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Abstract: We bring together in one place some of the main results and applications from our recent
work on quantum information theory, in which we have brought techniques from operator theory,
operator algebras, and graph theory for the first time to investigate the topic of distinguishability
of sets of quantum states in quantum communication, with particular reference to the framework
of one-way local quantum operations and classical communication (LOCC). We also derive a new
graph-theoretic description of distinguishability in the case of a single-qubit sender.

Keywords: quantum communication; quantum states; local operations and classical communication;
operator algebras; operator systems; quantum error correction; product states; graph theory

1. Introduction

The communication paradigm called local (quantum) operations and classical commu-
nication, usually denoted by its acronym LOCC, is fundamental to quantum information
theory, and includes many central topics such as quantum teleportation, data hiding,
and many of their derivations [1-3]. The somewhat more restricted version called one-way
LOCC, in which communicating parties must perform their measurements in a prescribed
order, has received expanded attention due it being more tractable mathematically while
still capturing many of the more important communication scenarios [4-13]. A partic-
ularly important subclass of problems in this field involves the determination of when
sets of known quantum states can be distinguished using only LOCC operations or some
subset thereof.

Our work in the theory of LOCC [10-13] has for the first time brought techniques
and tools from operator theory, operator algebras, and graph theory to the basic theory
of quantum state distinguishability in one-way LOCC. Given the overlapping nature of
some of our results and applications, including improvements on some results as our work
progressed, we felt a review paper bringing together a selection of main features from our
work could be a useful contribution to the literature. In addition to this exposition, we
derive a new graph-theoretic description of one-way distinguishability in an important
special case, that of a single-qubit sender.

This paper is organized as follows. In Section 2, we give necessary preliminaries,
including the mathematical description of one-way LOCC in terms of operator relations.
Section 3 includes a brief introduction to the relevant operator structures in our analysis,
and then we present some of our main results and applications from [10-12]. We finish in
Section 4 by first giving a brief introduction to our necessary notions from graph theory,
then we present one of our main results from [13] and some examples, and we derive a
new graph-theoretic description for the case of a single-qubit sender.
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2. One-Way LOCC and Operator Relations

We will use the traditional quantum information notation throughout the paper.
In particular, we use the Dirac bra-ket notation for vectors, which labels a given fixed
orthonormal basis for C?, with d > 1 fixed, as {|i) : 0 <i <d— 1}, and the corresponding
dual vectors as |i)* = (i|. For n > 1, the n-qudit Hilbert space is the tensor product (C%)®",
which has an orthonormal basis given by |iyip - - - iy) 1= |i1) @ |i2) @ ... ® |in).

We also denote the set of complex m x m matrices, for a fixed m > 1, by M,,(C).
Given a finite-dimensional Hilbert space H, we will write B(# ) for the algebra of bounded
(continuous) linear operators on H, which can be identified with M,,(C) via matrix repre-
sentations when dim # = m. The Pauli operators play an important role in many of our
applications, and are given as matrix representations on the single-qubit basis {|0),|1) } for

H = C? by:
01 0 —i 1 0
(o) =0 ) 7= %)

where the operators are described by X|0) = |1), X|1) = |0), etc.

The basic set up for the LOCC framework is as follows: multiple parties share a set of
quantum states, on which each party can perform local quantum operations. They can
then transmit their results only using classical information in prescribed directions.

The key problem we have focussed on in our work is to distinguish quantum states
amongst a set of known states, where two parties, called Alice (A) and Bob (B), can perform
quantum measurements on their individual subsystems, and then communicate classically.
Further, as general LOCC operations are very difficult to characterize mathematically, we
have largely restricted ourselves to the case of one-way LOCC, where the communication is
limited to one predetermined direction, generally from A to B. This still captures many
key examples and settings (though not all).

Hence, the bipartite case we consider makes the following assumptions:

e  Two parties A, B are separated physically.

®  They control their (finite-dimensional) subsystem Hilbert spaces H 4, H p; for simplic-
ity, we often assume Hy = Hp = C* for some fixed d > 2.

¢ The state of the composite system H 4 ® Hp is assumed to be a pure state amongst a
known set of states S = {|¢;) }; € Ha ® Hp.

* The goal of A and B is then to identify the particular i using only one-way LOCC
measurements.

The mathematical description of measurements defined by one-way LOCC protocols
is given as follows [7].

Definition 1. A one-way LOCC measurement, with A going first, is a set of positive operators
M = { A ® Byj}jon Ha © Hp such that

ZAk:IA and ZBk,]':IB Vk.
k j

Each of the sets { Ay }x, {By,;}; form what is called a positive operator valued measure
(POVM) on H 4 and H , respectively. If outcome (k, j) is obtained, for any k and a partic-
ular j, the conclusion is that the prepared state was the state identified with the pair k, j.
Without loss of generality, one can further assume each Ay, is a scalar multiple of a (pure)
rank one projection.

Example 1. As a very simple and illustrative example, consider the following two Bell basis
two-qubit states:

@0) = —=(10)4l0)s +1)[1)s)
1

S|

|®1) = (10)al1)B +11)4]0)B)

2

S|
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This set is distinguishable, with the following measurement choices:
e Alice: Ay = |0)(0] and A, = |1)(1].
*  Bob: {By,1,B12} = {]0){0], [1)(1[} = {B2;, B2}
If Alice obtains outcome 0, then tells Bob, who after measurement obtains outcome 0, then the
state is |g). Similarly, it would be |y if Bob measured a 1.

Notationally, we shall let |®) be the standard maximally entangled state on two-qudit
space C? @ CY; |®) = ﬁ(|00> 4+ ...+ |d —1d —1)). We recall that every maximally

entangled state on the two-qudit space is then of the form (I ® V)|®), where V is unitary
on C%.

The following result of Nathanson [7] frames one-way LOCC distinguishability in
terms of operator relations and was the starting point for our collaboration.

Theorem 1. Let {M;} be operators on C?, and let S = {|w;) = (I ® M;)|®)} C C* @ C? bea
set of orthogonal states. Then, the following conditions are equivalent:

(i)  The elements of S can be distinguished with one-way LOCC.
(if) There exists a set of states {|¢x)};_; C C* and positive numbers {my} such that

Yk mi| QX Px| = I and for all k and i # j,
(x| M7 Mi|¢pp) = 0.

(iii) There is a d X r partial isometry matrix W such that WW* = I, and for all i # j, every
diagonal entry of the r X r matrix W*M;?M,«W is equal to zero.

Conceptually, the states |¢y) are determined by Alice’s (rank one) measurement oper-
ators, and the orthogonality of the states {U;|¢) }; for every k, allows Bob to distinguish i.
In the example above, note that |®y) = (I, ® I)|®) and |P1) = ([, ® X)|P), where X is
the single-qubit Pauli bit flip operator. Here, we have M = I, My = X,andd =2 = r. So,
we can take W = I; note that M;‘Ml- = Xfori #j.

3. Operator Structures and One-Way LOCC

Our initial work [10] identified the importance of certain operator structures for dis-
tinguishing various sets of quantum states using one-way LOCC. The following result
encompassed our first observation and readily follows from Nathanson’s result. It sug-
gested deeper operator theoretic connections to the mathematics of one-way LOCC lying
in the background.

Let A : M;(C) — M;(C) be the ‘map to diagonal’ on d x d matrices; that is, A zeros
out all off-diagonal entries of a matrix but leaves its diagonal entries unchanged, and so
there is an orthonormal basis {|k)} for C such that A(p) = Zi:l |k)(k|p|k)(k| is the (von
Neumann) measurement map defined by the basis.

Proposition 1. Let {P}}_; be a set of d x d permutation matrices and let S = {(I ® P;)|®) }
be the set of corresponding maximally entangled states on C¢ © C%. Then, the following conditions
are equivalent:

1. The states in S are distinguishable by one-way LOCC.
2. A(PrP;) = 0 whenever i # j.

The null space of the map to diagonal operator has a special structure; it is a linear
subspace which is closed under taking adjoints. This observation led us to consider the
following notions for the first time in the context of LOCC state distinguishability. First,
we recall the basic structure theory for finite-dimensional C*-algebras, for instance, as
exhibited in [14,15]. Every such algebra is unitarily equivalent to an orthogonal direct sum
of ampliated full matrix algebras of the form @ (M, (C) ® I, ) for some positive integers
my, 1, > 1. Further, the algebra is unital if it contains the identity operator.
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Definition 2. Let A be a unital C*-algebra. Any linear subspace & contained in 2 which contains
the identity and is closed under taking adjoints is called an operator system.

Within the setting of such operator structures, the following notion turns out to be key
for us.

Definition 3. Let H be a Hilbert space and let & C B(H) be a set of operators on H that form an
operator system. A vector 1) € H is said to be a separating vector for S if A|p) # 0 whenever A
is a non-zero element of &; in other words, A|p) = Blp) with A, B € & implies A = B.

If H is finite-dimensional and & is closed under multiplication, and hence a C*-algebra,
then we may use the decomposition above for such algebras to determine the existence of
a separating vector as follows. This result was proved in [16].

Theorem 2. The C*-algebra @y (M, (C) ® I, ) has a separating vector if and only if ny > my
forall k.

In the case of the diagonal algebra 2, the set of d x d diagonal matrices (and so
Ap = Cd), we have my = ny = 1forall1 < k < d, and hence A has a separating vector;
an example of which can easily be written down: |¢) = ﬁ (10) +...4+|d—1)).

Taken together, these notions and our early results led us to the following general
theorem on operator structures and one-way LOCC distinguishability. The first version of
the result was proved in [10], and the refined improvement as stated below was established
in [11].

Theorem 3. Let {U;} be a set of operators on C% and suppose the operator system Sy =
span {U; Uj, I} is closed under multiplication and hence is a C*-algebra. Then, S = {(I ®
U;) | @)} is distinguishable by one-way LOCC if and only if Sg has a separating vector.

The proof of the theorem starts with the observation that if &y has a separating vector
|¢), then the states {U;|y) } are linearly independent and Bob can use this fact together
with Alice’s outcome to distinguish the states.

As a straightforward application of the theorem, consider the following class of states.
We recall that a set of matrices {Uy} have a simultaneous Schmidt decomposition if there
are unitary matrices V and W and complex diagonal matrices { Dy} such that for each k,
U = VDyW.

Corollary 1. Any set of orthonormal states { (I ® U;)|P) }1_,, for which the matrices U; have a
simultaneous Schmidt decomposition, are distinguishable by one-way LOCC.

The basic idea of the proof in this case is to note that the operator system structure
satisfies &9 = span {U; Uj, I};2; = W*A,W for some unitary W. Since W*2,W =2 C* has
a separating vector, Theorem 3 applies. We note that the operator system & was studied
in a similar context in [17].

Remark 1. Towards further applications, including those discussed below, note how the theorem
gives a road map to generate sets of indistinguishable states based on these operator structures. Given
the decomposition of the algebra generated by an operator system A = Alg (&) = @y (M, (C) ®
Iy,,), then A has a separating vector if and only if ny > my for all k. Thus, to find instances of sets
of indistinguishable states, we can look for sets {U;} such that &y = 2 and my > ny, for some k.
Hence, we are led to consider sets of operators {U, }, such that the set is closed under multiplication,
taking adjoints, and taking inverses (up to scalar multiples).

3.1. Application: States from the Stabilizer Formalism for Quantum Error Correction

In [11], we developed connections between quantum error correction [18-23] and the
study of one-way LOCC, including the fact that every one-way LOCC protocol naturally
defines a quantum error correcting code defined by the distinguishable states. This also
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led to new derivations of some known results and new examples of distinguishable states.
Here, we present one of the applications from that paper.

Sets of unitary operators with the features discussed above are plentiful in one of the
foundational areas of quantum error correction, the ‘stabilizer formalism” [21], which gives
a toolbox for generating and identifying codes from the Pauli group.

Let P, be the n-qubit Pauli group, that is, the unitary subgroup on (C?)®" with
generating set as follows:

P = (+il;X;,Y;, Zj 11 < j<n),

where X; = X®QI® - @1 =X @201 etc.

The Clifford group is the normalizer subgroup of P, inside the group of n-qubit unitary
operators. It is known that if G is a subgroup of P,, with Sy = {g1,...gn}, a minimal
generating set for a maximal abelian subgroup S of G, then there exists a unitary U in the
Clifford group such that U*g;U = Z;, for all 1 < j < m. This allows us to focus on the
generating Pauli operators for deriving more general results.

In [11], we proved the following. For succinctness, we use terminology from the
stabilizer formalism in the theorem hypotheses without giving precise details here, as they
are not necessary to appreciate the result.

Theorem 4. Let {U;} C Py, bea complete set of 4 -encoded logical Pauli operators for a stabilizer k-
qubit code on an n-qubit Hilbert space. Then, the set of states S = {(I @ U;)| D)} is distinguishable
by one-way LOCC if and only if k < 7.

The basic idea behind this proof as an application of the result above is as follows: The
4k element set, Pok = <X]-, Zi:1<j< k) /{=£il}, forms a set of encoded operations for the
code subspace (up to unitary equivalence). However, &) := span (P, x) = Alg (P, x) =
Mok ® Iyn—«. Hence, from the theorem above, the states S are distinguishable by one-way
LOCC if and only if &y has a separating vector if 2F < 2"k, or equivalently 2k < .

Remark 2. The upper bound in this result (2k = n) gives sets that saturate a known bound [5,24]
for the size of one-way distinguishable sets of maximally entangled states on C% @ C? (d = 2").
For 2k < n, this produces (non-trivial) distinguishable sets, which is significant as it is known [8]
that many sets defined from Py, with less than 2" operators (here 4% < 2") are not distinguishable
even with positive partial transpose operations, and hence not with one-way LOCC.

3.2. Application: Sets of Indistinguishable Lattice States

We have also been able to use the ‘operator structure road map’ outlined above to find
sets of lattice states [8,9,25] that are indistinguishable under one-way LOCC. The following
is taken from [12].

Recall the two-qubit Bell states |®y), |P;) defined above. The rest of the Bell basis is
given by:

_ [01) —[10) _ [00) — 11)
V2 V2 oo

These states can be naturally identified with the Pauli matrices by |®;) = (I ® 07)| Do)
and where we write [ = 0y, X =01, Y = 0, Z = 03.

The lattice states are a generalization of the Bell states, which are very useful in their
own right.

|Dy) |P3)

Definition 4. For n > 1, the class of lattice states Ly, is given by n-tensors of the Bell states,
L, ={|®;):ie{0,1,23}}*" cC¥eC?.

States in £, can be identified with elements of the Pauli group P, = {®}_,0;, }, using
an extension of the Bell state identification above.
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Theorem 5. For every n > 1and d = 2", there exist sets of m lattice states in C* @ C? that are
not distinguishable with one-way LOCC, where

2v2d -1 ifnisodd
m = e
3vVd—1  ifniseven.

Remark 3. As discussed further in [12], this result is new and can be extended to the so-called
‘generalized Pauli states’, where a new proof is given of an established result, and which leads to an
improvement for a studied subclass of states [26]. The following example illustrates the approach.

Example 2. For an example in L, with n fixed, we can set

S = {I¥ezer 1]
52 — {I®i ®RZ® I®n—i—l}?:—k1 U {X®n}_

It is easy to check that the algebra generated by Sy has dimension 2; the algebra generated by S,
has dimension 2"+1=; and the algebra generated by Sy U Sy has dimension 2" 1. This gives us:

S = ({LZ}®k ® I@(nfk)) U <I®k ® {I’Z}®n7k)

U <X®k ® {X,Y}®n_k)

with |S| = 25 4 2"=%+1 — 1, which achieves its minimum when k = |4 +1] and S| € {2v/2d —

1,3vd —1}.

4. Graph Theory and Distinguishing Product States

The following section contains a brief review of the main results and some applications
from [13], in which we used graph theory to study the problem of distinguishing sets of
product states via one-way LOCC. Our graph-theoretic work in LOCC is ongoing, and here
we give a new graph-theoretic perspective and proof for the case that Alice only has access
to a single-qubit Hilbert space.

We shall write G = (V, E) for a simple graph with vertex set V and edge set E. For v, w €
V, we write v ~ w if the edge {v,w} € E. The complement of G is the graph G = (V,E),
where the edge set E consists of all two-element sets from V that are not in E. Another
graph G’ is a subgraph of G, written G’ < G, if V' C V and E' C E with v,w € V' whenever
{v,w} € E'.

Given a graph G = (V,E), a function ¢ : V — C%\{0} is an orthogonal representation
of G if for all vertices v; # v; € V,

v; v = (P(v;),P(v))) = 0.

Orthogonal representations have been discussed in graph theory, for instance, [27,28].
Note the biconditional in the definition, which is stronger than conditions for graph
colouring. This allows us to uniquely define the graph associated with a function ¢.

We introduced a graph-theoretic perspective to distinguishing product states as
follows. Suppose we are given a set of product states {|p{1) @ |[¢F)}r_| on Ha @ Hp.
The graph of these states from Alice’s perspective is the unique graph G4 with vertex set
V ={1,2,...,r} such that the map k — |¢{) is an orthogonal representation of G4. Like-
wise, the graph of the states from Bob’s perspective is the graph Gp with vertex set V such
that k — [¢P) is an orthogonal representation of Gg. Observe that by construction, the set
of product states are mutually orthogonal precisely when Alice’s graph is a subgraph of
the complement of Bob’s graph, thatis, G4 < Gg.

The following concepts from graph theory are central for us. Givena graph G = (V,E),
a set of graphs {G; = (V;, E;) } covers G if V = U;V; and E = U;E;. A collection of graphs
{G;} is a clique cover for G if {G;} covers G and if each of the G; is a complete graph (i.e.,
a clique). The clique cover number cc(G) is the smallest possible number of subgraphs
contained in a clique cover of G. A clique cover can be thought of as a collection of (not
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necessarily disjoint) induced subgraphs of G, each of which is a complete graph (there is
an edge between every pair of vertices) with the condition that every edge is contained in
at least one of the cliques.

The following is one of our main results from [13], and gives a characterization of
when product states are one-way LOCC distinguishable in terms of the underlying Alice
and Bob graph structures and a related decomposition of Alice’s Hilbert space. We note
this is a corrected version of the theorem from [13]. The revision was made to condition (3),
as the earlier version gave a condition that was sufficient but not necessary.

Theorem 6. Given a set of product states in H 4 @ Hp, let G4 and Gp be the graphs of the states
from Alice and Bob’s perspectives, respectively. Let ¢ : V4 — H 4 be the association of vertices
with Alice’s states and assume that the set {¢p(v) : v € V'} spans H 4.

Then, the states are distinguishable with one-way LOCC with Alice measuring first if and
only if there exists

(1) A graph G satisfying G4 < G < Gp,
(2) A clique cover {V]};‘:1 of G, and,
(3) APOVM {Qj} on H 4 such that for allv € V4, Qi¢(v) # 0 implies that v € V.

The focus on clique decompositions gives tools for building optimal POVMs. We
include an example showing a POVM that is not a von Neumann measurement (i.e.,
the operators are not mutually orthogonal projections).

Example 3. Let Alice’s (unnormalized) states be given in C3 by

o) = 10) +[1) 91) = 10) +[2)
|92) = 10) = [1) 93) = 10) — |2),

and Bob's states given so that G4 = Gp = Cy, the 4-cycle graph. The clique cover number of a
4-cycle is 4, which is bigger than our dimension, but we are still able to distinguish the states using
the following POVM. We define

[$0) = 10) + 1) +[2) 1) = —10) +[1) +[2)
[¢2) = 10) = 1) +[2) [¢3) = 10) +[1) = [2).

For each j, we can then define Q; = %|1,L7]-)<1p]-|. It is easy to check that }; Q; = I and that
each Q; picks out an edge of C4 as in the theorem conditions, so we can apply the theorem to show
that the states are one-way LOCC distinguishable.

We point the interested reader to [13] for some consequences of this result and related
results. For the rest of this section, we will focus on the case of a ‘low rank’ sender, in which
this theorem can be entirely stated in graph-theoretic terms.

Single-Qubit Sender and Graph Theory

A basic result in LOCC theory [29-31] shows that any set of orthogonal product states
in C2 ® C* for arbitrary d > 2 can be distinguished via full (two-way) LOCC. This is readily
seen to not be the case for one-way LOCC. As a simple example, consider the two-qubit
set {]00),]10),| +1),| — 1)} where |[+) = %(\O) +|1)) and |—) = %(\O) —|1)). This set
of four two-qubit states cannot be distinguished by one-way LOCC with Alice going first;
they can however be distinguished by one-way LOCC with Bob going first and hence also
by two-way LOCC.

Nevertheless, one can characterize when one-way distinguishability is possible in the
single-qubit sender case. As proved in [32] (Theorem 1), the states must take an appropriate
form in terms of orthogonality on Alice’s side versus the corresponding orthogonalities
on Bob’s side. That said, one could argue that the condition from [32] is perhaps not so
operationally simple to apply to easily identify when states are distinguishable, if the set
is large for example. Here we show how, in the case of product states, Theorem 6 can be
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refined for a single-qubit sender to yield an entire graph-theoretic set of testable conditions
for one-way distinguishability.

Theorem 7. A set of orthonormal product states in C?> @ C¥, for d > 2, is distinguishable via
one-way LOCC with Alice going first if and only if there is some graph between the two graphs G 4
and Gp with a clique cover number of at most two; that is, there is a graph G such that

Ga<G<Gp and cc(G) <2 (1)

Proof. For the forward direction, our previous theorem gives the existence of G with a
clique cover and POVM {Q;} such that ¢(v1)*¢(v2) = 0 implies ¢(v1)*Q;¢(v2) = 0 for all
j- This implies that either cc(G) = 1 or else each Q; is diagonal on the {¢(v1), ¢(v2)} basis.
It follows that cc(G) < 2.

For the backward direction, assume a graph G exists that satisfies the conditions of
Equation (1). We shall consider the two cases as determined by the clique cover number
of G.

Firstly, if cc (G) = 1, then G is a complete graph. Since |G4| = |Gp|, G must contain
all the vertices of Gg, Gp is a complete graph and all the vertices of G are disconnected
pairwise in the graph Gg. Thus, it follows that all of Bob’s states are pairwise orthogonal
in Hp = C? (whether or not Alice’s states are orthogonal). Hence, the full set of product
states on H ® Hp = C? ® C* are one-way distinguishable, simply by a measurement that
Bob can perform on his states, independent of what Alice does or communicates to Bob.

Now suppose that cc (G) = 2. Let {Gy, Gy} be a clique cover of G and let V =
V(G1) N V(Gy) be the set of vertices in G that are connected to one (and hence every)
vertex in G; and G;. Note that Vj is a proper subset of V(G;), for i = 1,2, as otherwise G;
would be a subgraph of Gy, or vice-versa, and this would incorrectly imply that cc (G) = 1.

If V, is empty, then G; and G, are disconnected and each is a subgraph of Gg. As such,
Bob’s states corresponding to vertices in G; are mutually orthogonal, and the same is true
of his states corresponding to vertices in G,. Moreover, we can define orthogonal (one-
dimensional) subspaces of H 4 by H; = span{¢4(v) : v € V(G;)}, for i = 1,2. The states
are thus distinguishable via one-way LOCC with Alice first performing a measurement
defined by the Hilbert space decomposition H4 = H1 ® Hy, then sending the outcome
(j =1 or 2) to Bob, who then performs a measurement defined by the orthogonal states
{¢B(v) : v € V(G;)} to determine the state.

If Vp is non-empty, let v; € V(Gy) \ Vo, and choose v, € V(G,) such that v and
vy have no edge in G (and hence also in G4) connecting them. Note that such a vertex
exists in V(G,) as otherwise G = Gj U G, would be a single clique and so cc (G) = 1.
Additionally, it is necessary that v, € V(G,) \ Vo, as v1 connects with all vertices in V. It
follows that ;) = ¢4 (v;), i = 1,2, are orthogonal and hence form an orthonormal basis
for H,4 = C2. Furthermore, (;|¢4(w;)) # O for all w; € V(G;) and i = 1,2. This sets
up a one-way LOCC protocol as follows: Alice measures on the basis of {|¢1), |i,)} for
H 4, and communicates the outcome to Bob. As G < Gg and G;j is a clique, the states
{¢B(v) : v € V(G;)} are mutually orthogonal in g, and so Bob can determine the state by
performing a measurement defined by these states and the projection onto the orthogonal
complement of their span. This completes the proof. [

It is fairly straightforward to give examples that satisfy G4 = Gp and cc(G4) < 2.
For instance, the set {|00), |01), [1+), |1—)}, where |+), |—) in this case is any qubit basis
different than the standard basis. Here, Alice would measure on the standard basis,
and then Bob would measure on the basis suggested by Alice’s outcome communicated
to him. A simple example of a distinguishable set for which G4 is a proper subgraph of
G is given by the standard two-qubit basis {|00), |01),]10), |11)} (left as an easy exercise:
cc(Ga) =2 < 4 = cc(Gp)).

We finish by presenting a ‘nice’ indistinguishable example, in that G4 = Gg, but nev-
ertheless the states fail to be distinguishable due to the failure of the clique cover condition.
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Example 4. Consider the (unnormalized) states |;) € C?2®C3, for1 <i <5, defined as follows:

Y1) = 1) @ 1)

[$2) = 10) @ (0) + [1))
[$3) = 10) @ (10) = [1))
[$a) = (|0) + 1)) ©2)
ys) = (10) = [1)) @12)

These states can be distinguished with full LOCC operations, with Bob measuring first followed
by Alice and then once more by Bob. We show that Bob’s initial measurement is necessary and that
one-way distinguishability is impossible with Alice going first.

Observe here that G4 = Gp. Moreover, the complement of Bob’s graph has clique cover

number cc(Gg) = 4 > 2, with a clique cover of minimal size given by the vertex sets:

{{1,5}, (1,4}, {2,3,4}, {2,3,5}}

Hence, the set of states is not distinguishable via one-way LOCC with Alice going first.

5. Conclusions

One of the appeals of quantum information theory is how it builds on expertise in
a wide range of areas in physics, mathematics, computer science, and engineering. This
review paper highlights several aspects of the fruitful interplay between operator theory
and questions of local quantum state distinguishability; the previous section adds graph
theory into the mix. One-way LOCC is a simply constructed problem with real physical
implications, and our work continues to develop effective tools to study it.
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