extract the morphological features of objects in the 
binary image segmented by color. In this paper, SIFT [39] proposed by David G. Lowe 
and SURF [40] proposed by H. Bay were used to extract local features from 40 skeletonized 
images through a morphological method. By extracting and comparing the number of 
local features of each method, local features suitable for differentiating sweet pepper parts 
were selected. In this study, the curvature threshold of SIFT was set to be 10 and the con-
trol threshold was set to be 0.04. SURF constructed a window using Haar wavelets in the 
surrounding area based on the direction and intensity of key points found in the scale 
space. This window had local features that were strong against rotation and scale changes. 
Once SIFT local features were used, a 128-dimensional vector was obtained as a descriptor 
representing the point using an image gradient of 4 × 4 size in 8 directions. Using local 
features of the SURF, the gradients in the x-direction and y-direction were classified into 
8 categories and accumulated to obtain a 128-dimensional vector as a descriptor repre-
senting key points. To use as learning factors for SVM and BP algorithms, coordinates, 
size, angle, response, octave, and class identification number found using SIFT and SURF 
were stored as key point information. The descriptor was stored as 128 real numbers. 
Among them, 128 descriptors of each key point were used as learning factors for SVM and 
BP algorithms. Figure 9 shows a sweet pepper cultivation image segmented by k-means 
clustering with local features extracted using skeletonization, SIFT, and SURF. 
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Figure 9. The image of local feature extraction processes using skeletonization, SIFT, and SURF. 

2.2.4. Local Features Classification Using the SVM Algorithm and BP Algorithm 
The method of classifying local features was determined by training and recognizing 

local features obtained in Section 2.2.3 using the SVM (Support Vector Machine) algorithm 
proposed by Vapnik [41] and the BP (Back Propagation) algorithm proposed by P. Werbos 
[42]. 

In this paper, the RBF (Radial Basis Function) kernel was used as the kernel function 
of SVM. The RBF (Radial Basis Function) kernel is expressed as Equation (3): 𝐾 𝑥,𝑦 𝑒𝑥𝑝 −‖𝑥 − 𝑦‖  2𝜎   (3)

where 𝜎 = Gaussian window width; 𝑥 = input vector; 𝑦 = input pattern, 𝐾 𝑥,𝑦  = RBF 
kernel. 

SVM is basically a binary classifier that solves two kinds of problems. Methods for 
expanding the M-class SVM include a one-to-many classification method and a one-to-
one method. In this paper, M binary classifiers were performed using the one-to-many 
classification method. Here, the 𝑖-th binary classifier classified the class and the remain-
ing M-1. In this way, classification for M times was performed and the highest value was 
classified. 𝑘 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑑 𝑥  (4)

where 𝑑 𝑥  = the decision hyperplane of the 𝑖-th binary classifier. 
The 𝑘 in Equation (4) indicates that the class with the highest value is classified from 

the M-class SVM classifiers. To classify local features of sweet pepper using the SVM al-
gorithm, a total of 400 images were used (100 images each were used to determine local 
features of fruits, stems, leaves, and suckers). For each class, 60 were used for training and 
40 were used for validation. 
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Figure 10 shows the structure of the BP neural network used in this paper. The con-
nection strength w was initially set to a value ranging from −0.5 to maximum 0.5 and v 
was initially set to a random value ranging from minimum −0.5 to +0.5. v was initialized 
by Equation (5) at the start of learning: 

 
Figure 10. The structure of the backpropagation algorithm. 

𝑣 𝛽𝑣‖𝑣 ‖ ,               𝛽 0.7 𝑝  (5)

where 𝑛 = the number of nodes at input layer; 𝑝 = the number of nodes at hidden layer. 
The number of nodes of the input layer was 129, including bias nodes and 128 de-

scriptors of local features calculated by the gradient histogram of local features. If the in-
put pattern space is 𝑛-dimensional and the number of nodes in the hidden layer is 𝑝, the 
maximum number M of linearly separable regions can be obtained through Equation (6) 
when 𝑘 is smaller than 𝑝. If n is greater than or equal to 𝑝, it can be obtained through 
Equation (7). Therefore, the number p of nodes in the hidden layer for solving the problem 
of M linearly separable regions can be obtained using Equation (8): 

𝑐𝑎𝑠𝑒 1   𝑖𝑓  𝑘 𝑝,     𝑀 𝐶 , (6)

𝑐𝑎𝑠𝑒 2   𝑖𝑓  𝑛 ≥ 𝑝,    𝑀 2 , (7)

𝑝 log 𝑀 (8)

where 𝑛 = the number of nodes at input layer; 𝑝 = the number of nodes at hidden layer; 𝑀 = the maximum number of regions capable of linear separation. 
The number of nodes (p) in the hidden layer was set at 51, including bias nodes. The 

number of nodes in the output layer was set at 4 because there should be one node for 
each class of fruits, stems, leaves, and suckers. The activation function used a bipolar sig-
moid function with a value between −1 and 1. The learning rate was set to be 0.001. The 
maximum error was set to be 0.1. Learning was terminated when an error of less than 0.1 
was obtained. In case the error did not become smaller than 0.1, learning was terminated 
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when the number of learning generations (epoch) exceeded 500. A total of 400 images 
were used to classify local features of sweet peppers using the BP algorithm. Images were 
classified using the descriptor of key points for images of fruits, nodes, leaves, and suckers 
as learning factors of the SVM and the BP algorithm. Classification results were evaluated 
using precision, recall, F-measure, and accuracy. 

2.2.5. Partial Classification Performance Experiment Using Deep Neural Network 
In this paper, a convolutional neural network (CNN), a kind of deep neural network, 

was implemented to differentiate fruits, stems, leaves, and suckers of plants and classify 
each part of the sweet pepper. The CNN in this paper had 16 hidden layers using the focal 
loss method of Lin et al. [43]. The bias was 0 and the weight was a random Gaussian 
weight except for the final layer. The bias of the last layer was calculated using Equation 
(9): 𝑏𝑖𝑎𝑠 = − 𝑙𝑜𝑔 1 − 𝜋𝜋   (9)

where 𝜋 = the confidence value for the foreground of labels of all anchors in the initial 
learning (0.01). 

In Equation (10), the focal loss function was calculated with γ = 2 as the rectified linear 
unit (ReLU) activation function, and the learning rate was set to be 0.01. 𝐹𝐿 𝑝 = − 1 − 𝑝  𝑙𝑜𝑔 𝑝   ,          𝛾 ≥ 0 

𝑝 = 𝑝               𝑖𝑓 𝑦 = 11 − 𝑝       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (10)

where 𝑦 = the ground-truth class (1 or −1); 𝑝 = the class probability predicted by the 
model (if 𝑦 = 1); γ = the focal loss function. 

In order to learn each part of the sweet pepper, as shown in Figure 11, a total of four 
types of sweet pepper were classified into fruits, stems, leaves, and suckers. A total of 300 
brightness images were used (75 for each class mentioned above). A total of 100 images of 
sweet pepper cultivation were used to verify the performance of the deep neural network 
that was learned. Classification results were evaluated using precision, recall, F-measure, 
and accuracy. In order to confirm the classification performance for suckers, stems, leaf, 
and fruits of sweet peppers, a good method for differentiating plant parts between the 
SVM and BP algorithms was selected. The performance of the better one of the two ways 
(SVM and BP algorithms) was then compared to that of the deep neural network. 
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Figure 11. Example of learning data for leaf, sucker, fruit, and node. 

3. Results and Discussion 

3.1. Part Classification Results 
3.1.1. Results of Pre-Process for Differentiation of Stems, Leaves, and Backgrounds Using 
NDVI 

Figure 12 shows the transformation of the difference between images in 695, 735, and 
800 nm bands and the images in the 470, 500, 505, 525, 635, and 660 nm bands through 
Equation (1). The quality of the transformed image was evaluated through the PSNR 
(Peak Signal-to-Noise Ratio) value. The higher the PSNR value, the lower the loss. Table 
3 shows the average of PSNR values of images in the 695, 735, and 800 nm bands and the 
difference images of 10 images in the 470, 500, 505, 525, 635, and 660 nm bands. Among 
the average PSNR values measured in the 10 images with a total of 18 band differences, 
the image obtained by transforming the difference between 735 and 660 nm showed the 
highest value of 871,625. The higher the PSNR value, the lower the loss compared to the 
original image. Therefore, the difference between 735 and 660 nm confirmed image with 
the least image loss compared to the visible light region. Stems, leaves, and the back-
ground were distinguished using the transformed image difference between 735 and 660 
nm. 
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(a) (b) (c) 

Figure 12. Differences of visible spectrum image at 695 (a), 735 (b), and 800 nm (c) wavelength by 470, 500, 525, 635, 660 
nm. 

Table 3. PSNR values at different wavelengths. 

Wavelength 
695 nm 735 nm 800 nm 

Mean SD 1 Mean SD Mean SD 
470 nm 8.33309 0.0229 5.46441 0.0949 8.62191 0.0339 
500 nm 8.20943 0.0294 6.51014 0.0837 7.81063 0.0306 
505 nm 8.30828 0.0118 7.75226 0.0999 8.68881 0.0673 
525 nm 8.2368 0.0971 7.57739 0.0283 7.53663 0.0667 
635 nm 7.98845 0.0248 7.62452 0.0393 7.66518 0.0538 
660 nm 7.84794 0.0298 8.71625 0.0315 7.70154 0.0178 

1 SD: standard deviations. 

3.1.2. Image Segmentation Results by k-Means Clustering 
Plenty (a red sweet pepper variety), President (a yellow sweet pepper variety), and 

Derby (an orange sweet pepper variety) varieties were used in this study. In the average 
image of the fruit area, the fruit and the background were differentiated by back-project-
ing the histogram of color and saturation. For stems and leaves, the canopy of sweet pep-
per and the background were differentiated using the NDVI for the images of 735 and 660 
nm bands. The result of image segmentation using k-means clustering with the number 3 
clusters separated from the background is shown in Figure 13. To determine losses of 
fruits, stems, leaves, and suckers in the image through image segmentation, an image of 
a sweet pepper at 1288 × 964 pixels was divided into four parts horizontally and vertically. 
Numbers of fruits, stems, leaves, and suckers damaged in the area were measured. 

Table 4 shows actual numbers of fruits, stems, leaves, and suckers in the cultivation 
image and numbers of fruits, stems, leaves, and suckers obtained through the image seg-
mentation process. As a result, in the case of fruits, through the image segmentation pro-
cess, the images of 6 fruits, 1421 stems, 2188 leaves, and 37 suckers were removed from 
the background. 
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(a) (b) 

Figure 13. Image segmentation of steam, leaves, suckers (a), and fruits (b) by k-means clustering. 

Table 4. Numbers of parts retained after image segmentation. 

Parts Actual Number Segmented Number 
Fruit 682 676 

Sucker 345 308 
Leaf 8169 5981 

Node 11,856 10,435 

3.1.3. Results of Local Feature Extraction 
Using k-means clustering, the targeted region and the background were image seg-

mented. The image was modified so that local features could be obtained through mor-
phological skeletonization. Numbers of local features of SIFT and SURF were compared 
in images of 80 × 80 pixels in width and length of 30 fruits, nodes, leaves, and suction 
regions, respectively. Figure 14a shows numbers of local features extracted using SIFT. 
For fruits, the median number and average number of local features were 121 and 123, 
respectively, with a maximum value of 129 and a minimum value of 111. In the case of 
suckers, the median number and average number of local features were 105 and 101, re-
spectively, with a maximum value of 123 and a minimum value of 81. In the case of leaves, 
the median number and average number of local features were 103.5 and 104, respectively, 
with a maximum value of 115 and a minimum value of 92. For stems, the median, the 
average, the maximum, and the minimum were 111.5, 113, 133, and 99, respectively. 
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(a) (b) 

Figure 14. Numbers of SIFT features (a) and SURF features (b). 

Figure 14b shows the number of local features extracted using SURF. For fruits, the 
median number and the average number of local features were the same at 193, with a 
maximum value of 201 and a minimum value of 186. In the case of suckers, the median 
number and average number of local features were 107 and 112, respectively, with a max-
imum value of 143 and a minimum value of 90. In the case of leaves, the median number 
and average number of local features were 126.5 and 127, respectively, with a maximum 
value of 139 and a minimum value of 116. For stems, the median, the average, the maxi-
mum, and the minimum were 154, 153, 172, and 136, respectively. In the case of suckers, 
numbers of local features of SIFT and SURF were extracted from overlapping ranges. The 
average, maximum, and minimum values showed high SURF. In the case of fruits, leaves, 
and stems, the number of local features of SURF was higher than that of SIFT without 
overlapping ranges. Therefore, the SURF algorithm was selected as the classification 
method for extracting local features of sweet pepper fruits, stems, leaves, and suckers. 

3.1.4. Classification Results of Local Features Using SVM and BP Algorithms 
Fruit and background were differentiated by back-projection of the histogram of 

color and saturation of the average image of the fruit area. In the case of stems and leaves, 
the canopy and the background of sweet pepper were differentiated using the NDVI op-
eration of images at 735 and 660 nm band wavelengths. After segmenting the image, local 
features of fruits, stems, leaves, and suckers were extracted using SURF from skeletonized 
images and differentiated using the SVM algorithm and the BP algorithm. Performances 
of these two algorithms were then compared. 

A total of 100 images of each region were used for features of the SURF region of 
fruits, stems, leaves, and suckers. As a result of classifying a total of 400 images through 
the SVM algorithm using the RBF kernel, the accuracy was 63.75%. Table 5 shows results 
of classification using SVM for fruits, stems, leaves, and suckers. The precision for fruit 
was 75% and the recall rate was 73.5%. The precision for stems was 68% and the recall rate 
was 61.26%. The precision for leaves was 60% and the recall rate was 57.69%. The precision 
for suckers was 52% and the recall rate was 62.65%. F-measure results for fruits, stems, 
leaves, and suckers were 74.26, 64.46, 58.82, and 56.83%, respectively. 
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Table 5. Results of SVM classifier using RBF kernel. 

Parts 
True Condition 

Fruit Node Leaf Sucker 

Predicted 
condition 

Fruit 75 0 25 0 

Node 0 68 11 21 

Leaf 27 3 60 10 

Sucker 0 40 8 52 

Table 6 shows results of 178,750 features collected from 400 images of each class of 
fruit, stem, leaf, and sucker into a training set and a validation set used to train the BP 
algorithm. SURF region features were extracted from 400 images including fruits, stems, 
leaves, and suckers. Of a total of 178,750 features, 10% were used for training. As a result 
of repeating the learning for 500 generations (epoch) with the learning rate set to be 0.001, 
the final learning result was 98.46%. 

Table 6. Number of features used for learning. 

Parts Training Feature Test Feature 
Fruit 694 6250 
Node 10,720 96,478 
Leaf 6144 55,298 

Sucker 317 2849 
Total feature 17,875 160,875 

The accuracy was 95.95% as a result of classifying through the BP algorithm using a 
total of 400 images with 100 images for each class targeting SURF local features of fruits, 
stems, leaves, and suckers. Table 7 shows results of classification using the BP algorithm 
for local features of fruits, stems, leaves, and suckers. The accuracy for local features of 
fruits was 95.27% and the recall rate was 96.18%. The accuracy for local features of stems 
was 96.26% and the recall rate was 97.60%. The accuracy for local features of leaves was 
95.57% and the recall rate was 93.42%. The accuracy for local features of suckers was 
94.47% and the recall rate was 90.94%. F-measure results for local features of fruits, stems, 
leaves, and suckers were 95.72, 96.93, 94.48, and 92.67%, respectively. 

Table 7. Results of the BP algorithm. 

Parts 
True Condition 

Fruit Node Leaf Sucker 

Predicted 
condition 

Fruit 6616 1 325 2 

Node 102 103,196 3758 142 

Leaf 154 2416 58,718 154 

Sucker 7 115 53 2991 

The accuracy of the BP algorithm was 95.95%, which was higher than that of the SVM 
at 63.75%. Accuracy, recall, and F-measure were all higher with the BP algorithm than 
those with the SVM. When the BP algorithm was used to classify SURF local features of 
fruits, stems, leaves, and suckers, it showed a higher performance than the SVM. 
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3.1.5. Results of Local Feature Performance Experiment Using the Deep Neural Network 
When the deep neural network was trained repeatedly for five generations using the 

focal loss method, the accuracy reached 99.9%. As a result of learning through the learning 
system described in this study, it took an average of 2000 s to repeat the first generation. 
Of a total of 400 images, 75% were used for training. 

As a result of classifying through a deep neural network using 400 images (100 im-
ages for each class of fruit, stem, leaf, and sucker), the accuracy was 92.93%. Table 8 shows 
results of classification using a deep neural network for fruits, stems, leaves, and suckers. 
The accuracy for fruits was 99.5% and the recall rate was 97.79%. The accuracy for stems 
was 87.75% and the recall rate was 87.31%. The accuracy for leaves was 90.50% and the 
recall rate was 99.45%. The accuracy for suckers was 87.25% and the recall rate was 87.69%. 
F-measure results for fruits, stems, leaves, and suckers were 98.63, 87.53, 94.76, and 87.47%, 
respectively. In the process of acquiring the 3D shape as a two-dimensional image, the 
shape of the sucker and the node was not clearly distinguished, so 49 out of 400 nodes 
were classified as suckers, and 51 out of 400 suckers were classified as nodes. In the case 
of leaves, 29 leaves in images were not recognized as leaves. The more samples used for 
training with the CNN algorithm, the better the performance. Therefore, in order to solve 
the problem of accuracy deterioration due to confusion between nodes and sucker and 
the problem of not recognizing leaves that occurred in this paper, it is necessary to acquire 
images of nodes, suckers, and leaves from various directions and angles and increase the 
number of samples used for training. 

Table 8. Result of the CNN algorithm. 

Parts 
True Condition 

Fruit Node Leaf Sucker 

Predicted 
condition 

Fruit 398 0 2 0 

Node 0 351 0 49 

Leaf 9 0 362 0 

Sucker 0 51 0 349 

3.2. Results of Comparing Classification Performances between BP and CNN for Sweet Pepper 
Parts 

Table 9 shows results of comparing classification performances for sweet pepper 
parts. The classification performance of the BP algorithm was the result of summing pro-
portions of each region lost in the image segmentation process. In the case of plant part 
classification using the BP algorithm, the recognition success rate was 94.44% for fruits, 
84.73% for stems, 69.97% for leaves, and 84.34% for suckers. In the case of plant part clas-
sification using the deep neural network, the recognition success rate was 99.50% for fruits, 
87.75% for stems, 90.50% for leaves, and 87.25% for suckers. In the case of plant part clas-
sification using the BP algorithm, the separation of fruit and background and separation 
of canopy and background were performed before fruit classification. In this process, 
99.12% of fruits, 88.01% of stems, 73.22% of leaves, and 89.28% of suckers were preserved 
during image segmentation. In the image segmentation process, some regions were re-
moved together with the background. For this reason, the performance of plant part clas-
sification using the BP algorithm might be lower than the performance of classifying local 
features of each part using the BP algorithm. Therefore, when the classification perfor-
mance of the BP algorithm was compared to that of the deep neural network, the perfor-
mance of the deep neural network was judged to be superior to that of the BP algorithm. 
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Table 9. Classification performance comparison between the BP algorithm and CNN. 

Performance Fruit (%) Node (%) Leaf (%) Sucker (%) 
BP Algorithm 94.44 84.73 69.97 84.34 

CNN 99.5 87.75 90.50 87.25 

4. Conclusion 
As a pre-processing step for plant part classification, a method of separating stem 

and leaf regions from the background using the NDVI based on the difference between a 
735 nm band image and a 660 nm band image was applied. In addition, the color of the 
region of interest separated from the background was classified using k-means clustering. 
Through this, it was possible to segment the image of the region of interest. To find local 
features in an image in which the interested region was segmented using k-means clus-
tering, morphological skeletonization was performed for the image to find the skeleton of 
the region of interest. As a result of extracting local features using SIFT and SURF, it was 
confirmed that local feature extraction using SURF could lead to more local features. 
Therefore, the SURF method was selected to detect local features of fruits, stems, leaves, 
and suckers in this study. 

To classify SURF local features of fruits, stems, leaves, and suckers, local features 
were classified using SVM and BP algorithms with the radial basis function kernel. Their 
performances were then compared. Results confirmed that the accuracy of the BP algo-
rithm was 95.96%, which was higher than that of the SVM at 63.75%. 

Fruits, stems, leaves, and suckers were classified using the CNN (Convolutional Neu-
ral Network), a kind of deep neural network. Its performance was then compared to that 
of the BP algorithm. As a result of comparing the performances for classifying each part 
of sweet pepper, it was confirmed that the performance of the CNN was superior to that 
of the BP algorithm. If further research, such as stereo vision, to calculate distance and the 
mechanism of a robot-arm to perform agricultural works is carried out, the proposed 
method in this study could be applied to an image processing algorithm for the multipur-
pose cultivation robot system. 
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