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Abstract: Effective noise reduction and speech enhancement algorithms have great potential to
enhance lives of hearing aid users by restoring speech intelligibility. An open problem in today’s
commercial hearing aids is how to take into account users’ preferences, indicating which acoustic
sources should be suppressed or enhanced, since they are not only user-specific but also depend
on many situational factors. In this paper, we develop a fully probabilistic approach to “situated
soundscaping”, which aims at enabling users to make on-the-spot (“situated”) decisions about
the enhancement or suppression of individual acoustic sources. The approach rests on a compact
generative probabilistic model for acoustic signals. In this framework, all signal processing tasks
(source modeling, source separation and soundscaping) are framed as automatable probabilistic
inference tasks. These tasks can be efficiently executed using message passing-based inference on
factor graphs. Since all signal processing tasks are automatable, the approach supports fast future
model design cycles in an effort to reach commercializable performance levels. The presented results
show promising performance in terms of SNR, PESQ and STOI improvements in a situated setting.

Keywords: Bayesian machine learning; factor graphs; noise reduction; situated soundscaping; speech
enhancement; variational message passing

1. Introduction

The ideal noise reduction or speech enhancement algorithm depends on the lifestyle
and living environment of the hearing aid user. Therefore, personalization of these al-
gorithms is very difficult to achieve in advance. Even if a preliminary design of these
personalized algorithms were possible, unforeseen events can still degrade the performance
of the pre-trained noise reduction algorithms. Hence there is a need for algorithms that
users can easily customize according to the situation they are in. Consider the situation in
which you are having a conversation at a party, where an arriving group of guests disrupts
the conversation with their chatter. When a hearing aid’s noise reduction algorithm fails
to perform well under these conditions, it would be desirable to let the user record on the
spot a short segment of the background chatter and instantly design an algorithm that
uses the characteristics of the recorded signal to better suppress similar background noise
signals during the ongoing conversation. In this paper, we call this on-the-spot user-driven
algorithm design process “situated soundscaping”, where a user can generate her own
noise reduction algorithm on the spot and shape her perceived acoustic environment
(“soundscaping”) by adjusting source-specific gains according to her preferences.

Situated design of hearing aid algorithms has drawn interest of the research com-
munity before. For instance, Reddy et al. [1] proposed to include trade-off parameters
in their noise reduction algorithm to allow users to find a compromise between noise
reduction and speech distortion. This mechanism, however, only allows users to alter the
influence of the noise reduction algorithm post-hoc, rather than to support situated design
of the noise reduction algorithm itself. In contrast, our proposed approach is based on
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source separation and allows users to fully personalize the algorithm under in-the-field
conditions. The field of source separation can be subdivided into two groups. One research
thread is based on blind source separation methods (BSS) for acoustic signals [2–5], which is
commonly implemented by only assuming statistical independence between the different
source signals and by optimizing for a selected independence metric. Unfortunately, the
performance and computational costs of real-time BSS are not adequate for hearing aid
applications. Rather we would like to help these algorithms in separating the sources by
providing additional information of the sources in the mixture. In contrast to blind source
separation, informed source separation (ISS) methods use significant prior information
about the observed signals [6]. ISS technology for audio signals typically use log-power
domain models [7–9]. An issue with log-power domain models is that they contain an
intractable signal mixing model [10] that is commonly approximated by the max-model [11]
which leads to perceivable artifacts due to time-frequency masking [12]. Furthermore, this
technique is commonly extended with non-negative matrix factorization (NMF) [13–15]
for improved performance. On the interface of blind and informed source separation in
a probabilistic context recently new works have been published. In [16] a blind signal
separation algorithm is presented, based on earlier works in [17–19]. Here the individual
signals are represented by state space models with a sparse input. Their approach allows
for straightforward extensions and for the incorporation of prior model knowledge.

As a consequence of the work on source separation, simultaneously significant effort
has been invested in modeling acoustic signals, which lies at the heart of situated design.
These research efforts have mainly been targeted at the probabilistic modeling of acoustic
signals, see e.g., [7,8,12] and more recently at the modeling using “deep” neural networks
(DNN) [20–24]. The latter field of research does not lend itself well to the situated hearing
aid design application, due to high computational costs, time-consuming training proce-
dures and large data set requirements. On the other hand, the probabilistic generative
acoustic modeling approach supports computationally cheap and automatable parameter
and state estimation [25], in particular when variational Bayesian inference techniques
are employed [26,27]. Therefore, we see the probabilistic modeling approach to be better
suited for situated hearing aid algorithm design.

The approach that we envision differs markedly from a conventional algorithm design
cycle. For instance, in the hearing aid industry, engineering teams develop noise reduction
algorithms in an offline fashion. Their companies push commercial algorithm updates
about once a year when new versions are developed. In contrast, our proposed framework
supports end users to create personalized noise reduction algorithms in an online fashion
under situated conditions, thus providing them with more control over their desired
acoustic environment (“soundscaping”).

The main idea of our approach is as follows. To design a noise reduction algorithm
in-the-field with users rather than engineers, we need an automated design loop. In order
to create an automated design loop, we propose a fully probabilistic framework where
all design tasks can be formulated as (automatable) probabilistic inference tasks on a
generative model for mixtures of acoustic signals. Concretely, we first specify a generative
probabilistic model for observed acoustic signals by decomposing the observed signal
into its constituent acoustic sources and by modeling these as dynamic latent variable
models [28,29]. Each constituent signal will be modeled and these models will be combined
to create a model for the observed mixture. Next, all signal processing tasks (source
modeling, source separation and soundscaping) are expressed as automatable inference
tasks on the generative model. In order to provide relevant data for algorithm design,
users can record short fragments of their acoustic environment under situated conditions.
After the fragment has been recorded the proposed framework will automatically train
the corresponding signal models to help separate these sources in the observed mixture.
The estimated source signals in the generative model are then individually amplified (or
suppressed) according to the user preferences and subsequently added back together,
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resulting in a “re-weighted” mixture signal. Technically, this idea is based on the method
of informed source separation [6], using on-the-spot trained probabilistic signal models.

The rest of this paper is organized as follows. In Section 2 we present our methodology.
Specifically, in Section 2.1 we propose a modular generative probabilistic modeling frame-
work for situated design of soundscaping algorithms. We specify two distinct probabilistic
models for mixtures of acoustic signals in Section 2.2, which we will use to demonstrate
our framework. In the proposed design framework, all computational tasks (source mod-
eling, source separation and soundscaping) are framed as probabilistic inference tasks
that can be automatically executed through message passing-based inference in a factor
graph representation of the underlying model. In Section 2.3, we review factor graphs and
automated inference by message passing in these graphs. We perform experiments using
these message passing methods to demonstrate our framework and discuss performance
results in Section 3. Finally, Section 4 provides a discussion on the presented framework.

In terms of theoretical contributions, in Section 2.2.1 we generalize the model used
in the Algonquin algorithm [9], which models the non-linear interaction of two signal
in the log-power spectrum as a factor graph node for multiple inputs and unknown
noise precision; and we derive variational message passing update rules for this node in
Section 2.3.5. Furthermore, we provide an intuitive explanation for the derived messages.
Additionally, in Section 2.2.2 we introduce an alternative source mixing model based on
Gaussian scale models [30] for acoustic signals, represented by their pseudo log-power
spectrum. We also frame this model as a re-usable factor graph node and describe how to
perform message passing-based inference in this model in Section 2.3.6. In Appendix A
we describe a general procedure for performing source separation with signal models in
which mixture models are incorporated as a further specification of the inference tasks in
Section 2.1.

2. Methods

In this section the methodology of the paper is described. Specifically, in Section 2.1
we formally specify our problem and we describe our approach to solve this problem
through probabilistic inference on a generative model. Next in Section 2.2 we specify two
distinct generative models on which we perform the actual inference through message
passing as will be introduced in Section 2.3.

2.1. Problem Statement and Proposed Solution Framework

The goal of this work is to present an automated design methodology for monaural
(single microphone-based) situated soundscaping algorithms for and by hearing aid users.
With this methodology noise reduction algorithms can be tailored to an individual without
the need of an intervening team of engineers. Our approach automates the design process
by specifying the underlying signal processing algorithm design tasks as automatable
inference tasks on a generative model. Because we do not have any specific information
about observed signals in situated settings, we choose for a general modeling approach in
which we assume that the received signal comprises a mixture of desired and undesired
signals. These constituent source signals are modeled on the spot during the source
modeling stage. For this purpose we use probabilistic sub-models that can be designed for
stationary or non-stationary acoustic signals. These estimated sub-models are subsequently
used in the source separation stage to extract the underlying source signals, which are
then individually amplified or suppressed during the soundscaping stage according to
the preferences of the user. In this section, we first introduce a minimal generative model
for the observed mixture signal. Then, each task in the soundscaping framework (source
modeling, source separation and soundscaping) is formally described as an automatable
probabilistic inference procedure on this minimal generative model.

Consider an observed mixture signal xn at time steps n = 1, 2, . . . , N, which is com-
posed of latent source signals sk

n, with k = 1, 2, . . . , K denoting the source index. These
latent source signals are modeled by latent states zk

n, which are controlled by the time-
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invariant model parameters θk. The generated output signal of the soundscaping system yn
is a mixture of re-weighted source signals, controlled by user preferences wk, which we as-
sume to be static in this work. Specifically, we define a generative model p(y, w, x, s, z, θ),
where the variables with omitted indices refer to the sets of those variables over the omitted
variables, e.g., y = {yn}N

n=1 and s = {sk}K
k=1, as

p(y, w, x, s, z, θ) = p(w) p(θ) p(z0)︸ ︷︷ ︸
priors

∏N
n=1 p(yn | w, sn)︸ ︷︷ ︸

soundscaping

p(xn | sn)︸ ︷︷ ︸
source
mixing

∏K
k=1 p(sk

n, zk
n | zk

n−1, θk)︸ ︷︷ ︸
source

modeling

. (1)

Equation (1) factorizes the full generative model into three main factors: soundscaping
p(yn | w, sn), source mixing p(xn | sn) and source modeling p(sk

n, zk
n | zk

n−1, θk). In
this particular model, the K constituent source signals are assumed to be statistically
independent. The source mixing term p(xn | sn) describes how the observed signal xn
is formed by its constituent source signals sn. The soundscaping factor p(yn | w, sn)
models the processed output signal yn based on the user preferences wk and individual
source signals sk

n. For modeling the source signals sk
n we use the source modeling factor

p(sk
n, zk

n | zk
n−1, θk). This term describes how the source signal sk

n and its latent state zn are
modeled as a dynamical system with previous latent state zk

n−1 and transition parameters
θk. Note that the source modeling term p(sk

n, zk
n | zk

n−1, θk) can be expanded or constrained
according to the complexity of the signal that we wish to model. A further specification of
the generative model will be given in Section 2.2. The resulting high degree of factorization
in this model is a feature that we will take advantage of when executing inference through
message passing in a factor graph.

Next, we will further specify our soundscaping framework using the example from the
introduction, where background chatter disrupts a conversation. The inference tasks will be
derived from (1) using a Bayesian approach by applying Bayes’ rule and by marginalizing
over the nuisance variables.

2.1.1. Source Modeling

In the first stage of the soundscaping framework, the source modeling stage, we need
to infer model parameters for the constituent sources in the observed mixture. These con-
stituent sources comprise the background chatter and the speech signal in the conversation.
Before the source modeling stage can commence, the user has to record a fragment of both
sounds individually. Both speech and chatter fragments are required to last approximately
three seconds. This is short enough to impose little burden on the end user, while long
enough to obtain relevant information about the acoustic signal. Alternatively, models for
common complex acoustic signals, such as speech, can be estimated beforehand on some
data sets. In this way, only a fragment of the noise has to be recorded, easing the burden
on the user. For each source signal, the model parameters are then estimated through
probabilistic inference, based on the recorded fragment. Figure 1 gives an overview of the
source modeling stage.

Nowadays, commercial hearing aids (and other audio devices, such as headphones)
come with an accompanying smartphone app to control the settings of the device. From a
user experience perspective, we envision that the user has access to a user-friendly app on
their mobile device. Here the user can intuitively record sounds for the individual sound
models and can enable pretrained models for common sounds like speech through sliders
and switches in the app. For creating these recordings, the users can use their mobile phone
or a directional microphone for an improved selectivity.

The inference task corresponding to the source modeling stage for a single source in-
volves calculating the posterior probability of the parameters θk given a recorded fragment
ŝk as input. The source modeling task on the generative model (1) is therefore given by

p(θk | ŝk) ∝ p(θk)
∫

p(zk
0)

N

∏
n=1

p(sk
n = ŝk

n, zk
n | zk

n−1, θk) dzk. (2)
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This expression is obtained by applying Bayes’ theorem and by marginalizing over the
distributions of all nuisance variables. We assume that ŝk is directly and solely observed,
resulting in the simplified source mixing model corresponding to p(xn|sn) = δ(xn − sn),
where δ(·) denotes the Dirac delta function. Note that (2) is in principle computable since
the individual factors (p(θk), p(zk

0) and p(sk
n, zk

n | zk
n−1, θk)) are readily specified in the

generative model (1). The calculation of this equation can be performed using message
passing as will be discussed in Section 2.3. The posterior probability of the parameters θk

from the first stage is consecutively used as the prior distribution of the parameters p(θk)
during the second stage as p(θk | ŝk).

source mixing model

signal
processed

user
recording

Figure 1. An overview of the source modeling stage. The user records short fragments of the observed
signals and infers the corresponding model parameters.

2.1.2. Source Separation

Stage two, the source separation task, concerns inverting the (generative) sound
mixing model in (1), meaning that we are interested in recovering the constituent source
signals s1:K

n from a received mixture signal x1:n. Using the inferred source models from
the first stage the constituent sources are separated from the mixture. This procedure
is sometimes called “informed source separation” in the literature [6]. This approach
contrasts to blind source separation methods where very little prior information about the
underlying sources is available. In the proposed framework, informed source separation
is performed through probabilistic inference for p(sn | x1:n, ŝ) on the specified generative
model, see Figure 2 for a graphical overview. Source separation by inference can then be
worked out to

p(sn | x1:n, ŝ) ∝
∫

p(z0)
n

∏
i=1

p(xi | si)
K

∏
k=1

p(sk
i , zk

i | zk
i−1, ŝk) ds1:n−1 dz0:n, (3)

where
p(sk

i , zk
i | zk

i−1, ŝk) =
∫

p(θk | ŝk)p(sk
i , zk

i | zk
i−1, θk) dθk. (4)

Again, note that all factors in (3) and (4) are already specified as factors in the gen-
erative model (1) or a result from the source modeling task of (2). Therefore, (3) and (4)
are computable. Technically, (3) is a Bayesian filtering (state estimation) task that can
be efficiently realized by (generalized) Kalman filtering [31,32]. We will automate this
Kalman filtering task through message passing in a factor graph representation of the
generative model.
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source mixing model
signal

observed

signal
processed

Figure 2. An overview of the source separation stage. Based on the observed signal and the trained
source models the latent states corresponding to the individual signal are tracked and extracted.

2.1.3. Soundscaping

Finally, in the (third) soundscaping stage, the estimated source signals form the basis
of the new acoustic environment of the user. By user-driven re-weighing of these source
signals, desired signals can be enhanced and undesired signals can be suppressed. This
re-weighing operation seeks a perceptually pleasing balance between residual noise and
speech distortion that result from the source separation stage. From a user experience
perspective, we envision that the user has access to additional sliders in the smartphone
app to tune the gain for each source signal in the enhanced mixture produced by the
hearing aid, as shown in Figure 3. The soundscaping stage can be cast as the following
inference task:

p(yn | x1:n, ŝ) ∝
∫

p(w) p(yn | w, sn) p(sn | x1:n, ŝ) dw dsn . (5)

On the right-hand side (RHS) of this equation, the factor p(sn | x1:n, ŝ) is available
as output of the source separation stage. The other RHS factors, the prior on the user
preferences p(w) and the function that generates the re-weighted signal p(yn | w, sn), have
already been specified by creating the full generative model (1). Therefore, soundscaping
by inference as specified by (5) is computable.

source mixing model
signal

observed

user control

signal
processed

Figure 3. An overview of the soundscaping stage. The user controls the weights for the individual
signals and performs source-specific amplification and suppression.

In summary, in this section we have outlined a probabilistic modeling-based frame-
work for situated soundscaping design. Crucially, all design tasks, namely (2) for source
modeling, (3) for source separation and (5) for soundscaping, have been phrased as au-
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tomatable inference tasks on a generative model (1). For the application of this framework to
real-world problems we first need to further specify the generative model of (1) (Section 2.2).
Next we need to describe how the above inference tasks are realized (Section 2.3). After
these steps, the soundscaping framework under the chosen model specification can be
applied and can be validated using experiments (Section 3).

2.2. Model Specification

In this section we apply our framework on two example generative probabilistic
models for mixtures of acoustic signals as a further specification of the minimal generative
model in (1). The two example models consist of two distinct source mixing models and
similar submodels for the constituent signals. First, we introduce the source mixing models,
based on the Algonquin algorithm [9] and Gaussian scale models [30], respectively. In other
words, we provide explicit specifications for the source mixing model p(xn | sn) in (1).
Next, we use the Gaussian mixture model (GMM) as the source model p(sk

n, zk
n | zk

n−1, θk)
in (1).

2.2.1. Source Mixing Model 1: Algonquin Model

The Algonquin-based source mixing model acts on the log-power coefficients of an
acoustic signal. Therefore, first the complex frequency coefficients are obtained from
windowed signal frames of length F of the observed temporal acoustic signal. These
coefficients can be computed using the short-time Fourier Transform (STFT), but in our
application we will make use of a frequency-warped filter as we will describe thoroughly
in Section 3.3. Let Xn =

[
X1

n, X2
n, . . . , XF

n
]> denote the vector of observed independent and

identically distributed (IID) complex frequency coefficients, where X f
n ∈ C for every frame

n = 1, 2, . . . , N and every frequency bin f = 1, 2, . . . , F. We assume our observed acoustic
signal to be a sum of K constituent signals. Owing to the linearity of the STFT, Xn can
therefore be expressed as

Xn =
K

∑
k=1

Sk
n, (6)

where Sk
n =

[
Sk,1

n , Sk,2
n , . . . , Sk,F

n

]>
represents the vector of complex frequency coefficients

corresponding to the nth frame of the kth constituent signal.
The Algonquin algorithm [9] performs source separation on the log-power spectrum.

It approximates the observed log-power spectrum coefficients x f
n = ln(|X f

n |2), using the
log-power spectrum coefficients of the constituent signals sk, f

n = ln(|Sk, f
n |2), as

x f
n = ln

(
K

∑
k=1

exp
(

sk, f
n

)
+ ∑

k 6=j
exp

(
sk, f

n + sj, f
n

2

)
cos
(

θ
k, f
n − θ

j, f
n

))

≈ ln

(
K

∑
k=1

exp
(

sk, f
n

))
,

(7)

where θ
k, f
n represents the phase corresponding to the f th frequency bin of the nth frame of

the kth constituent signal. The phase information is neglected as the resulting source mixing
model, assuming uniform and independent phases, leads to intractable inference [10]. This
neglected phase interaction is post hoc accounted for by modeling it as Gaussian noise,
leading to the Algonquin source mixing model

pa

(
x f

n | s1, f
n , . . . , sK, f

n

)
= N

(
x f

n

∣∣∣∣ ln

(
K

∑
k=1

exp
(

sk, f
n

))
, γ−1

x

)
, (8)

where the tuning parameter γx represents the precision of the Gaussian distribution to
account for the neglected phase interaction between the different constituent signals in (7).
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2.2.2. Source Mixing Model 2: Gaussian Scale Sum Model

The Algonquin model requires estimation of the noise variance γ−1
x . Here we present

an alternative novel source mixing model that does not require any tuning parameters,
inspired by the Gaussian scale models from [30].

We assume a (complex) Gaussian distribution for the frequency coefficients of the
constituent signals Sk

n, given by

Sk
n ∼ NC(µ, Γ, C), (9)

with mean µ = 0, complex covariance matrix Γ and relation matrix C, see [33] for more
details. In order to keep inference tractable, independence is assumed between the real and
imaginary parts of the coefficients, requiring C = 0. Following [30], the covariance matrix
Γ is modelled as a diagonal matrix with exponentiated auxiliary variables sk, f

n , leading to
the model

p(Sk, f
n | sk, f

n ) = NC
(

Sk, f
n | 0, exp

(
sk, f

n

)
, 0
)
=

exp
(
−sk, f

n

)

π exp
(
− exp

(
−sk, f

n

)
|Sk, f

n |2
)

. (10)

This probabilistic relationship shows great similarity with the transform from the
frequency coefficients to the log-power spectrum, as its log-likelihood can be found as
ln p(Sk, f

n | sk, f
n ) = −sk, f

n − exp(−sk, f
n )|Sk, f

n |2 − ln(π) and from this description the maxi-
mum of sk, f

n can be found to occur at sk, f
n = ln(|Sk, f

n |2), which coincides with the determin-
istic transform from the frequency coefficients to the log-power spectrum. As a result of

this observation, the variables sk
n =

[
sk,1

n , . . . , sk,F
n

]>
are in this model termed the pseudo

log-power coefficients of the original source signal Sk
n. Due to the linearity of the STFT in (6),

the likelihood function of X f
n can be expressed using (10) as

pg

(
X f

n | s1, f
n , . . . , sK, f

n

)
= NC

(
X f

n

∣∣∣∣ 0,
K

∑
k=1

exp
(

sk, f
n

)
, 0

)
. (11)

In contrast to the Algonquin model, this Gaussian scale sum model does not contain
any tuning parameters and operates on the complex frequency coefficients instead of the
log-power spectrum. Note that the pseudo log-power coefficients sk, f

n are not exactly equal
to the deterministic log-power coefficients of the Algonquin-based source mixing model,
although they show great similarity.

As we have defined the observed signal as a function of the constituent signals, the
next task concerns modeling the constituent signals sk

n = [sk,1
n , . . . , sk,F

n ]> themselves. In
this paper, we will use a Gaussian mixture model for this purpose.

2.2.3. Source Model: Gaussian Mixture Model

In this paper we use a Gaussian mixture model as a prior for the (pseudo) log-power
coefficients sn as

p(sn | µ, γ, zn) =
D

∏
d=1

(
F

∏
f=1
N
(

s f
n | µ

f
d , (γ f

d)
−1
))znd

, (12)

where the source index k is omitted for compactness of notation. Here we assume inde-
pendence between the frequency bins to ease computations ([34], pp. 64–65). The mixture
components are denoted by d = 1, 2, . . . , D. The mixture means µ = [µ1, . . . , µD]

> are
modeled as

p(µd) =
F

∏
f=1
N
(

µ
f
d | m f

d , v f
d

)
, (13)
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where µd = [µ1
d, . . . , µF

d ]
> and where m f

d and v f
d represent the mean and variance of the

mixture mean µ
f
d , respectively. Similarly the mixture precisions γd = [γ1

d, . . . , γF
d ]
> are

modelled as

p(γd) =
F

∏
f=1

Γ(γ f
d | a f

d , b f
d), (14)

where Γ(· | α, β) denotes the Gamma distribution with shape and rate parameters α and β,
respectively. a f

d and b f
d represent the shape and rate parameters of the mixture precision

γ
f
d , respectively.

We use one-hot encoding [28] to represent mixture selection variables zn = [zn1, . . . , znD]
>,

thus ∑D
d=1 znd = 1 and znd ∈ {0, 1}. We assume a categorical prior distribution for zn

p(zn | h) = Cat(zn | h, D), (15)

where D denotes a number of components and h the event probabilities. Finally, we model
h using a Dirichlet prior as

p(h) = Dir(h | α), (16)

where α = [α1, . . . , αD]
> are the concentration parameters.

In summary, in this section we have further specified the generative model of (1).
To apply the proposed framework, two distinct models have been specified. The first
model is based on the Algonquin-based source mixing model, in which the individual
signals are represented by Gaussian mixture models. This first probabilistic model is fully
specified by (8), (12)–(16). Secondly, an alternative model has been presented, which is
based on Gaussian scale models. This probabilistic model is fully specified by (11)–(16).
The soundscaping framework supports different acoustic models, concerning both the
source mixing models as the source models.

2.3. Factor Graphs and Message Passing-Based Inference

As described in Section 2.1, the source modeling, source separation and soundscaping
tasks can be framed respectively as inference tasks for computing p(θk | ŝk), p(sn | x1:n, ŝ)
and p(yn | x1:n, ŝ) on the generative model. Before describing how inference is realized
in our generative model, we present a brief review of factor graphs and message passing
algorithms. We use message passing in a factor graph as our probabilistic inference
approach of choice, due to of its efficiency, automatability, scalability and modularity [25,32].
Factor graphs allow us both to visualize factorized probabilistic models as graphs and to
execute inference by automatable message passing algorithms on these graphs.

2.3.1. Forney-Style Factor Graphs

Factor graphs are a class of probabilistic graphical models. We focus on Forney-style
factor graphs (FFG), introduced in [35], with notational conventions adopted from [36].
The interested reader may refer to [32,36] for additional information on FFGs. FFGs
visualize global factorizable functions as an undirected graph of nodes corresponding
to the local functions, or factors, connected by edges or half-edges representing their
mutual arguments. This factorized representation allows naturally for the visualization of
conditional dependencies in generative probabilistic models.

Here we will represent the factorizable probability density function p(x1, x2, x3, x4, x5, x6)
using an FFG. Assume this function factorizes as

p(x1, x2, x3, x4, x5, x6) = fa(x1, x2) fb(x2, x3, x4) fc(x4, x5, x6) fd(x5), (17)

where the functions with alphabetical subscript denote the individual factors. The FFG,
as shown in Figure 4, can be constructed from (17) following the three visualisation rules
of [36].
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One of the most apparent constraints of these graphs specifying that edges can be
connected to a maximum of two nodes, can easily be circumvented through the use
of a so-called equality node and the introduction of two variable copies. Suppose a
variable y is the argument of three factors. The introduction of an equality node function
f = (y, y′, y′′) = δ(y− y′)δ(y− y′′), where δ(·) represents the Dirac delta function, allows
for branching y into variable copies y′ and y′′. The equality node constrains the beliefs over
y, y′ and y′′ to be equal.
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generative model, specified by (11)–(16). In these figures a single source model (the Gaus-
sian mixture model) has been drawn to prevent clutter.
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2.3.2. Sum-Product Message Passing

Suppose that we would like to calculate the marginal distribution p(x4), which is
the probability distribution of x4 obtained by marginalizing over the distributions of all
other random variables in (17). Here we implicitly assume that all random variables
are continuous and therefore marginalization is performed through integration instead
of summation. If p(x1, x2, x3, x4, x5, x6) were not factorizable, the marginal could be
calculated as

p(x4) =
∫
· · ·

∫
p(x1, x2, x3, x4, x5, x6) dx\4 , (18)

where x\j denotes the set of all variables xi ∀i excluding xj. However, the conditional
independencies amongst some of the variables allow for the use of the distributive property
of integration in rewriting (17) as

p(x4) =
∫∫ (∫

fa(x1, x2) dx1

)

︸ ︷︷ ︸
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. (19)

Here the global computation of (18) is executed through a set of local computations,
denoted by µ, which can be interpreted as messages that nodes in the graph send to each
other. These messages are visualized in Figure 7 and can be thought of as a summaries of
inference in the corresponding dashed boxes. The FFG now has arbitrarily directed edges
to indicate the flow of the messages. A message µ(x) propagating on edge x is denoted by
~µ(x) or ~µ(x) when propagating in or against the direction of the edge, respectively.
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2.3.2. Sum-Product Message Passing

Suppose that we would like to calculate the marginal distribution p(x4), which is
the probability distribution of x4 obtained by marginalizing over the distributions of all
other random variables in (17). Here we implicitly assume that all random variables
are continuous and therefore marginalization is performed through integration instead
of summation. If p(x1, x2, x3, x4, x5, x6) were not factorizable, the marginal could be
calculated as

p(x4) =
∫
· · ·

∫
p(x1, x2, x3, x4, x5, x6) dx\4 , (18)

where x\j denotes the set of all variables xi ∀i excluding xj. However, the conditional
independencies amongst some of the variables allow for the use of the distributive property
of integration in rewriting (17) as

p(x4) =
∫∫ (∫

fa(x1, x2) dx1

)

︸ ︷︷ ︸
~µ(x2)

fb(x2, x3, x4) dx2 dx3

︸ ︷︷ ︸
~µ(x4)

·
∫∫

fc(x4, x5, x6) fd(x5)︸ ︷︷ ︸
←−µ (x5)

dx5 dx6

︸ ︷︷ ︸
←−µ (x4)

. (19)

Here the global computation of (18) is executed through a set of local computations,
denoted by µ, which can be interpreted as messages that nodes in the graph send to each
other. These messages are visualized in Figure 7 and can be thought of as a summaries of
inference in the corresponding dashed boxes. The FFG now has arbitrarily directed edges
to indicate the flow of the messages. A message µ(x) propagating on edge x is denoted by
~µ(x) or←−µ (x) when propagating in or against the direction of the edge, respectively.
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Figure 7. Forney-style factor graph of (17) with sum-product messages as indicated in (19) for the
calculation of the marginal distribution of x4.

The message ~µ(xj) flowing out of an arbitrary node f (x1, x2, . . . , xn) with incoming
messages ~µ(x\j) is given by

~µ(xj) ∝
∫

f (x1, x2, . . . , xn) ∏
i∈{1,...,n}\j

~µ(xi) dx\j (20)

which is called the sum-product update rule [38]. This update rule is the core of the
sum-product message passing algorithm, which is also known as belief propagation. This
algorithm concerns the distributed calculations of various marginal functions from a
factorizable global function. In the previous example the FFG was acyclic and therefore a
finite predetermined number of messages is required for convergence. If this graph would
have included cycles, an iterative message passing schedule would be required. This is
known as loopy-belief propagation and its convergence is not guaranteed [39].

2.3.3. Variational Message Passing

In some instances, the integrals in the sum-product update rule (20) can become
intractable. Linear Gaussian models are an example of a class of models in which sum-
product messages can be calculated in closed-form expressions. However, in models such
as the Algonquin model of (8) the integrals become intractable. In these cases, we can
resort to an approximate message passing algorithm, called variational message passing
(VMP) [40,41], which gives closed-form expressions for conjugate pairs of distributions
from the exponential family. If closed-form expressions with VMP are still not available,
we might resort to approximation methods, such as importance sampling or Laplace’s
method [42].

Suppose that we are dealing with a generative model p(y, z) with an intractable
posterior distribution p(z | y), where y and z denote the observed and latent variables, re-
spectively. The goal of variational inference is to approximate the intractable true posterior
with a tractable variational distribution q(z) through minimization of a variational free
energy functional

F[q] = DKL[q(z) || p(z | y)]− ln p(y) . (21)

where DKL is the Kullback-Leibler divergence and which is, in the machine learning
literature, also known as the negative Evidence Lower BOund (ELBO) [43] as it bounds the
negative log-evidence− ln p(y), because DKL ≥ 0 for any choice of q. Since the second term
of (21) is independent of q(z), free energy minimization is equivalent to the minimization
of the Kullback-Leibler divergence. Furthermore, the variational free energy can be used
as an approximation to the negative log-evidence for techniques such as Bayesian model
selection, Bayesian model averaging [44] and Bayesian model combination [45].

In practice, the optimization of (21) is performed by imposing additional constraints
on q(z), e.g., by limiting q(z) to a family of distributions, or by additional factorization
assumptions (e.g., q(z) = ∏i qi(zi) which is known as the mean-field assumption). De-
pending on the constraints on q(z), the minimization of (21) can be achieved through
sum-product message passing or variants of VMP. In the latter case, the goal is to iteratively
update the variational distributions through coordinate descent on (21). In general, the
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The message ~µ(xj) flowing out of an arbitrary node f (x1, x2, . . . , xn) with incoming
messages ~µ(x\j) is given by

~µ(xj) ∝
∫

f (x1, x2, . . . , xn) ∏
i∈{1,...,n}\j

~µ(xi) dx\j (20)

which is called the sum-product update rule [38]. This update rule is the core of the
sum-product message passing algorithm, which is also known as belief propagation. This
algorithm concerns the distributed calculations of various marginal functions from a
factorizable global function. In the previous example the FFG was acyclic and therefore a
finite predetermined number of messages is required for convergence. If this graph would
have included cycles, an iterative message passing schedule would be required. This is
known as loopy-belief propagation and its convergence is not guaranteed [39].

2.3.3. Variational Message Passing

In some instances, the integrals in the sum-product update rule (20) can become
intractable. Linear Gaussian models are an example of a class of models in which sum-
product messages can be calculated in closed-form expressions. However, in models such
as the Algonquin model of (8) the integrals become intractable. In these cases, we can
resort to an approximate message passing algorithm, called variational message passing
(VMP) [40,41], which gives closed-form expressions for conjugate pairs of distributions
from the exponential family. If closed-form expressions with VMP are still not available,
we might resort to approximation methods, such as importance sampling or Laplace’s
method [42].

Suppose that we are dealing with a generative model p(y, z) with an intractable
posterior distribution p(z | y), where y and z denote the observed and latent variables, re-
spectively. The goal of variational inference is to approximate the intractable true posterior
with a tractable variational distribution q(z) through minimization of a variational free
energy functional

F[q] = DKL[q(z) || p(z | y)]− ln p(y) . (21)

where DKL is the Kullback-Leibler divergence and which is, in the machine learning
literature, also known as the negative Evidence Lower BOund (ELBO) [43] as it bounds the
negative log-evidence− ln p(y), because DKL ≥ 0 for any choice of q. Since the second term
of (21) is independent of q(z), free energy minimization is equivalent to the minimization
of the Kullback-Leibler divergence. Furthermore, the variational free energy can be used
as an approximation to the negative log-evidence for techniques such as Bayesian model
selection, Bayesian model averaging [44] and Bayesian model combination [45].

In practice, the optimization of (21) is performed by imposing additional constraints
on q(z), e.g., by limiting q(z) to a family of distributions, or by additional factorization
assumptions (e.g., q(z) = ∏i qi(zi) which is known as the mean-field assumption). De-
pending on the constraints on q(z), the minimization of (21) can be achieved through



Appl. Sci. 2021, 11, 9535 13 of 27

sum-product message passing or variants of VMP. In the latter case, the goal is to iteratively
update the variational distributions through coordinate descent on (21). In general, the
variational message ν(xj) from a generic node f (x1, x2, . . . , xn) with incoming marginals
q(x\j) (see Figure 8) can be written as [41]

~ν(xj) ∝ exp
∫

∏
i∈{1,...,n}\j

q(xi) ln f (x1, x2, . . . , xn) dx\j. (22)

Given these messages, the variational distributions can be updated through the multi-
plication of the forward and backward message on that respective edge as

q(xj) ∝ ~ν(xj)
←−ν (xj). (23)
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Figure 8. Example of a situational sketch of (22) where a variational message~ν(xj) flows out of an
arbitrary node f (x1, x2, . . . , xn) with marginals q(x\j).

2.3.4. Automating Inference and Variational Free Energy Evaluation

For frequently-used elementary factor nodes, the message update rules (20) and
(22) can be derived analytically and saved in a lookup table. Message passing-based
inference then resorts mainly to substituting the current argument values in worked-out
update rules. A few open source toolboxes exist for supporting this type of “automated”
message passing-based inference. In this paper, we selected ReactiveMP (ReactiveMP
is available at https://github.com/biaslab/ReactiveMP.jl, accessed on 1 July 2021), the
successor of ForneyLab (ForneyLab is available at https://github.com/biaslab/ForneyLab.
jl, accessed on 1 July 2021) [25], to realize the previously described inference tasks (2), (3)
and (5). ReactiveMP is an open source Julia package for message passing-based inference
that specifically aims to excel at real-time inference in dynamic models. This package
allows us to specify a generative model and to perform automated inference on this
model. The desired distributions of (2), (3) and (5) are therefore automatically calculated.
Furthermore, ReactiveMP automatically evaluates the performance of the model on the
data by calculating the Bethe free energy [46], which equals the variational free energy
for acyclic graphs. This free energy is calculated using node-local free energies and the
edge-local entropies of the random variables, where we can also impose local constraints
on these variables for a trade-off between tractability and accuracy of the free energy
calculation [47].

In this paper we have introduced the Algonquin model in (8) and the Gaussian scale
sum model in (11). Inference in these models is non-trivial and therefore in the next two
subsections we will describe how to perform message passing-based inference in these
models, such that we can automate message passing in the proposed generative models
of Section 2.2. Furthermore we derive the node-local free energies for the automated
evaluation of model performance using the variational free energy.

2.3.5. Message Passing-Based Inference in the Algonquin Model
Exact inference in the Algonquin model of (8) leads to intractable inference, because

the non-linear relationship leads to non-Gaussian distributions [9]. Approximate inference
by variational message passing also results in difficulties. For the variational messages
the expectation has to be determined over the mean term of (8). The expectation over this
so-called log-sum-exp relationship has, however, no analytical solution and needs to be

Figure 8. Example of a situational sketch of (22) where a variational message~ν(xj) flows out of an
arbitrary node f (x1, x2, . . . , xn) with marginals q(x\j).

2.3.4. Automating Inference and Variational Free Energy Evaluation

For frequently-used elementary factor nodes, the message update rules (20) and (22)
can be derived analytically and saved in a lookup table. Message passing-based inference
then resorts mainly to substituting the current argument values in worked-out update
rules. A few open source toolboxes exist for supporting this type of “automated” message
passing-based inference. In this paper, we selected ReactiveMP (ReactiveMP is available at
https://github.com/biaslab/ReactiveMP.jl, accessed on 1 July 2021), the successor of Forney-
Lab (ForneyLab is available at https://github.com/biaslab/ForneyLab.jl, accessed on 1 July
2021) [25], to realize the previously described inference tasks (2), (3) and (5). ReactiveMP is
an open source Julia package for message passing-based inference that specifically aims
to excel at real-time inference in dynamic models. This package allows us to specify a
generative model and to perform automated inference on this model. The desired distribu-
tions of (2), (3) and (5) are therefore automatically calculated. Furthermore, ReactiveMP
automatically evaluates the performance of the model on the data by calculating the Bethe
free energy [46], which equals the variational free energy for acyclic graphs. This free
energy is calculated using node-local free energies and the edge-local entropies of the
random variables, where we can also impose local constraints on these variables for a
trade-off between tractability and accuracy of the free energy calculation [47].

In this paper we have introduced the Algonquin model in (8) and the Gaussian scale
sum model in (11). Inference in these models is non-trivial and therefore in the next two
subsections we will describe how to perform message passing-based inference in these
models, such that we can automate message passing in the proposed generative models
of Section 2.2. Furthermore we derive the node-local free energies for the automated
evaluation of model performance using the variational free energy.

https://github.com/biaslab/ReactiveMP.jl
https://github.com/biaslab/ReactiveMP.jl
https://github.com/biaslab/ForneyLab.jl
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2.3.5. Message Passing-Based Inference in the Algonquin Model
Exact inference in the Algonquin model of (8) leads to intractable inference, because

the non-linear relationship leads to non-Gaussian distributions [9]. Approximate inference
by variational message passing also results in difficulties. For the variational messages
the expectation has to be determined over the mean term of (8). The expectation over this
so-called log-sum-exp relationship has, however, no analytical solution and needs to be
approximated as in [9,48,49]. Ref. [50] gives an overview of the available approximations
methods. In this paper we will comply with the original approximation from [9]:

ln

(
K

∑
k=1

exp(sk)

)
≈ ln

(
K

∑
k=1

exp(sk)

)∣∣∣∣∣
sk=E[sk ]

+∇s ln

(
K

∑
k=1

exp(sk)

)∣∣∣∣∣

>

sk=E[sk ]

(s− E[s]), (24)

where the notation of (8) is altered to prevent clutter. The subscript (and former superscript)
k now denotes the source index and the frame and frequency bin indices are omitted. With
this approximation, the mean of (8) is approximated using a first-order vector Taylor
expansion. The function is linearly expanded around the mean of the constituent signals sk.

Table 1 gives an overview of the Algonquin node of (8). This node has been generalized
with respect to [9] to accommodate for more than 2 sources and to also allow for inferring
the noise precision γx. The table shows the variational messages under the mean-field
assumption and using the vector Taylor expansion. Finally, the local variational free energy
is presented in the table. All derivations can be found at our GitHub repository (the
GitHub repository can be accessed at https://github.com/biaslab/SituatedSoundscaping,
accessed on 1 July 2021). Of particular interest are the messages←−ν (sk) in Table 1, because
their parameters carry an interesting interpretation. First it is important to note that the
messages←−ν (sk) depend on the mean Eq(sk)

[sk]. This is a result of the expansion point of
the Taylor expansion. Thus, the message←−ν (sk) gets calculated according to the current
mean over the edge of sk, that mean gets updated according to the incoming message and
this procedure iteratively repeats. Furthermore, attention should be paid to the variances
of the messages←−ν (sk). These are normalized using a softmax function over the constituent
sources, which means that only the most dominant sources receive informative messages.
The messages towards the less-dominant sources all have relatively high variances and will
not significantly alter the posterior distributions. This is desired as the information from
our observations will mostly update the most dominant sources, which have the biggest
impact on the observation.

2.3.6. Message Passing-Based Inference in the Gaussian Scale Sum Model

Similarly to the Algonquin node, exact inference is also not possible in the Gaussian
scale sum node of (11). Also variational message passing yields intractable computations.
As a result we again need to perform a vector Taylor expansion for approximating the
intractable terms, corresponding to the covariance term in (11). Table 2 shows an overview
of the Gaussian scale sum node, the corresponding variational messages and the node-local
variational free energy. All derivations can be found at our GitHub repository (the GitHub
repository can be accessed at https://github.com/biaslab/SituatedSoundscaping, accessed
on 1 July 2021).

https://github.com/biaslab/SituatedSoundscaping
https://github.com/biaslab/SituatedSoundscaping
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Table 1. Table containing (a) the Forney-style factor graph representation of the generalized Algo-
nquin node. (b) The likelihood function corresponding to the generalized Algonquin node. (c) An
overview of the chosen approximate posterior distributions. Here the ·̂ accent refers to the param-
eters of these distributions. (d) The derived variational messages for the generalized Algonquin
node. Here the σ(·)k represents the kth output of the softmax function. (e) The derived local
variational free energy, in which ψ(·) denotes the digamma function. All derivations are avail-
able at Supplementary Materials https://github.com/biaslab/SituatedSoundscaping, accessed on
1 July 2021.

Factor graph for the Algonquin node
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node. Here the σ(·)k represents the kth output of the softmax function. (e) The derived local
variational free energy, in which ψ(·) denotes the digamma function. All derivations are avail-
able at Supplementary Materials https://github.com/biaslab/SituatedSoundscaping, accessed on
1 July 2021.
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Table 2. Table containing (a) the Forney-style factor graph representation of the Gaussian scale sum
node. (b) The likelihood function corresponding to the Gaussian scale sum node. (c) An overview
of the chosen approximate posterior distributions. Here the ·̂ accent refers to the parameters of
these distributions. (d) The derived variational messages for the Gaussian scale sum node. (e) The
derived local variational free energy. All derivations are available at https://github.com/biaslab/
SituatedSoundscaping, accessed on 1 July 2021.
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The message←−ν (sk) has been calculated by approximating the intractable terms using
a vector Taylor expansion over all variables, except for sk. Alternative approaches are
also feasible. For example, approximating the intractable terms using a full vector Taylor
expansion (also over sk), as with the Algonquin node, is also feasible, although this would
result in an improper variational log-message that is linear in sk. As can be seen in Table 2,
the variational message←−ν (sk) does not belong to a well-known probability distribution.
As the sigmoidal shape of←−ν (sk) prevents us from directly approximating this variational
message by a common distribution, we propagate the message←−ν (sk) in its functional form,
calculate the marginal and then approximate the marginal by a well-known distribution for
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tractability. Therefore we pass the functional form as a message over the graph. We then
derive a functional form of the resulting marginals and approximate the marginals with a
Gaussian distribution for tractability. Here the log-marginal ln q(sk) is approximated by a
second-order Taylor expansion at its mode as

ln q(sk) ≈ ln q(sk,0) +
1
2

d2 ln q(sk)

ds2
k

∣∣∣
sk=sk,0

(sk − sk,0)
2 (25)

where sk,0 is the mode of the marginal. Because the message is expanded around its mode,
the first-order derivative vanishes from the Taylor expansion. This mode can be found by
solving d ln q(sk)

dsk
= 0 for sk. In our case there is no closed-form solution for the mode and

therefore we need to resort to numerical optimization for finding this maximum.

2.3.7. Implementation Details

Now that the probabilistic models have been defined in Section 2.2, the three in-
ference tasks from Section 2.1 remain: source modeling (2), source separation (3) and
soundscaping (5). For better initialization of the source models and for proper unbiased
source separation using mixture models, several additional steps have been taken to imple-
ment the described inference procedures. The interested reader may refer to Appendix A
for a detailed specification of the inference procedures from Section 2.1.

3. Experimental Validation

Now that we described the situated soundscaping framework and presented relevant
generative models, we evaluate the framework on a simulated real-life scenario. Here a
speech signal is corrupted by background noise. This section first describes the experimen-
tal setup, data selection and preprocessing procedures. Then we describe the performance
metrics that we use to evaluate our framework under the different models from Section 2.2.
Finally, we present and discuss the results obtained for the current models.

3.1. Experimental Overview

Two different experiments were conducted in this research to validate our proposed
framework for the models from Section 2.2. In both experiments, the source model for the
speech signal was pretrained offline, as speech signals are inherently complex to model
and a short fragment will not be enough to capture all characteristics of speech. The noise
model is trained on three seconds of the noise signal, which should be recorded in-the-field
by the user. During the source separation stage in both experiments 10 s of the mixture
signal, consisting of a speech and noise signal, is processed. In both experiments the
signal-to-noise ratio (SNR) of the input signal is varied for a constant number of mixture
components for the speech and noise model. The number of mixture components of the
speech model has been set to 25. In the first and second experiment the number of noise
clusters is set to 1 and 2, respectively.

3.2. Data Selection

Two data sets have been used for experimental validation:

• The LibriSpeech data set (the LibriSpeech data set is available at https://www.openslr.
org/12, accessed on 31 March 2021) [51], which is a corpus of approximately 1000 h of
16 kHz read English speech.

• The FSDnoisy18k data set (the FSDnoisy18k data set is available at https://www.
eduardofonseca.net/FSDnoisy18k, accessed on 13 April 2021) [52], is an audio data
set, which has been collected with the aim of fostering the investigation of label noise
in sound event classification. It contains 42.5 h of audio samples across 20 sound
classes, including a small amount of manually-labeled data and a larger quantity of
real-world noise data.

https://www.openslr.org/12
https://www.openslr.org/12
https://www.eduardofonseca.net/FSDnoisy18k
https://www.eduardofonseca.net/FSDnoisy18k
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From the LibriSpeech data set the first 1000 audio excerpts, consisting of approximately
200 min of speech, are used to train the speech source model. Besides this a random speech
excerpt has been selected, outside of the first 1000 excerpts, to perform source separation
and soundscaping. From the FSDnoisy18k data set also a random noise excerpt has been
selected, in this case representing a clapping audience. The first 3 s of this signal were
used to train the noise model and the consecutive 10 s were used for source separation and
soundscaping.

3.3. Preprocessing

All signals were first resampled to 16 kHz, since most of the speech intelligibility
information is located below 7 kHz. Furthermore the computational load increases sharply
for higher sampling frequencies, which is incompatible with the ultra-low power demands
of hearing aids. After resampling the speech and noise signals are centered around 0. The
speech signal is power-normalized to 0 dB and the noise signal is power-normalized to
obtain the desired SNR for the experiments.

Next, the signal is processed by a frequency-warped filter for two reasons, for detailed
discussions see [53]. First, we would like to obtain a high frequency resolution for source
separation to be more efficient. Extracting the frequency coefficients directly using the
short-time Fourier transform would require processing longer blocks of data for obtaining
a higher frequency resolution. This leads to the second reason: we would like to limit the
processing delay of the hearing aid. A large processing delay leads to coloration effects
when the hearing-aid user is talking, which is experienced as “disturbing” by the user [53].
From this it becomes evident that we need to compromise between both goals when directly
using the STFT. The frequency-warped filter achieves both goals by warping the linear
frequency scale to a perceptually more accurate frequency scale, also known as the Bark
scale [54]. For the same block size it achieves a perceptually higher frequency resolution in
comparison to the STFT.

The frequency-warped filter consists of a series of first-order all-pass filters. The
Z-transform for a single all-pass filter is given by

A(z) =
z−1 − a

1− az−1 , (26)

with warping parameter a. At a sampling frequency of 16 kHz, the warped frequency
spectrum best approximates the Bark scale for a = 0.5756 [55]. The frequency-warped
spectrum can be obtained by calculating the fast Fourier transform (FFT) over the outputs
of each all-pass section, often referred to as taps. Because of conjugate symmetry in the
obtained frequency coefficients, about half of the coefficients is discarded to limit computa-
tional complexity. From the remaining coefficients the input of the source modeling stage
is formed. Importantly, the frequency-warped filter will also be used for reconstructing the
signal by adding an FIR compression filter to it, as done in [53]. Here the “Gain calculation”
block in ([53], Figure 3) will encompass the source separation and soundscaping stages
in our framework. Throughout all experiments we will use a frequency-warped filter of
length F = 32, which yields 17 distinct frequency coefficients, with a step size of 32 for
reduced computations.

3.4. Performance Evaluation

Our presented novel methodology differs from conventional research in the fact that
users can create their personalized soundscaping algorithms by performing automated
probabilistic inference on a modular generative model, with interchangeable submodels
trained using on-the-spot recorded sound fragments. Users can adjust the source-specific
gains w for balancing the amount of noise reduction and the inevitable introduction of
speech distortion. Throughout the experiments the parameter w is post-hoc optimized
subject to wk ∈ [0, 1] and ∑k wk = 1 to yield the most optimal performance metric, as
in a real setting we assume that the user is capable of setting these parameters to their



Appl. Sci. 2021, 11, 9535 19 of 27

most optimal value. For comparison we will also evaluate the performance of the noise
corrupted situation before and after processing with a Wiener filter [56].

A Wiener filter assumes full knowledge about the underlying signals and was imple-
mented as follows. The mixture signal and the underlying signals are all processed by
separate frequency-warped filters Every segment of data, consisting of 32 samples, is fed
into the frequency warped filter. The frequency coefficients are extracted using the STFT
and based on those the signal powers are calculated for each frequency bin as their squared
magnitudes. The Wiener filter gain for each of the frequency bins is calculated individually
as G f = P f

s /(P f
s + P f

\s), where G f is the Wiener filter gain for frequency bin f and where

P f
s and P f

\s represent the corresponding calculated powers of the speech signal and noise
signal, respectively. This gain is applied to the FIR compression filter to determine the
processed output signal.

Finally, a quantitative measure for assessing the performance is not straightforward,
because the performance depends on the perception of a specific individual human listener,
and there are no personalized metrics for this application. In order to evaluate our approach
we evaluate several metrics, of which some have been developed to approximate human
perception. In this paper we evaluate the model performance using the output SNR, the
perceptual evaluation of speech quality (PESQ) metric [57] and the short-time objective
intelligibility measure (STOI) metric [58]. The output SNR represents the ratio of signal
power with respect to noise power. It gives a quantitative impression of the remaining
noise of the denoised signal by comparing it with the true signal. However, the output
SNR does not measure the perceptual performance of the noise reduction algorithms. In
contrast, the PESQ metric [57], introduced in 2001, is a more advanced metric that has
been introduced to better model the perceptual performance. It was intended for a wider
variety of network conditions and has been show to yield a significantly higher correlation
with subjective opinions with respect to other perceptual evaluation metrics. The STOI
metric [58], introduced in 2011, provides a measure for speech intelligibility that only
uses short-time temporal speech segments, based on the correlation between the temporal
envelopes of the extracted and true speech signal. It is important to note here that the PESQ
and STOI metric represent by definition a group average of the experienced perceptual
quality. The PESQ scores range from 1.0 (worst) to 4.5 (best) and the STOI scores range
from 0.0 (worst) to 1.0 (best).

3.5. Results

The obtained results are visualized in Figures 9 and 10. They show the model per-
formance of the experiments from Section 3.1 with 1 and 2 noise mixture components,
respectively.

In Figure 9 the output SNR, PESQ and STOI are calculated for a varying input SNR
for both models of Section 2.2 with 1 noise mixture component. Besides the Wiener filter,
the baseline performance, which corresponds to the output signal of the FIR compression
filter for unity gain, is also plotted. The offset in the baseline output SNR with respect
to the input SNR is caused by the frequency-warped filter. The input SNR is calculated
with respect to the signals that enter the frequency-warped filter. After the processing by
the filter the frequency-dependent phase delays lead to slightly degraded output SNRs,
resulting in a vertical offset in the input and output SNR relationship.

The PESQ scores for an input SNR of −10 dB for the baseline and Algonquin model
are incorrect as they by far outperform the Wiener filter for high noise situations. Therefore
these points are regarded as outliers, possibly due to computational stability issues of
the PESQ metric, as it was originally intended for narrowband telephone speech. From
the figures it becomes evident that the Wiener filter yields the highest source separation
performance in terms of output SNR, PESQ and STOI. This is expected as the Wiener
filter requires full knowledge about the underlying signals in the observed mixture. In
terms of PESQ scores, the Gaussian scale sum-based model attains better performance in
comparison to the baseline signal.



Appl. Sci. 2021, 11, 9535 20 of 27

In Figure 10 the output SNR, PESQ and STOI are calculated for a varying input SNR
for both models of Section 2.2 with 2 noise mixture components, including the baseline
performance and performance obtained with a Wiener filter. From all three plots it can be
noted that the performance with respect to the baseline model has improved, especially
for high input SNRs. In comparison to Figure 9, we can also see that the performance has
increase when introducing an additional noise mixture model components. This behaviour
is expected as we can model the source more accurately.
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Figure 9. Overview of the performance metrics for the first experiment as described in Section 3.1. For a varying input
SNR, the output SNR (left), the PESQ (middle) and the STOI (right) are evaluated for both models from Section 2.2 for 1
noise mixture component. For comparison the baseline performance of the noisy signal has been included, in addition
to the results obtained by the Wiener filter. It should be noted that the input SNR refers to the signal before entering the
frequency-warped filter, causing the offset in the left plot.
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Figure 10. Overview of the performance metrics for the second experiment as described in Section 3.1. For a varying input
SNR, the output SNR (left), the PESQ (middle) and the STOI (right) are evaluated for both models from Section 2.2 for 2
noise mixture components. For comparison the baseline performance of the noisy signal has been included, in addition
to the results obtained by the Wiener filter. It should be noted that the input SNR refers to the signal before entering the
frequency-warped filter, causing the offset in the left plot.

4. Discussion

From Figures 9 and 10 it can be noted that the proposed soundscaping framework is
capable of achieving increased speech quality for the current models. The performance
metrics are inherently tied to the soundscaping weights w. Making adjustments to these
weights can significantly increase the PESQ and STOI scores above the baseline perfor-
mance. However, it should be noted that the PESQ and STOI metrics are by definition
average group metrics. Therefore we expect that personalization of the weights w will lead
to better perceived speech quality scores.

This paper lies at the foundation of a novel class of personalized and situated hearing
aid algorithms. In the current framework the parameter estimation approach and the
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4. Discussion

From Figures 9 and 10 it can be noted that the proposed soundscaping framework is
capable of achieving increased speech quality for the current models. The performance
metrics are inherently tied to the soundscaping weights w. Making adjustments to these
weights can significantly increase the PESQ and STOI scores above the baseline perfor-
mance. However, it should be noted that the PESQ and STOI metrics are by definition
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average group metrics. Therefore we expect that personalization of the weights w will lead
to better perceived speech quality scores.

This paper lies at the foundation of a novel class of personalized and situated hearing
aid algorithms. In the current framework the parameter estimation approach and the
signal processing algorithm follow naturally from minimizing the variational free energy
through probabilistic inference in a generative model. The framework allows hearing aid
users to develop their own algorithms according to their preferences. Therefore it will ease
the burden on hearing aid users as they do not need the help of specialists to personalize
their hearing experience. This will greatly shorten the personalization procedure for users
and is likely to yield more satisfying results. Although the main application of this paper
concerned hearing aids, its generality extends to a broader class of applications. The
framework is a thorough specification of the principle of informed source separation [6].
Therefore its usage extends to any source separation problem where information about
the underlying sources is known or can be acquired, such as in denoising problems in
biomedical signal processing or communication theory.

Future steps include the incorporation of user feedback and the learning of the acoustic
model structure. Both improvements can be based on the same principle of free energy
minimization, whose research fields are known as active inference [59] and Bayesian model
reduction [60,61], respectively. The active inference approach to preference learning has
the goal of imposing as little burden on the user as possible. We envision the user giving
feedback to the algorithm through an accompanied app, which will be used for optimizing
the source-specific gains depending on the acoustic context. Through Bayesian model
reduction, the algorithm will automatically learn the optimal pruned model structure
from a very generic probabilistic model by optimizing the free energy, which equals the
simultaneous optimization of both the model accuracy and model complexity. This last
step is required to bring down the computational complexity as the current implementation
for the specified model is not yet suitable for real-time usage in hearing aid devices. This is
a result of the inherent complexity of mixture models and the variational approximations
which require multiple iterations for convergence. Instead, in future developments we may
try to create sparse hierarchical time-varying source models that do not require variational
approximations, such that the optimal result can be calculated within a single iteration.
Furthermore, we can leverage the local stationarity in acoustic signals to only update the
hearing aid gains (as described in Appendix A.3) every couple of milliseconds. By applying
a combination of these approaches together with optimization of the framework we expect
a real-time implementation of the framework to be within reach.

Besides the aforementioned directions for future research, we expect to obtain signifi-
cant performance gains by altering the source model structure and by perhaps modeling
the signal using an observation model in which inference is tractable and does not require
variational approximations. In the current model proposals there are several straightfor-
ward directions for improving the separation performance. First, the Gaussian mixture
models can both be extended using a Dirichlet process prior for determining an appropriate
number of clusters. For computationally constrained devices, care should be taken with the
number of clusters if real-time applications are desired. Bayesian model reduction [60,61]
would prove itself useful here for pruning the number of clusters in an informed way, by
monitoring the corresponding loss in variational free energy. Secondly, the Algonquin-
based model can be optimized for all signals and SNRs. In the experiments we empirically
set γx = 10, however, this is likely not to always yield optimal performance. By defining
γx as a random variable with a Gamma distribution prior, we could learn the optimal noise
parameter. In Table 1 we have already derived novel variational messages for this purpose.
Besides improving upon the current probabilistic models, we could also create entirely
new probabilistic models for the underlying signals. Inspiration for these models can be
obtained by reviewing architectural ideas of state-of-the-art deep neural networks. These
large neural networks provide interesting ideas for further research on how to extend
our compact generative model. For example, reference [20] uses dilated convolutions to
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mimic the hidden Markov dependencies among multiple samples. Reference [21] models
the conventionally used Mel-spectrogram and models different types of spectro-temporal
dependencies. Reference [22] extends the efficiency of neural networks by using conven-
tional audio processing blocks, such as oscillators and synthesizers. One of the most recent
additions [23] focuses on long-term coherence of music, using a variation of the multi-scale
hierarchical organization of the variational auto-encoders of [24].

5. Conclusions

In this paper we presented a probabilistic modeling framework for situated design of
personalized soundscaping algorithms for hearing aids. In this framework, the hearing
aid client gets to design her own sound processing algorithm under situated conditions,
based on small recordings of source signal fragments. The framework is very general
and allows for plug-in substitution of alternative source models. Since hearing aids
are resource constrained devices, we proposed a very compact generative model for
acoustic mixtures and execute approximate inference in real-time through efficient message
passing-based methods. Furthermore, we have derived novel and more general variational
messages for the Algonquin node and the Gaussian scale sum node, and we have described
a general procedure for source separation in which mixture models are incorporated.
Supported by the experiments, the current approach has shown to be capable of performing
source separation. In view of these results, we consider this system an interesting starting
point towards user-driven situated design of personalized hearing aid algorithms. Future
developments include the automated learning of the model structure and the automated
learning of the user preferences for better perceptual performance.

Supplementary Materials: Source code, experiments and the derivations of the variational messages
in Tables 1 and 2 are available at https://github.com/biaslab/SituatedSoundscaping.
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Appendix A. Inference for Learning and Signal Processing

This appendix will describe in detail how exactly the three inference tasks from
Section 2.1 are realized under the model specification of Section 2.2. In the upcoming
subsection we will discuss the inference tasks: source modeling (2), source separation (3)
and soundscaping (5).

Appendix A.1. Source Modeling

The inference task corresponding to the source modeling stage (2) is automated using
message passing. All message passing update rules are readily available within ReactiveMP,
based on Tables 1 and 2 and published update rule tables elsewhere [32,37,62]. However,
in order to improve convergence the message passing-based inference is preceded by
other algorithms for training the Gaussian mixtures, similarly to [30]. In the remainder of
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this subsection we will describe in detail how both signal models from Section 2.2 have
been initialized.

The signal models in the Algonquin-based generative model are all directly modeling
the log-power spectrum. This means that we can use the deterministic log-power spec-
trum as a direct input to our model. This Algonquin-based signal model is fully defined
by (8), (12)–(16) for K = 1. For convergence we will infer the parameters of the Gaussian
mixtures in three stages. The first and second phase involve the initialization of the Gaus-
sian mixture model parameters on the deterministic log-power spectrum for the third
phase. In the first phase, the K-means algorithm is used to initialize the mixture means.
Then in the second phase, the expectation-maximization (EM) algorithm for Gaussian
mixture models is employed on the deterministic log-power spectrum for determining
the mean vectors, precision matrices and event probabilities of the mixture components.
This training step proceeds using an offline EM algorithm, as convergence is guaranteed in
contrast to incremental EM algorithms [63]. Finally the obtained mean vectors, precision
matrices and event probabilities are used as model priors for µ, γ and h from Section 2.2.3.
In the third training phase, the posterior distributions of the model parameters are inferred
using variational message passing. Here we assume a mean-field factorization over the
Gaussian mixture model.

The training of the Gaussian scale sum-based signal model proceeds similarly to the
Algonquin-based model. This Gaussian scale sum-based signal model is fully defined
by (11)–(16) for K = 1. This signal model contains the pseudo log-power spectrum,
which differs from the deterministic log-power spectrum. Therefore training the model
requires a slightly different approach than for the Algonquin-based generative model.
Training will again proceed in three phases, where the first and second phase are identical
to the training phases of the Algonquin-based model. Here the model parameters are
trained using the K-means algorithm and using the EM algorithm on the deterministic
log-power spectrum. The obtained parameters are used for initialization of the third phase,
where now the probabilistic relationship between the pseudo log-power spectrum and the
complex frequency coefficients from (11) is assumed. Using variational message passing
the posterior distributions of the model parameters are inferred subject to the mean-field
assumption. The Gaussian scale sum node for K = 1 reduces to the Gaussian scale node
of [30,62]. We will approximate the variational messages←−ν

(
sk, f

n

)
directly using Laplace’s

method as described in [62] for computational speed.

Appendix A.2. Source Separation

A recursive implementation of online informed source separation as described by (3)
leads to a generalized Kalman filter, which can be realized by variational message passing.
During source separation the inferred model parameters are used for separating the sources.
From a graphical perspective, the messages colliding on the edges of sk, f

n result in the
marginal beliefs over these latent variables representing the constituents signals in the
observed mixture. The mean values of these marginal beliefs are extracted and regarded as
separated signals.

The choice of the Gaussian mixture model for the individual sources and the corre-
sponding variational approximation has some implications for performing source sep-
aration in this model. The variational messages ~ν

(
sk, f

n

)
will be Gaussian distributions,

because of the variational approximations in the Gaussian mixture node. These local
approximations are not always appropriate for source separation and can lead to biased
estimates of the posterior selection variables and therefore to biased inference results. To
resolve this problem, the source separation problem is approached as a Bayesian model
averaging problem [44], which can be generalized for any problem containing multiple mix-
ture models. Alternatively, techniques such as Bayesian model selection or Bayesian model
combination [45] can also be used. Here each Gaussian mixture node is expanded into
Dk distinct models, in which the Gaussian mixture node is replaced by one of its mixture
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components. This means that the entire generative model is expanded into Dtot = ∏K
k=1 Dk

distinct models, where Dk represents the number of components used to model the kth
constituent source. In the rest of this section an individual model will be denoted by
md where d ∈ D encodes a unique combination of mixture components. dk refers to the
original cluster index of the kth constituent source. The set of all unique combinations is
denoted by D and has cardinality |D| = Dtot.

With Bayesian model averaging we wish to calculate the posterior distribution p(x | y)
of some latent states x, which in our case represent the constituent signals, given some
observations y. This posterior distribution can obtained by calculating the posterior
distribution for each of the models p(x | y, md) and by “averaging” them with the posterior
model probability p(md | y) as

p(x | y) = ∑
d∈D

p(x | y, md)p(md | y). (A1)

In this equation the posterior distribution of the latent states for a given model p(x |
y, md) can be obtained by performing probabilistic inference in the model md. The model
posterior p(md | y) on the other hand can be determined as

p(md | y) =
p(y | md)p(md)

∑
d∈D

p(y | md)p(md)
, (A2)

where p(md) specifies the prior probability of the model md and where p(y | md) denotes
the model evidence of model md.

In the proposed models, all required quantities p(x | y, md), p(y | md) and p(md) are
not easily computable in their exact form, because of intractability’s in the model. Here we
will approximate all these terms by the approximations that we obtain using variational
inference as follows:

p(x | y, md) ≈ q(x | md) (A3a)

p(y | md) ≈ exp(−F[q(x | md)]) (A3b)

p(md) ≈

K

∏
k=1

~ν
(

zk = dk
)

∑
d∈D

K

∏
k=1

~ν
(

zk = dk
) (A3c)

The first approximation in (A3a) is a direct result of the variational approximation for
computing the posterior distributions. For the second approximation in (A3b) we make use
of the fact that the variational free energy is a bound on the negative log-evidence as shown
in (21). In the final approximation we make use of the messages~ν(zk), which represent the
information about the selection variables zk originating from the informed prior distribution
of (16). In our case a model is uniquely specified by its mixture components and therefore
its prior probability can be found by multiplying the prior probabilities of the individual
mixture components. The model prior should be normalized to yield a proper probability
distribution, meaning that ∑d∈D p(md) = 1 needs to hold.

Appendix A.3. Soundscaping

The inference task for soundscaping as described by (5) is simplified here to limit com-
putational complexity and to prevent cyclic conditional dependencies. The mean values of
the posterior distributions of the latent constituent signals sk

n, as obtained by the second
inference task (3), are extracted, converted to an acoustic signal and amplified/suppressed
according to the deterministic gain preferences w1:K. These are set by the user in order to
“soundscape” the final processed signal and to personalize their acoustic environment. As
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the extracted signals are in the log-power spectrum, the conversion back to the acoustic
signal is not immediate evident. For this purpose we will make use of the generalized
Wiener filter. This filter applies a frequency-dependent gain to the frequency coefficients
of the acoustic signal. The Wiener filter gain for each of the frequency bins is calculated
individually as G f = P f

s /(P f
s + P f

\s), where G f is the Wiener filter gain for frequency bin f

and where P f
s and P f

\s represent the corresponding calculated average powers of the signal
of interest and all other signals, respectively. From the filtered frequency coefficients the
acoustic signal can be reconstructed using overlap-add or overlap-save.
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