
applied
sciences

Article

Behavior-Based Control Architecture for
Legged-and-Climber Robots

Miguel Hernando * , Mercedes Alonso, Carlos Prados and Ernesto Gambao

����������
�������

Citation: Hernando, M.; Alonso, M.;

Prados, C.; Gambao, E.

Behavior-Based Control Architecture

for Legged-and-Climber Robots. Appl.

Sci. 2021, 11, 9547. https://doi.org/

10.3390/app11209547

Academic Editors: Alessandro

Gasparetto, Stefano Seriani and

Lorenzo Scalera

Received: 27 July 2021

Accepted: 9 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Centre for Automation and Robotics (UPM-CSIC), Universidad Politécnica de Madrid, 28012 Madrid, Spain;
cheripe.caa@gmail.com (M.A.); c.prados@alumnos.upm.es (C.P.); ernesto.gambao@upm.es (E.G.)
* Correspondence: miguel.hernando@upm.es

Featured Application: Control of legged-and-climber robots with at least four legs, under unfore-
seen failures in one or more legs.

Abstract: In this paper, we present a fully original control architecture for legged-and-climber robots
that is level-based, hierarchical, and centralized. The architecture gives the robots the ability to
perform self-reconfiguration after unforeseen leg failures, because it can control this kind of robot
with different numbers of legs. The results show the capability of performing movements in any
direction and inclination planes. The components and functionalities of the developed control
architecture for these robots are described, and, the architecture’s performance is tested on the
ROMHEX robot.

Keywords: behavior-based; climber robot; control; control architecture; fault-tolerant; legged robot;
optimization

1. Introduction

Due to the increased size and complexity of civil construction, using climbing robots
in infrastructure inspection is becoming increasingly relevant. Regular maintenance and
surveillance of large complexes are extremely important to guarantee their life-cycle.
The European consortium SPARC (euRobotics) carried out an analysis, revealing in the
“European Robotics & AI workshop Applied to Inspection and Maintenance” report [1]
that in the coming years the task of inspection will be increasingly important, and robots
will play the main role in maintenance, inspection and dismantling.

Inspection is a particularly structured repetitive task, that requires permanent atten-
tion during the operation, and in many cases, it involves placing the human operator
in risk situations. That is why robotics is revealed as a technology of direct application.
The number of service robots, mainly driven by drones, has increased by 25% in recent
years, and the number of autonomous vehicles in a non-manufacturing environment, has
increased by 51% in one year [2].

Many solutions are based on remote visual inspection, but this is not valid for many
industrial structures. We may not have direct visual access to the areas to be inspected,
and in other cases it is not possible to carry a flying drone because of the narrowness or
typology of the environment. In addition, an inspection usually requires much more than
seeing. Non-destructive techniques require contact or proximity to the surface that is not
possible to achieve while flying. Climbing robots have become increasingly attractive for
effective infrastructure inspection due to their ability to overcome these limitations.

A crucial part of these robots is their control. Typically, robots are controlled based
on control architectures. The lack of existing control architectures for legged-and-climber
robots drives a need to design a new architecture. The state-of-the-art of control architec-
tures for this kind of robot reveal that much work remains, because although plenty of
legged-and-climber robots are structurally defined, they lack a defined architecture. Only a

Appl. Sci. 2021, 11, 9547. https://doi.org/10.3390/app11209547 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9997-0266
https://orcid.org/0000-0002-9736-6708
https://orcid.org/0000-0003-1705-1800
https://doi.org/10.3390/app11209547
https://doi.org/10.3390/app11209547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209547
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209547?type=check_update&version=2

Appl. Sci. 2021, 11, 9547 2 of 16

few control architectures are found for climber robots. Shen et al. [3] proposed a climber
robot for oil tank inspection, whose control architecture only covers the kinematic control
of the robot. Several control architectures for legged robots can be found easily, such as [4]
or [5], which describe the motion controller of two-legged robots. However, these kinds of
legged robots are unable to climb due to their bipedal disposal. Robots with more than
two legs, like [6], for example, have a control system that only covers legs management
and exclude the high-level control.

A control architecture specifies the organization guidelines of a robot’s behavior, estab-
lishes the action and movements that the robot must carry out to achieve a goal or a set of
goals, according to the robot state. It has the main purpose of establishing a way to organize
the system to maintain defined roles, modularize the system components and make the
system as fault-tolerant as possible, always trying to keep the system under control over
as many situations as possible. The main characteristics of the control architectures are
the capacity to (a) face multiple goals simultaneously, (b) integrate data from different
sensors, (c) be robust against component failures, (d) be adaptive to new environments,
(e) extend and modify its content easily, (f) make its own decisions according to the robot
state, and (g) modify the surroundings properly.

Some important definitions should be declared in a control architecture: (a) an agent
is a computer system that is capable of autonomous action in its environment to achieve
its delegated objectives [7,8], (b) a level is composed of an agent or a group of agents that
have the same importance from a determined point of view, (c) hierarchy is how agents of
higher levels have a kind of control over the agents of lower levels, (d) a centralized control
is characterized by coordinated conduct of the agents, whose decisions depend directly
on the state of the other agents, (e) a decentralized control is characterized by freedom in
the agent decisions, without directly considering the state of the rest of the agents, and (f)
a behavior-based control is a way in which agents are delegated with the main task to
achieve a goal through some instructions. Then, it is possible to conclude that a control
architecture may be understood as a multi-agent system where the communication rules
and protocols are well-defined.

This paper’s objective is to design an organic and hierarchical control that allows the
safe movement of the legs. Moreover, the control must be generic for a legged robot with
any number of legs. In this paper, we test the performance of the control architecture over
the legged-and-climber robot ROMHEX. This robot has ben modified; the most remarkable
is the change of the initial position of each leg that the robot should adopt to maximize
the efficiency of the walking pattern. This maximization has been obtained generically,
as explained in Section 3.1. Thus, the initial position directly influences the beginning of
the gait, and it is also used as the default position when the robot needs to reconfigure
while walking.

We propose a control architecture that fulfills the following requirements: (a) generic
for all legged robots, independent of the number of legs, distribution of legs in the body,
or the number of joints per leg, (b) agent-based, (c) hierarchical (that is, agents of higher
levels should have the control of lower-level agents, and in this way, first agents may
disable second agents), and (d) agents of the same level must synchronize their behaviors
using synchronization mechanisms.

This paper is organized as follows: In Section 2, we present an overview of the state
of the art of control architectures. We describe how different architectures are organized
and the levels they use. In Section 3, we describe the hexapod robot used in the tests.
Furthermore, we include the developed optimization of the legs’ position in the body.
In Section 4, we describe the developed control architecture, and we explain its levels,
hierarchy and agents. In Section 5, we discuss the results obtained during the tests. Lastly,
in Section 6, we detail the obtained conclusions from the results.

Appl. Sci. 2021, 11, 9547 3 of 16

2. Related Work

Control architectures are found within autonomous machines, especially in spacecraft.
The increasing development of these vehicles has generated generic architectures that may
be used in any system. Within the state of the art, we can find Contextual Management
of Tasks and Instrumentation (CMTI), which is a mixed architecture between deliberative
and reactive architectures [9], originally conceived for an autonomous underwater vehicle
(AUV). It is organized into three layers: global supervisory control, local supervisory
control and low-level control. CMTI is a well-defined and robust architecture but laborious
to implement in short projects. Based on CMTI, Contextual Task Management Architec-
ture (COTAMA) is a control software architecture layered into two levels [10]: decisional
level and executive level. The decisional level is in charge of the mission monitoring and
decision making according to robot context. The executive level applies these decisions
while managing all real-time aspects such as instrumentation conflicts or tasks deadlines.
It contemplates the identification of faults to correct them [11]. COTAMA improves the
robustness of CMTI while it enlarges the possible applications; however, like CMTI, it is
very laborious to implement. Remote Agent architecture (RA) is an autonomous control
system capable of closed-loop commanding of spacecraft and other complex systems [12].
It integrates three layers of functionality: a constraint-based planner/scheduler, a reactive
executive, and a model identification and recovery system. RA is very useful for spacecraft;
however, its usefulness is limited to tasks previously defined in detail. Intelligent Dis-
tributed Execution Architecture (IDEA) was created to duplicate RA architecture within a
unified agent framework where all the layers have the same structure [12]. IDEA improves
the coordination of RA; however, the drawbacks are similar.

Laboratory for Analysis and Architecture of Systems (LAAS) architecture is presented
in [13] as an architecture for reflexive autonomous vehicle control. It decomposes the robot
software into three main levels, having different temporal constraints and manipulating
different data representations. LAAS is thought to improve robustness; however, it is
poorly-defined and very open to the developer. Coupled Layer Architecture for Robotic
Autonomy (CLARAty) is designed for improving the modularity of system software while
more tightly coupling the interaction of autonomy controls [14]. According to the CLARAty
developers, typical robot and autonomy architectures comprise three levels: functional,
executive and planner. To correct the shortfalls in the three-level architecture, they propose
a two-tiered architecture, in which the executive and planner layers are combined. As well
as LAAS, CLARAty is very open to the user because it only describes the two main levels.
Cooperative Intelligent Real-Time Control Architecture (CIRCA) was designed in [15] to
guarantee the control-level goals, but not necessarily the task-level goals. They divide
the architecture into three main parts: the real-time subsystem (RTS) that is responsible
for implementing the responses, the AI subsystem (AIS) that decomposes task-level goals
into plans consisting of several phases, and the scheduler. CIRCA has the limitations that
it only works for well-known and defined problems. Open Robot Controller Computer
Aided Design (ORCCAD) architecture is an open architecture where qualified users have
access to every control level: the application layer is accessed to by the end-user of the
system, the control layer is programmed by an automatic control expert, and the lowest one,
the system layer, is overseen by a system engineer [16]. ORCCAD has the problem that the
system’s complexity may increase exponentially with new fault tolerance techniques, while
the organization structure may become untenable. The described architectures are generic
for any system; however, their application in legged-and-climber robots may be laborious
and complex. Thus, the decision to develope a new architecture has been considered a
better option than augmenting an existing one.

Control leaders in multiple-legged robots, such as Boston Dynamics, hide their con-
trol architectures while other researcher groups show their work. For example, in [17],
Jakimovski et al. present an Organic Self-Configuration and Adapting Robot (OSCAR),
a hexapod robot that is described through the Organic Robot Control Architecture (ORCA).
ORCA [18] proposes creating an entire system out of subsystems, where each of the subsys-

Appl. Sci. 2021, 11, 9547 4 of 16

tems is designed for a determined task [19]. More complex subsystems can be generated
by combining and cascading smaller subsystems [20]. Each subsystem may be supervised
by another subsystem that evaluates its performance and may even change its behavior
to optimize the performance of the whole system. As another example, in [21], Pack et al.
present Robotic Inspector (ROBIN), a robot designed for climbing infrastructures that
uses a behavior-based control architecture arbitration by subsumption [22]. This robot
is composed of two vacuum fixtures, so its architecture is completely dependant on the
performance of both devices. Lastly, in [23], Ronnau et al. describe LAURON V, a legged
robot controlled by its own control architecture, which is a modular and behavior-based
design approach. It subdivides the system into understandable hierarchical layers and
small individual behaviors. The layers are the hardware architecture, the hardware abstrac-
tion layer, and the behavior-based control system. Finally, Fankhauser et al. present Free
Gait in [24] a software framework for the task-oriented control of legged robots, which
they check over ANYmal [25]. Free Gait consists of a whole-body abstraction layer and
several tools designed to interface higher-level motion goals with the lower-level tracking
and stabilizing controllers.

Architectures for legged robots exist, but none exist for legged-and-climber robots.
Furthermore, these architectures are usually conceived for a defined and not modifiable
number of legs. Leg problems are possible, especially in climber robots, due to the harsh
conditions they are involved in. OSCAR robots contemplate the situation of leg amputation;
however, the visible face of its architecture does not allow to define clearly the behavior of
a new robot.

3. The Climber Hexapod Robot ROMHEX

The ROMHEX robot is a commercial platform called xyzrobot bolide crawler Y-01 with
some modifications. The robot is a hexapod with three degrees of freedom in each leg.
The reference systems of each leg according to the robot body are referred to as shown in
Figure 1a, while the axes of the leg joints are illustrated in Figure 1b. Mainly, the robot is
composed of an electronic board called MCU board Y-01 and motors called xyzrobot smart
servo A1-16.

The development kit Intel Euclid has been added to the robot through a plastic piece
that locates it in a proper position to take advantage of all its features. This device provides
a motion camera (not used, so external obstacles are not considered), a computer processing
unit and a depth camera. Furthermore, suction cups have been added to the legs extremes
in order to hold on to any surface and allow the robot to climb. Every suction cup is
equipped with its own centrifugal impeller and motor that creates and maintains the
vacuum even on porous surfaces, extracting the internal air [26]. The complete griping
system consists of (a) an electronic circuit inside the cup that sensorizes the system and
measures the pressure and the distance to the support surface, (b) a turbine motor with its
variator, (c) an electronic board that acts as a link between sensorization circuits and the
control system of the suction cups and the microcontroller, and (d) a mechanical system
with three rotary degrees of freedom to properly align with the surface.

Lastly, to increase the work-space of the legs, the configuration of the motors has been
modified, changing the position of the second motor. In this way, the center of mass is
lowered, increasing the robot stability.

A critical aspect of controlling the robot while climbing is to ensure the normal and
shear forces at the suction cup do not exceed certain limits during movement, creating the
risk of loss of grip [27]. The hexapod robot is a hyper-static system whose elastic model is
too complex to be included in a control loop. Given the hyperstatic nature of the problem,
a simplified dynamic model is calculated in [28] and included in the control.

Climber robots are deployed in dangerous situations, where the power consumption
must be optimized to guarantee the finalization of the task. Possible solutions are found
in weight reduction, calculation of the best path, or optimization of the walking patterns.

Appl. Sci. 2021, 11, 9547 5 of 16

The leg position is a critical aspect that determines the distance traveled in a given period
of time. For this reason, it is highly desired to optimize the robot’s leg positions.

(a)

(b)

Figure 1. Joint axis and reference systems of the legs. (a) ROMHEX with the reference system of the
body and legs, and leg identifier. (b) Axis of ROMHEX joints.

3.1. Optimization of the Leg Positions

Making use of genetic algorithms (in this case, MatLab’s ga function), it is possible
to find the best position of the robot’s legs’ initial configuration according to a criterion.
The algorithm uses a combination of the distance the robot can walk and the forces pro-
duced at the legs as a cost function. Because the objective is to obtain the optimal initial
position of the legs to walk, the “genes” or decision variables are the initial positions of
the legs (X and Y for each leg and a global Z with respect to the center of the robot, this is,
13 positions in total).

An analysis has been carried out on the center of mass and how its position affects
the forces produced in the different legs to improve the results. The objective of the cost
function is to obtain a genetic individual (legs position configuration) that achieves the
greatest distance while walking with a given number of movements following a predefined
pattern, keeping the robot safe. It considers the distance that the robot moves, as well as the
maximum permissible forces in the legs, as indicated in (1), where C is the cost function, D
is the distance traveled, and F is a matrix where each row corresponds to a moment in the
execution of the walking movement and each element of the row corresponds to each leg.
The cost function is negative because it is required to minimize the value. Both f (x) and

Appl. Sci. 2021, 11, 9547 6 of 16

D are positive values, being a single S calculated in (2), where S represents the vector of
forces applied over a leg, and S(2) is the force applied over the z axis.

C = −min(f (max(F)), f (min(F))) · D (1)

S = norm(S) · sign(S(2)) (2)

Function f (x) is distance scaling and piecewise defined, as shown in Figure 2. The ob-
jective of scaling the distance obtained by the factor produced by the function is to penalize
the individuals that produce the highest forces, even if they manage to move a greater
distance. The function takes into account the sign on the z axis, to differentiate the danger-
ous forces. Both signs are considered to eliminate individuals that make the suction cups
detach and reduce extreme forces on a single leg to reduce unequal wearing.

Figure 2. Distance scaling function.

To obtain the value of dist, the developed walking movement has been simulated in
the following way: First, it is checked that the individual is valid, this is, (a) the position of
all the legs is reachable with the inverse kinematics, (b) the position of the motors is within
the specified ranges, and (c) there is no collision between legs. Second, the cost function
value is obtained.

The results of the genetic algorithm are an increase of 107% in the distance traveled
(from 355 mm to 735 mm) and a decrease of 10% in the force. Figure 3 shows a repre-
sentation of the optimized version over the previous one. As illustrated in that picture,
the position of the legs has undergone a slight variation to achieve an initial position
that optimizes the evaluation criteria. Table 1 denotes the joint initial position increment
between before and after the optimization, with the references in the motor encoder origins.
Furthermore, both tables show the end-effector positions (feet) when the motors are in the
given initial position.

Appl. Sci. 2021, 11, 9547 7 of 16

Figure 3. Comparison between the position of the legs before (gray) and after (red) the optimization
through the genetic algorithm. Positions specified in Table 1.

Table 1. Variation of the position of each joint and suction cup after the optimization.

Leg
Joint Angles (rad) Feet Position (mm)

q0 q1 q2 x y z

1 −0.1 −0.13 0.33 28 6 −3
2 −0.1 −0.18 0.49 22 35 −3
3 0.36 −0.36 −1.15 79 −129 −3
4 −0.66 0.15 −0.75 −17 127 −3
5 −0.11 −0.08 0.19 −21 −11 −3
6 0.11 −0.19 0.49 36 −11 −3

4. Control Architecture

A new control architecture that considers safety under unforeseen circumstances is
needed to guide legged-and-climber robots. The proposed control architecture is charac-
terized as a behavior-based control, hierarchical and centralized. As shown in Figure 4,
the architecture is split in the Executive, the Planner and the User Interface. The Planner
is divided into three main levels, which make use of complementary modules located in
the Executive. The architecture includes a User interface, with which the user may control
the behavior of the robot and observe the state of the robot and the legs. Each level of the
Planner has a set of critical and given objectives:

1. Level 1: Corresponds to the nominal and continuous behavior without checking the
safety at any moment. This level is responsible for the body movement in the desired
direction, through the performance of the robot legs.

2. Level 2: Corresponds to behaviors about movements under expected situations,
having considered basic safety issues. It is responsible for determining if a movement
may still be developed.

3. Level 3: Corresponds to the critical safety checks to ensure that the robot is not in a
hazardous situation. This level is vitally important in robots like the one in question
here, where the goal is to allow it to walk safely on the wall and ceiling.

There is a hierarchical relationship between the different levels in that the higher level
is able to disable the lower level. Dependencies occur from top to bottom; in other words,
what happens at the upper level is unknown by lower levels. The agents of the same
level are in a situation of equality, so they need a synchronization mechanism in case two
behaviors are mutually exclusive. A token synchronization has been used to do this: the
agent with the token is the one that can be executed. When it stops executing, it will drop
the token and other behavior will be free to catch it.

Appl. Sci. 2021, 11, 9547 8 of 16

Figure 4. Control architecture.

Each behavior has its own functionalities, inputs, outputs, and implementation features.
Architecture modularity allows developers to add more, increasing control capabilities.

4.1. Level 1: Nominal Movement of the Body
Trajectory Tracking

The objective of this behavior is that the robot center follows a trajectory in terms of
different global positions and orientations, without explicit information about velocities.
Basically, it carries out the inverse kinematics of the robot, where the input is the robot
center trajectory, and the output is the position of the leg extremity. The output is generated
dynamically through a close chain. However, this agent neither checks the stability nor
sends commands if the inverse kinematics can not obtain a required point. Interpolation is
needed if two consecutive poses are too far apart to obtain as many intermediate ones as
needed. In this case, the point is divided into position and orientation, where spherical
linear interpolation (SLERP) [29] is used for the orientation interpolation, to obtain the
maximum precision, while the position interpolation is linearly done.

Because several legs are attached to the ground to move the center of the body in
the world coordinates, the legs will move opposite to the body robot coordinates. When
Pn is the position of the center of the robot, Rn is its orientation, vn is the vector that
describes the position of one of the leg extremities, vn+1 is the vector in the position to
be achieved, (Pn, Rn) denotes the robot pose, and (Pn+1, Rn+1) is the pose to be achieved.
Then, the position of the leg extremity in both references (3) is obtained, while vn+1 is
calculated in (4). For better understanding, Figure 5 shows a comparison of the movement
in the robot’s and world coordinates.

Pn + Rn · vn = Pn+1 + Rn+1 · vn+1 (3)

vn+1 = (Rn+1)
t · (Pn − Pn+1 + Rn · vn) (4)

Appl. Sci. 2021, 11, 9547 9 of 16

Q

x0
y0

O0

xn+1

yn+1

Pn+1
αn+1

vn+1vn
xn

yn
Pn

αn

(a)

3

2 1

65

4

xy
O1

xy
O0

x
y

O2

(b)

3

2 1

65

4

3

2

1

6

5

4

xy
O

(c)

Figure 5. Comparison of the movement in the robot’s and world coordinates. (a) Representation
of the reference change of the point Q between (Pn, Rn) and (Pn+1, Rn+1), where αk represent the
angle for the rotation matrix Rk. (b) Comparison between the initial (light color) and final position
in global coordinates. (c) Comparison between the initial (light color) and final position in the
robot’s coordinates.

4.2. Level 2: Expected Situations and Leg Allocation
4.2.1. Leg Safety

The objective of this behavior is to predict when a leg will find an instability or
blocking situation and move it to avoid this state. It takes as input the current pose of
each leg and the current motion tendency, among others. The main output is which leg
is required to relocate to where to ensure the robot’s stability; that is, move a leg to a
new position.

To implement this behavior, a metric about how urgently each leg should be relocated
is obtained, in this case: how close the joints are to their limits, from 0.6 rad (not urgent)
to 0 rad (critical); and how close each foot is to the center of mass (COM) of the robot,
from 20 cm (not urgent) to 5 cm (critical). Furthermore, it checks that, in the future position,
each leg’s kinematics will allow lifting them in case a reallocation is needed in that state.

Two limits have been set, a motion limit and a danger limit. They represent the limit
within which a leg can move and the limit within which the leg can move without entering
a dangerous situation, respectively. If the robot enters a dangerous situation, the behavior
is blocked until the legs in hazard are reallocated.

Whenever a leg is expected to move, it moves the maximum possible distance without
colliding with other legs in the direction of movement, minimizing the number of move-
ments needed. To move a leg, it must have enough space to move and lift without creating
an unstable situation, considering how the rest of the legs are positioned. For that, the force
model generated in [28] is needed.

During the behavior execution, it is possible to enter in a blocked state, in which there
is no leg to move. In this case, it informs the upper level to take control to return the robot
to a safe state. When this behavior is disabled, the trajectory control is disabled to avoid
hazardous situations. Whenever it is enabled again, it enables the trajectory control to
continue with the previous execution.

4.2.2. Leg Allocation

This behavior is responsible for safely moving all the legs, or a subset of them, to a
given position. The input is the desired position, and the output is a movement of each
leg, in the proper order and moment. The order is defined as a function of the safety in
which the movement may be done (state while a leg is lifted). Leg allocation checks that
the forces of lifting the legs do not produce any hazard and the possibility of reaching the
desired position without colliding with other legs exits.

This behavior can not work at the same time as the “leg safety” behavior due to the
possibility of conflicts. Thus, a timing mechanism of a token is used, because there is no
hierarchy of any kind between them.

Appl. Sci. 2021, 11, 9547 10 of 16

4.3. Level 3: Critical Exceptions and Blocking Situations
4.3.1. Blocking Recovery

This behavior is thought of as an external observer. It is responsible for detecting
when there is a blocking state to unlock it. The input is the system state, and the output is
the position in which the legs should move to solve the blocking state.

The “leg safety” behavior informs when it detects that no legs can move because it
is not possible to lift a leg or move enough in the required direction. When the advice
is received, this behavior blocks the advice emitter to avoid any leg movement during
the reallocation. It asks the “leg allocation” behavior to move all legs to a default safety
position. When this process finishes, it enables the “leg safety” behavior to continue with
the nominal execution.

4.3.2. Critical Exception Handler

This behavior is responsible for ensuring that the robot is not in danger. The input is
the system state with the information from all sensors. The output is the fact of blocking
the motion system, keeping the robot completely still, and informing the user about the
critical error. Then, the user should solve the problem using the graphical user interface to
check forces, leg positions, and other factors.

4.4. Complementary Modules

These modules are needed to make the behaviors work. They include different
geometric calculations and control over the links at a low level.

4.4.1. Robot Center Follower

This module obtains the movement of the robot center. Its input is the position
of the legs, and its output is the position of the robot center in the world coordinates.
To observe how the robot follows the trajectory from an initial state (Pn, Rn) to a target
state (P∗n+1, R∗n+1), the real state of the center of the robot (P, R) is calculated in an instant
between tn and tn+1 in absolute coordinates, making use of the relative position vectors of
each of the different legs attached to the ground. uk are the vectors of the relative position
of the leg k-th respecting the robot center in the current time (with reference (P, R)), uk

n are
the vectors of the relative position at the tn time respecting the reference (Pn, Rn), and K
is the number of legs attached to the ground. A system of 3 · K equations is obtained (5),
where the unknown values of P and R are obtained through numeric solvers due to the
non-linearity of the problem. For that, the gradient descent method has been used.

P + Ruk = Pn + Rnuk
n, k = 1, . . ., K (5)

4.4.2. Collision Model

This module describes a simplified collision model with which is possible to calculate
if a leg collides with another leg in a given configuration. The simplification consists of a 2D
model of the ROMHEX robot, where each leg is represented as a linear segment, and each
suction cup is represented as a circle. The module checks if there is a collision of the type
(a) between two circles, (b) between a circle and a segment, or (c) between two segments.

4.4.3. Kinematics Calculation

This module obtains the direct and inverse kinematic of a leg, with the reference
system in the robot center. It is completely dependent on the robot, so this module must be
changed if another robot is used. Using the tests with ROMHEX, we present the forward
and inverse kinematics of this robot, obtaining the algebraic solution.

Following Figure 1, forward kinematics is calculated in (6)–(8), where Acoxa is the
angle between the first motor origin and the femur. Px, Py and Pz denote the position of the
end-effector with respect to the leg coordinate system, Lcoxa, L f emur, and Ltibia denote the
link lengths, while q1, q2 and q3 denote the joint angles. Furthermore, thanks to Figure 1a it

Appl. Sci. 2021, 11, 9547 11 of 16

is possible to obtain the transformation matrix between the body center and each leg origin.
These transformation matrices must be applied over the body and legs reference systems.

Px = Lcoxa · cos(Acoxa + q1) + L f emur · cos(q2) · sin(q1)+

Ltibia · cos(q2 + q3) · sin(q1) (6)

Py = Lcoxa · sin(Acoxa + q1) + L f emur · cos(q2) · cos(q1)+

Ltibia · cos(q2 + q3) · cos(q1) (7)

Pz = Lcoxa,z + L f emur · sin(q2) + Ltibia · sin(q2 + q3) (8)

With respect the inverse kinematic, the solution is found in (9)–(11), where variables
B, A1, etc. are calculated in (12)–(16).

q3 =

{
B− π i f third link up
π − B i f third link down

(9)

q2 =

{
(A1 + A2)− π

2 i f third link up
π
2 − (A1 + A2) i f third link down

(10)

q1 =
Px

Py
− Lcoxa,x

LP + Lcoxa,y
(11)

B = arccos(
HF2 − L2

f emur − L2
tibia

−2 · L f emur · Ltibia
) (12)

HF =
√

LP2 + (Pz − Lcoxa,z)2 (13)

LP =
√

P2
x + P2

y − L2
coxa,x − Lcoxa,y (14)

A1 = arctan(
LP

|Pz − Pcoxa,z|
) (15)

A2 = arccos(
L2

tibia − L2
f emur − HF2

−2 · L f emur · HF
) (16)

4.4.4. Center of Mass Calculation

This module calculates the center of mass with respect to the robot center. It is
implemented with the knowledge of the joints’ state, the links’ mass and the links’ shape.

4.4.5. Links Control

This module is responsible for unifying all movements for the different legs, which
are sent from the different behaviors to be executed at the link level. Whenever a behavior
desires to move a leg, it sends a command with the leg identifier, where to move it (in
cartesian or articular coordinates), and the priority of the movement. Behaviors that
send movements must be aware that some movements may be overwritten and partially
executed because a higher priority message is received.

4.4.6. Cyclic Movement

This module aims to generate a default cyclic movement that allows the robot to
walk forward. Without inputs, the output is the positions that the legs should reach in
each moment. The module checks the performance of the control architecture, so a simple
walking process has been developed. It consists of moving the legs individually from the
back to the front after moving the whole body forward. Its behavior may be replaced by
changing and complex patterns.

Appl. Sci. 2021, 11, 9547 12 of 16

4.5. Graphical User Interface

A graphical user interface (GUI) for a generic legged robot has been developed to
make interacting with the robot easier. The GUI is shown in Figure 6, and it includes (a)
information about the robot status, (b) plots of the positions of the motors along a given
period of time, and (c) a graphical representation of the position of the legs and the robot
trajectory. It is also possible to create trajectories and send them to the robot.

Figure 6. Graphical User Interface. The first tab shows information about the robot, including the motors and suction cup.
The second tab shows the motors position during a given period. The third tab shows the whole robot trajectory, and it
allows setting the goal position to execute a new trajectory.

5. Experimental Results

The performance of the simulated robot while walking on a flat plane was tested in
CoppeliaSim. The system was studied while moving forward, laterally, diagonally, rotatory,
and walking with a combination of movements. After validating the performance in these
conditions, the system was tested on sloping (45◦) and vertical walls with successful results.
However, the presence of gravity in different axes required adjusting the controller gains.

To test the generalization of the control, the performance was checked when the
number of legs was changed. The behavior when two legs are removed is also valid, even
though the control code is not modified. Figure 7 shows the generated walking pattern
when the robot detects six legs and when it detects a malfunction in two of its legs. As it is
observed, the walking pattern when the robot has six legs is periodic, because the tolerances
specified for a leg to move were adjusted with a hexapod robot. In the case of four legs,

Appl. Sci. 2021, 11, 9547 13 of 16

the walking pattern is not periodic. In this case, legs are moved a non-defined distance
when the space in front of them is higher than a threshold.

(a)

(b)

Figure 7. Walking patterns automatically generated for different numbers of legs detected. Each
point represents the reallocation of a leg, that is, the turn of a leg to move. For example, in the upper
walking pattern, first the fourth leg moves, second the fifth leg, third the second leg, etc. (a) Six
legs detected. (b) Four legs detected. Red lines represent the disabling of a leg.

Figure 8 shows the motion sequences that the robot follows during a walking pattern.
Furthermore, we tested how capable the robot is of moving its center to desired positions
and orientations. A video summary of the robot’s movements during this simulation is
found in https://youtu.be/ex1Dj-uwluE, accessed on 12 October 2021.

Figure 8. Motion sequences during a walking pattern. The two center legs are disabled, pointing the suction cup up.

In the tests with the real robot, it is crucial to determine the time the suction cups spend
to be attached to the ground or wall and the amount of time they spend to be detached.
These times are 0.5 s and 1.5 s, respectively. The tests were carried out in the ROMHEX
robot, to check the feasibility of our approach for its implementation in the ROMERIN
robot (a modular climber robot for infrastructure inspection) [28]. The tests reveal a good
performance during the movements in the horizontal plane. However, the tests on the
sloping wall reveal hardware problems. The first problem is related to the suction cups,
which have three free joints. These joints make the suction cup focus down instead of
against the wall, spoiling the correct pulling force. As a result, one of the free joints has
been removed, while another has been limited in movement. Once the first problem was

https://youtu.be/ex1Dj-uwluE

Appl. Sci. 2021, 11, 9547 14 of 16

solved, the second problem involved the grip force of the suction cups. The maximum
inclination that the robot can manage to hold by itself is 60◦. However, in this situation,
a small perturbation may make the robot fall. The walking pattern during the tests with
ROMHEX is shown in Figure 9 with successful results. The video of the robot moving can
be found in https://youtu.be/-ASO8B4THEU, accessed on 12 October 2021.

Figure 9. Motion sequences during a walking pattern with ROMHEX.

Finally, the control architecture has been tested and found to work when the robot
loses more legs than allowed. For example, if the hexapod robot loses three legs, it is
statically unstable, but it can stay still with three legs supporting its weight.

6. Conclusions

First of all, implementing the described control has completed the task of making the
robot capable of walking in any direction while maintaining safety. Thanks to behavior-
based control, it has been possible to divide the global problem into smaller and more
encompassing parts, obtaining a more modular control. This structure also allows adding
new functionality in a simple way, by adding layers in the control without changing the
current control. The generality of the system allows using a large part of the control with
any legged robot typically between four to eight legs, because the majority of legged-and-
climber robots dispose of these number of legs. However, the control architecture could be
used for a legged robot of more than eight legs, because there is no upper limit.

We achieve a generic control for a robot with an unpredefined number of legs. A cyclic
walking pattern has been tested in the hexapod ROMHEX robot with successful results,
even when the robot suffers a malfunction of two legs. Taking advantage of the agent-based
structure, the system may be improved with the easy addition of new agents over the used
standard framework ROS.

Optimizing the initial position of the legs allows increasing the mobility of the robot
and obtaining a better understanding of how the forces are distributed when walking.
As the movement is generated dynamically, it sometimes reaches a configuration where it
cannot easily move. In this case, all legs are reconfigured to this optimized initial position,
which allows the robot to continue moving easily. The tests carried out with the real
robot demonstrate its potential for climbing, although the hardware may undergo some
modifications. Each iteration carried out on the robot has improved its ability to walk,
and increase knowledge about the effects of gravity.

All results and changes made with the current robot, as well as improving its ability to
move and climb correctly, serve as inspiration for designing future robots. It is important
to consider all the details in which ROMHEX fails to obtain a more complete and robust
platform in these designs.

https://youtu.be/-ASO8B4THEU

Appl. Sci. 2021, 11, 9547 15 of 16

Contrasting with state of art, this paper presents a new architecture especially created
for legged-and-climber robots, where the number of layers is reduced from the typical three-
layer architecture [30] to only two layers, as done previously in CLARAty and COTAMA.
Unlike CLARAty, where the internal behaviors are open to the developer, we define specific
behaviors for legged-and-climber. Unlike COTAMA architecture, we dispense with the
supervisors and scheduler, to particularize our problem.

Author Contributions: Conceptualization, M.H., M.A., C.P. and E.G.; methodology, M.H. and M.A.;
software, M.A.; validation, M.A.; formal analysis, M.H. and M.A.; investigation, M.H. and M.A.;
resources, M.H.; data curation, M.A.; writing—original draft preparation, C.P.; writing—review and
editing, C.P. and E.G.; visualization, M.A. and C.P; supervision, M.H.; project administration, M.H.
and E.G.; funding acquisition, M.H. and E.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is part of The ROMERIN project (DPI2017-85738-R) funded by the Spanish
Ministry of Science and Innovation (RETOS research and innovation program).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ROMHEX Romerin Hexapod
SLERP Spherical linear interpolation
COM Center of mass
GUI Graphical user interface
ROMERIN Modular Climber Robot for Infrastructure Inspection
ROS Robot Operating System

References
1. SPARC. The Partnership for Robotics in Europe. Robotics 2020 Multi-Annual Roadmap for Robotics in Europe. Horizon 2020.

Available online: https://www.eu-robotics.net/sparc/about/roadmap (accessed on 27 August 2021).
2. Sostero, M. Automation and Robots in Services: Review of Data and Taxonomy; European Commission, Joint Research Centre (JRC):

Seville, Spain, 2020.
3. Shen, W.; Gu, J.; Shen, Y. Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks. In Proceedings of

the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 4,
pp. 2072–2077.

4. Yi, S.J.; Lee, D.D. Dynamic heel-strike toe-off walking controller for full-size modular humanoid robots. In Proceedings of
the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016;
pp. 395–400.

5. Park, I.W.; Kim, J.Y.; Oh, J.H. Online biped walking pattern generation for humanoid robot khr-3 (kaist humanoid robot-3: Hubo).
In Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 4–6 December 2006;
pp. 398–403.

6. Vladareanu, V.; Boscoianu, C.; Munteanu, R.I.; Yu, H.; Vladareanu, L. Dynamic control of a walking robot using the versatile
intelligent portable robot platform. In Proceedings of the IEEE 2015 20th International Conference on Control Systems and
Computer Science, Bucharest, Romania, 27–29 May 2015; pp. 38–45.

7. Wooldridge, M. Intelligent agents. Multiagent Syst. 1999, 6, 3–50.
8. Jamroga, W.; Ågotnes, T. What agents can achieve under incomplete information. In Proceedings of the Fifth International Joint

Conference On Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8–12 May 2006; pp. 232–234.
9. El Jalaoui, A.; Andreu, D.; Jouvencel, B. Contextual Management of Tasks and Instrumentation within an AUV control software

architecture. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS), Beijing, China, 9–15
October 2006; pp. 3761–3766.

10. El Jalaoui, A.; Andreu, D.; Jouvencel, B. A control architecture for contextual tasks management: Application to the AUV Taipan.
In Proceedings of the IEEE Europe Oceans 2005, Brest, France, 20–23 June 2005; Volume 2, pp. 752–757.

https://www.eu-robotics.net/sparc/about/roadmap

Appl. Sci. 2021, 11, 9547 16 of 16

11. Durand, B.; Godary-Dejean, K.; Lapierre, L.; Passama, R.; Crestani, D. Fault tolerance enhancement using autonomy adaptation
for autonomous mobile robots. In Proceedings of the IEEE 2010 Conference on Control and Fault-Tolerant Systems (SysTol), Nice,
France, 6–8 October 2010; pp. 24–29.

12. Muscettola, N.; Dorais, G.A.; Fry, C.; Levinson, R.; Plaunt, C.; Clancy, D. Idea: Planning at the Core of Autonomous Reactive
Agents. In Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, Houston, TX, USA,
27–29 October 2002.

13. Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; Ingrand, F. An architecture for autonomy. Int. J. Robot. Res. 1998, 17, 315–337.
[CrossRef]

14. Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; Das, H. The CLARAty architecture for robotic autonomy. In Proceedings
of the 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), Big Sky, MT, USA, 10–17 March 2001; Volume 1,
pp. 1–121.

15. Musliner, D.J.; Durfee, E.H.; Shin, K.G. CIRCA: A cooperative intelligent real-time control architecture. IEEE Trans. Syst. Man
Cybern. 1993, 23, 1561–1574. [CrossRef]

16. Simon, D.; Espiau, B.; Castillo, E.; Kapellos, K. Computer-aided design of a generic robot controller handling reactivity and
real-time control issues. IEEE Trans. Control Syst. Technol. 1993, 1, 213–229. [CrossRef]

17. Jakimovski, B.; Meyer, B.; Maehle, E. Self-reconfiguring hexapod robot OSCAR using organically inspired approaches and
innovative robot leg amputation mechanism. In Proceedings of the International Conference on Automation, Robotics and
Control Systems (ARCS-09), Orlando, FL, USA, 13–16 July 2009.

18. Maehle, E.; Brockmann, W.; Grosspietsch, K.E.; Auf, A.E.S.; Jakimovski, B.; Krannich, S.; Litza, M.; Maas, R.; Al-Homsy, A.
Application of the organic robot control architecture ORCA to the six-legged walking robot OSCAR. In Organic Computing—A
Paradigm Shift for Complex Systems; Springer: Basel, Switzerland, 2011; pp. 517–530.

19. Brockmann, W.; Maehle, E.; Grosspietsch, K.E.; Rosemann, N.; Jakimovski, B. ORCA: An organic robot control architecture. In
Organic Computing—A Paradigm Shift for Complex Systems; Springer: Basel, Switzerland, 2011; pp. 385–398.

20. Maas, R.; Maehle, E.; Großpietsch, K.E. Applying the organic robot control architecture ORCA to cyber-physical systems. In
Proceedings of the IEEE 2012 38th Euromicro Conference on Software Engineering and Advanced Applications, Cesme, Turkey,
5–8 September 2012; pp. 250–257.

21. Pack, R.T.; Christopher, J.L.; Kawamura, K. A rubbertuator-based structure-climbing inspection robot. In Proceedings of the IEEE
International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997; Volume 3, pp. 1869–1874.

22. Brooks, R. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 1986, 2, 14–23. [CrossRef]
23. Rönnau, A.; Heppner, G.; Nowicki, M.; Dillmann, R. LAURON V: A versatile six-legged walking robot with advanced

maneuverability. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Besacon, France, 8–11 July 2014; pp. 82–87.

24. Fankhauser, P.; Bellicoso, C.D.; Gehring, C.; Dubé, R.; Gawel, A.; Hutter, M. Free gait—An architecture for the versatile control of
legged robots. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun,
Mexico, 15–17 November 2016; pp. 1052–1058.

25. Hutter, M.; Gehring, C.; Jud, D.; Lauber, A.; Bellicoso, C.D.; Tsounis, V.; Hwangbo, J.; Bodie, K.; Fankhauser, P.; Bloesch, M.; et al.
Anymal—A highly mobile and dynamic quadrupedal robot. In Proceedings of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 38–44.

26. Hernando, M.; Gómez, V.; Brunete, A.; Gambao, E. CFD Modelling and Optimization Procedure of an Adhesive System for a
Modular Climbing Robot. Sensors 2021, 21,1117. [CrossRef] [PubMed]

27. Ko, H.; Yi, H.; Jeong, H.E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D
printing (UNIclimb). Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 273–280. [CrossRef]

28. Hernando, M.; Brunete, A.; Gambao, E. ROMERIN: A Modular Climber Robot for Infrastructure Inspection. IFAC-PapersOnLine
2019, 52, 424–429. [CrossRef]

29. Barrera, T.; Hast, A.; Bengtsson, E. Incremental spherical linear interpolation. In The Annual SIGRAD Conference. Special
Theme-Environmental Visualization; Linköping University Electronic Press: Linköping, Sweden, 2004; pp. 7–10.

30. Gat, E.; Bonnasso, R.P.; Murphy, R. On three-layer architectures. Artif. Intell. Mob. Robot. 1998, 195, 210.

http://doi.org/10.1177/027836499801700402
http://dx.doi.org/10.1109/21.257754
http://dx.doi.org/10.1109/87.260267
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.3390/s21041117
http://www.ncbi.nlm.nih.gov/pubmed/33562695
http://dx.doi.org/10.1007/s40684-017-0033-y
http://dx.doi.org/10.1016/j.ifacol.2019.11.712

	Introduction
	Related Work
	The Climber Hexapod Robot ROMHEX
	Optimization of the Leg Positions

	Control Architecture
	Level 1: Nominal Movement of the Body
	Level 2: Expected Situations and Leg Allocation
	Leg Safety
	Leg Allocation

	Level 3: Critical Exceptions and Blocking Situations
	Blocking Recovery
	Critical Exception Handler

	Complementary Modules
	Robot Center Follower
	Collision Model
	Kinematics Calculation
	Center of Mass Calculation
	Links Control
	Cyclic Movement

	Graphical User Interface

	Experimental Results
	Conclusions
	References

