
applied  
sciences

Article

Backdoor Attacks to Deep Neural Network-Based System for
COVID-19 Detection from Chest X-ray Images

Yuki Matsuo and Kazuhiro Takemoto *

����������
�������

Citation: Matsuo, Y.; Takemoto, K.

Backdoor Attacks to Deep Neural

Network-Based System for COVID-19

Detection from Chest X-ray Images.

Appl. Sci. 2021, 11, 9556. https://

doi.org/10.3390/app11209556

Academic Editor: Kyungtae Kang

Received: 14 September 2021

Accepted: 13 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan;
matsuo.yuki678@mail.kyutech.jp
* Correspondence: takemoto@bio.kyutech.ac.jp; Tel.: +81-948-29-7822

Abstract: Open-source deep neural networks (DNNs) for medical imaging are significant in emergent
situations, such as during the pandemic of the 2019 novel coronavirus disease (COVID-19), since
they accelerate the development of high-performance DNN-based systems. However, adversarial
attacks are not negligible during open-source development. Since DNNs are used as computer-aided
systems for COVID-19 screening from radiography images, we investigated the vulnerability of the
COVID-Net model, a representative open-source DNN for COVID-19 detection from chest X-ray
images to backdoor attacks that modify DNN models and cause their misclassification when a specific
trigger input is added. The results showed that backdoors for both non-targeted attacks, for which
DNNs classify inputs into incorrect labels, and targeted attacks, for which DNNs classify inputs into
a specific target class, could be established in the COVID-Net model using a small trigger and small
fraction of training data. Moreover, the backdoors were effective for models fine-tuned from the
backdoored COVID-Net models, although the performance of non-targeted attacks was limited. This
indicated that backdoored models could be spread via fine-tuning (thereby becoming a significant
security threat). The findings showed that emphasis is required on open-source development and
practical applications of DNNs for COVID-19 detection.
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1. Introduction

Deep neural networks (DNNs) demonstrate high performance in image recognition.
Hence, they promise to achieve faster and more reliable decision-making in clinical environ-
ments as diagnostic medical imaging systems [1] since their diagnostic performance is high
and equivalent to that of health care professionals [2]. For emerging infectious diseases
such as the coronavirus disease 2019 (COVID-19) [3], DNNs are expected to effectively fa-
cilitate the screening of patients to reduce the spread of the epidemic. For instance, positive
real-time polymerase chain reaction tests are generally used for COVID-19 screening [4].
However, they are often time-consuming and laborious and involve complicated manual
processes. Thus, chest X-ray imaging has become an alternative screening method [5,6].
However, it is difficult to detect COVID-19 cases from chest X-ray images since visual differ-
ences in images between COVID-19 and non-COVID-19 pneumonias are subtle. Only a few
expert radiologists have accurately detected COVID-19 from chest X-ray images, forming a
bottleneck for faster screening based on radiographic images. DNNs can overcome this
limitation due to the fact that they exhibit high performance for pneumonia classification
based on chest X-ray images [7]. DNNs are now used to support radiologists in achieving
a rapid and accurate interpretation of radiographic images for COVID-19 screening [8–15].

Specifically, the COVID-Net open-source initiative [8] demonstrates remarkable results.
COVID-Net is a deep convolutional neural network designed to detect COVID-19 cases
from chest X-ray images and is one of the first open-source network designs that detects
COVID-19. To date, computer-based systems in medical science have generally been
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developed using closed sources in terms of security. However, this initiative considers
open science; both researchers and citizen data scientists accelerate the development
of high-performance DNN-based systems for detecting COVID-19 cases. Inspired by
COVID-Net models, several researchers [16–18] have proposed DNN-based systems for
COVID-19 screening from chest X-ray images. Moreover, large-scale datasets of chest
radiography images of COVID-19 have been constructed [8,9,19,20]. Such open-source
projects are encouraging not only for developing high-performance DNN solutions, but
also for ensuring transparency and reproducibility in DNN models [21], although only
deep learning models (model weights) may be provided [22] as an alternative to sharing
patient data with regard to preserving patient privacy [23].

However, adversarial attacks hinder the development of open-source DNNs. In
particular, DNNs are vulnerable to adversarial examples [24–26], which are input images
contaminated with specific small perturbations that cause misclassifications by DNNs.
Adversarial examples include evasion attacks in adversarial attacks. Many evasion attack
methods (i.e., methods for generating adversarial examples) have been proposed, such as
the fast gradient sign method [24] and DeepFool [27]). Since disease diagnosis involves
high-stake decisions, adversarial attacks can cause serious security problems [28] and
various social problems [29]. Thus, the vulnerability of DNNs to evasion attacks has been
investigated in medical imaging [29,30]. For COVID-19 detection, adversarial attacks
may hinder strategies for public health (i.e., minimizing the spread of the pandemic) and
the economy. For open-source DNNs such as the COVID-Net model, adversaries can
easily generate adversarial examples since they can access the model parameters (the
model weights and gradient of the loss function) and training images. We previously [31]
demonstrated that universal adversarial perturbation (UAP) [32,33], an evasion attack
using a single (input image agnostic) perturbation can fail most classification tasks of the
COVID-Net model.

Nevertheless, backdoor attacks [34], which are different types of adversarial attacks,
must be considered to obtain a more comprehensive understanding of security threats
to open-source DNNs since previous studies have only focused on evasion attacks (i.e.,
manipulating inputs to cause DNN misclassifications). In backdoor attacks, a backdoor
is established in DNN models (i.e., model poisoning) to misclassify them; specifically,
backdoor attacks are performed by fine-tuning existing DNN models with contaminated
data that are generated by assigning backdoor triggers (e.g., a pixel pattern that appears
in the corner of the images) and incorrect labels to a small fraction of the original data.
In this case, backdoored DNN models correctly classify inputs without triggers into their
actual labels. However, they incorrectly predict the actual labels for inputs with triggers.
Depending on the manner in which incorrect labels are assigned to contaminated data, both
non-targeted attacks, for which DNNs classify inputs into incorrect labels, and targeted
attacks, for which DNNs classify inputs into a specific target class, can be implemented. It
is difficult to immediately discriminate whether backdoors are established in DNN models
since DNN models appear to function correctly for inputs without backdoor triggers and
exhibit complex architectures. Open-source software development relies on collaboration
among researchers, engineers, citizen data scientists, etc. and it may be outsourced. In
this situation, an unspecified number of people can be involved in development. Thus,
anyone can establish a backdoor in DNN models via the above procedures. Moreover, it is
difficult to determine who establishes the backdoor. Backdoor attacks are a serious security
threat for open-source software development [34]. Therefore, they have been evaluated
in handwritten digit recognition tasks, traffic sign detection tasks, and well-used sources
for pretrained DNN models [34]. However, the vulnerability of existing open-source
software in medical imaging (e.g., the COVID-Net model) to backdoor attacks has not been
evaluated comprehensively at present, although a previous study [35] considered backdoor
attacks on medical imaging based on DNN models trained by the authors themselves.

This study’s aim is to evaluate the vulnerability of the COVID-Net model, a represen-
tative open-source software used in medical imaging, for backdoor attacks. Specifically, we
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evaluate whether backdoors for non-targeted and targeted attacks can be established in the
COVID-Net models. Moreover, the effectiveness of the backdoors in DNN models fine-
tuned from backdoored models is analyzed. Backdoor attacks cause a significant problem
when fine-tuned models are obtained from backdoored models. In medical imaging, users
often consider obtaining highly accurate DNN models by fine-tuning pretrained models
with their own datasets since the amount of medical image data is often limited [1]. Users
may perceive that they have obtained highly accurate fine-tuned DNN models from back-
doored models since the models function correctly for clean inputs. However, adversaries
can foil or control the tasks of fine-tuned DNN models using backdoor triggers. Therefore,
we evaluated whether the backdoor triggers enabled non-targeted and targeted attacks for
DNN models fine-tuned from backdoored models.

2. Materials and Methods
2.1. COVID-Net Model and Chest X-ray Images

We obtained a COVID-Net model and chest X-ray images based on a previous
study [31]. In particular, the COVIDNet-CXR4-A model was downloaded from the GitHub
repository on the COVID-Net Open Source Initiative (https://github.com/lindawangg/
COVID-Net) on 20 November 2020. This model was selected since its prediction ac-
curacy was the highest (94.3%) at that time. Moreover, we downloaded the COVIDx5
dataset, which was constructed using several open-source chest radiography datasets,
on 19 November 2020, following the description in the COVID-Net repository (see
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md (accessed
on 19 November 2020) for details). In particular, the dataset consisted of COVID-19 image
data collection [36], COVID-19 Radiography Database [37,38], hospital-scale chest X-ray
database (ChestX-Ray8) [39], The Radiological Society of North America International
COVID-19 Open Radiology Database (RICORD) [40], etc. The images were in grayscale
with a pixel resolution of 480× 480 pixels and a pixel intensity ranging between 0 pixels
and 255 pixels. The chest X-ray images in the dataset were classified into three classes:
normal (no pneumonia), pneumonia (non-COVID-19 pneumonia; e.g., viral and bacterial
pneumonia), and COVID-19 (COVID-19 viral pneumonia). The COVIDx5 dataset com-
prised 13,958 training images (7966 normal, 5475 pneumonia, and 517 COVID-19) and
300 test images (100 images per class).

The COVIDx5 dataset was classified into two datasets: Datasets 1 and 2. Dataset 1
contained 6978 training images (3983 normal, 2737 pneumonia, and 258 COVID-19) and
150 test images (50 images per class), which were randomly selected from the COVIDx5
dataset. These training and test images were used to establish a backdoor in the COVID-Net
model (i.e., to generate a backdoor COVID-Net model) and to evaluate the performance of
the backdoor attacks. The remainder of the COVIDx5 dataset corresponded to Dataset 2,
which contained 6980 training images (3983 normal, 2738 pneumonia, and 259 COVID-19)
and 150 test images (50 images per class). These training and test images were used
to obtain a fine-tuned model from the backdoor COVID-Net model and to evaluate the
performance of backdoor attacks on the fine-tuned model.

2.2. Backdoor Attacks

The procedure for establishing a backdoor in the COVID-Net model was based on
a previous study [34]. To obtain a contaminated training dataset, a backdoor trigger was
applied to 698 (~10%) images (398 normal, 273 pneumonia, and 25 COVID-19) that were
randomly selected from the training images in Dataset 1. The trigger was set to a square
measuring 5 × 5 pixels (~1% height and width of the images) and a pixel intensity of 250,
and it was placed at the lower right corner [near pixel coordinated (398, 398)] of the images.
For each image x, image xt (the trigger) was generated by applying the trigger to x using
the matrix of a 480× 480 image mask, m, which assumed a value of 1 at the coordination
where the trigger was located, and 0 otherwise: xt = τ(x) = x ◦ (1−m) + 250m, where ◦
indicated the element-wise product and 1 was the 480× 480 matrix in which all elements
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were 1. Figure 1 shows the examples of normal, pneumonia, and COVID-19 images, with
and without the trigger. Furthermore, incorrect labels were assigned to the images with the
trigger. For non-targeted attacks, we assigned pneumonia, COVID-19, and normal labels
to normal images, pneumonia images, and COVID-19 images, respectively. For targeted
attacks, a target label was assigned to all the images.
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Using the contaminated training dataset, we fine-tuned the COVID-Net model with
batch sizes of 32 and 50 epochs. The other settings (e.g., learning rate and optimizer) were
the same as those used for training the original COVID-Net model.

2.3. Model Fine-Tuned from Backdoor Model

We obtained a fine-tuned model for COVID-19 detection using the backdoor COVID-
Net model. Specifically, using the training images in Dataset 2, we fine-tuned the backdoor
model with batch sizes of 32 and 20 epochs. The other settings (e.g., learning rate and
optimizer) were the same as those used for training the original COVID-Net model.

2.4. Evaluating Performance of Backdoor Attacks

The performance of the backdoor attacks with the trigger was evaluated based on the
attack success rates. Specifically, based on previous studies [31,41], we used the fooling
rate R f and targeted attack success rate Rs to evaluate the performance of non-targeted and
targeted attacks, respectively. Let C(x) and yx be an output (class or label) of a classifier
(DNN) and the actual label for an input image x, respectively; R f was defined as the fraction
of cases in which the labels predicted from images with the trigger differed from those from
their images without the trigger for all images in set X: R f = |X|−1 ∑

x∈X
I(yx 6= C(τ(x))),

where I(A) was 1 if condition A was true, and 0 otherwise. Rs was defined as the ratio
of images with the trigger classified into a target class K to all images in set X: Rs =

|X|−1 ∑
x∈X

I(C(τ(x)) = K). To evaluate the change in the predicted labels for each class due

to the trigger, confusion matrices were obtained. R f , Rs, and the confusion matrices were
computed using the test images in Datasets 1 and 2 to evaluate the performance of the
backdoor attacks on the backdoor model and the model fine-tuned from the backdoor
model, respectively.
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3. Results

First, we investigated whether backdoors for non-targeted and targeted attacks could
be established in the COVID-Net model. The prediction accuracies (Table 1) and confusion
matrices (the upper panels in Figure 2) indicated that the backdoor models of the COVID-
Net model demonstrated high prediction performance for clean images (i.e., images without
the trigger (see the upper panels in Figure 1)), although their accuracies were slightly lower
than those of the original COVID-Net model (e.g., the backdoor models for targeted attacks
tended to classify some of the clean COVID-19 images as pneumonia (see the upper panels
in Figure 2a–c)). However, the backdoor models classified the images with the trigger
into target labels for targeted attacks and incorrect labels for non-targeted attacks (see
bottom panels in Figure 2). The attack success rates (Rs or R f ) were between 85% and 100%
(Table 1). The results indicated that backdoors were established in the COVID-Net model
using a small trigger.

Table 1. Attack success rates (Rs for targeted attacks and R f for non-targeted attacks; %) for back-
doored COVID-Net models and prediction accuracies (%) of backdoored models on clean images.

Attack Type Attack Success Rate (Rs or Rf)Accuracy

Targeted
normal 99.3% 88.7%

pneumonia 99.3% 78.7%
COVID-19 100.0% 87.3%

Non-targeted 86.7% 91.3%
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Further, we evaluated whether backdoor attacks were effective for models fine-tuned
from backdoored models. It was assumed that other users, not adversaries, obtained the
fine-tuned models from the backdoored models using clean images, and used a publicly
available DNN model to obtain their own models without knowing whether a backdoor
was established in the DNN model. The prediction accuracies (Table 2) and confusion
matrices (the upper panels in Figure 3) indicated that the fine-tuned models demonstrated
high prediction performance for the clean images, and that their prediction accuracies
were almost similar to those of the original COVID-Net model. Nevertheless, the backdoor
attacks were effective in the fine-tuned models. Specifically, the success rates (Rs) for
targeted attacks were between 60% and 80% (Table 2). However, the Rs of the fine-tuned
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models were lower than those of the backdoored models. In particular, the normal and
COVID-19 images were difficult to misclassify, although the trigger was added to the
images (the bottom panels in Figure 3a–c). Moreover, the performance of the non-targeted
attacks was limited. In particular, R f was approximately 10% (see the bottom panel in
Figure 3d).

Table 2. Attack success rates (Rs for targeted attacks and R f for non-targeted attacks; %) for fine-
tuned models from backdoored COVID-Net models and prediction accuracies (%) of fine-tuned
models on clean images.

Attack Type Attack Success Rate (Rs or Rf)Accuracy

Targeted
normal 80.7% 91.3%

pneumonia 60.0% 96.0%
COVID-19 73.3% 90.7%

Non-targeted 86.7% 11.3%
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4. Discussion

The results (Table 1 and Figure 2) show that the backdoors for both the non-targeted
and targeted attacks were easily established in the COVID-Net model by assigning a small
trigger and incorrect labels to a small fraction of training data. Similar to evasion attacks
using UAPs [31], backdoor attacks also achieved high attack success rates (85% to 100%),
indicating that the COVID-Net model was vulnerable to model poisoning. Users (e.g.,
developers except for adversaries) might not be easily detected, whereas the training
data were contaminated due to the small number of training images with the trigger and
incorrect labels. Hence, they might render the backdoor models publicly available. Other
users fine-tuned the backdoored models using their training data to obtain their own DNN
models for COVID-19 detection. Subsequently, fine-tuned models with high prediction
performances were obtained (Table 2). Nonetheless, the backdoors for the targeted attacks
remained effective for the fine-tuned models (Table 2 and Figure 3). The fine-tuned models
would be used in real-world environments since they functioned correctly for inputs
without a trigger. The spread of backdoor models via fine-tuning might pose a significant
security threat. In particular, adversaries could easily attack several fine-tuned models from
the backdoored models using typical triggers to cause both false positives and negatives
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in COVID-19 diagnosis. This might cause problems for public health and the economy,
as mentioned in a previous study [31]. False positives in the diagnosis due to backdoor
attacks might cause undesired mental stress in patients. False negatives in the diagnosis
due to the attacks might have facilitated the spread of the pandemic. Moreover, backdoor
attacks could be used to adjust the number of COVID-19 cases. Therefore, they might
complicate the estimation of the number of COVID-19 cases. These disturbances due to
backdoor attacks affected the individual and social awareness of COVID-19 (e.g., voluntary
restraint and social distancing) and therefore hindered the spread of the pandemic.

However, backdoor attacks on the COVID-Net model were less effective. For the
backdoor models, their prediction accuracies on clean images were slightly lower than
those of the original COVID-Net model. In particular, some of the clean COVID-19 images
were classified as pneumonia (Figure 1). This might be due to the fact that the visual
differences in chest X-ray images between COVID-19 and non-COVID-19 pneumonia were
insignificant. The decision boundary between COVID-19 and pneumonia might have
been altered due to the backdoor trigger. For the fine-tuned models, the performance of
backdoor attacks was lower than that of the backdoored models. Specifically, normal and
COVID-19 images with the trigger were difficult to misclassify (Figure 2a–c). This might
be due to the significant visual differences in chest X-ray images between non-pneumonia
and COVID-19 pneumonia. The decision boundary between normal and COVID-19 that
was altered due to the backdoor trigger might have returned to the original state since
fine-tuning was performed using clean images. Furthermore, the backdoor for non-targeted
attacks was not effective for the fine-tuned model. This might be due to the fact that it was
difficult to assign incorrect labels to the images with the trigger. In particular, the decision
boundary for each class was altered using backdoor triggers. However, this alteration
might have been difficult when using only a single trigger.

Explainability might be a useful indicator for determining whether backdoors were
established in DNN models. Gradient class activation mapping (Grad-CAM) [42] was
useful in this context [43]. It provided saliency maps that indicated the importance of
each pixel in the input images for the model outputs (i.e., prediction results) using the
gradients of the outputs with respect to activation functions until the final convolution
layer. The saliency maps of the backdoored models differed from those of the clean models.
Specifically, pixels at unexpected coordinates (e.g., near a backdoor trigger) contributed
to model predictions. Nwadike et al. [35] detected backdoor attacks on medical imaging
using DNN models trained by themselves using Grad-CAM saliency maps, inspired by the
fact that explainability techniques were typically used in medical imaging applications [44].
However, adversarial defenses against backdoor attacks based on explainability might be
limited since explainability could be easily deceived [45]. Specifically, adversaries could
fine-tune DNN models to allow explainability methods (e.g., Grad-CAM) to yield their
desired saliency maps. Moreover, explainabiltiy-based defenses had failed to combat
imperceptible backdoor attacks based on image warping [46] and physical reflection [47].
Adversarial attacks and defenses were cat-and-mouse games [29]. Hence, it might be
difficult to defend against backdoor attacks.

The vulnerability to backdoor attacks demonstrated here was limited to the COVID-
Net model. This was due to the fact that the number of reproducible open-source projects
on DNN-based COVID-19 detection was limited at that time. However, we believed that
vulnerability was a general property of DNN models, given that backdoor attacks were
effective in DNN models for various types of classification tasks [34,35]. The vulnerability
of other DNN models for COVID-19 detection to backdoor attacks needs to be further
investigated; however, the procedures used here might be useful as a standard framework
for evaluating the vulnerability of DNN models.

5. Conclusions

The vulnerability of the COVID-Net model, an open-source DNN, for backdoor attacks
was demonstrated. Collaboration among researchers, engineers, and citizen data scientists
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were expected in open-source projects to accelerate the development of high-performance
DNNs. However, the risk of backdoor attacks was inevitable. Although many DNN-
based systems for COVID-19 detection were developed, the abovementioned risks were
disregarded. Our findings highlighted that careful consideration is required in open-source
development and practical applications of DNNs for COVID-19 detection.
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