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Abstract: Servo presses enable new types of forming motion profiles that can be used to stamp diffi-
cult materials, such as high strength steels. This paper presents an application of Bayesian statistics
to intelligently select which motion profile maximizes the expected utility given the properties of
the incoming material. Bayesian logistic regression was used in conjunction with expected utility to
estimate manufacturing returns, which can be used to make informed process decisions. A use case
is presented, which demonstrates that the Smart Forming Algorithm can increase expected returns
by more than 20%.

Keywords: Bayesian modeling; metal forming; expected utility; machine learning

1. Introduction

In the last 15 years, industry has begun adopting servo presses as a replacement for
conventional presses in metal forming. Servo presses enable the press motion profile to
be designed for improved forming results. Of particular interest for this work, new high
strength steels with applications for vehicle lightweighting can be successfully formed
with servo motion [1]. However, high strength steels are known to have a relatively wide
variability in material properties [2]. This variability can lead to inconsistent results from a
designed servo motion profile.

Since good parts can be sold for profit and defective parts induce a loss, it is important,
when planning for profits, to consider the uncertainty of what kind of parts will be pro-
duced. This paper proposes a Bayesian statistical tool in helping manufacturers estimate
returns in the face of uncertainty.

A typical metal forming manufacturing process begins with a roll of sheet metal
arriving at the manufacturer. The metal is rolled out through a press, where the metal
is stamped into a specified shape. Although servo presses allow for variations in press
motion, a simple manufacturing approach is to let the press run one pre-configured motion.
After the part comes out of the press, it can be examined for defects. If the part is found to
have no defects, it is good to be assembled for a final product and provides value. Defective
parts are scrapped and induce a loss (Figure 1). Here, a part is considered defective if
a forming expert identifies cracking, necking, or wrinkling during a visual inspection.
The proposed Smart Forming Algorithm fits into the process after the metal blank or coil
arrives but before it is stamped (Figure 2). As the metal is rolled into the press, sensors can
detect material properties of the metal and relay that information to a software application
running the Smart Forming Algorithm. The Smart Forming Algorithm then produces
probability distributions of producing a good part for several press motions. Employing
these probabilities in expected utility can provide recommendations to the operator as to
which press motion is expected to produce the greatest number of good parts.
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Figure 1. Example of parts manufactured by metal forming. Note that the defective part has both a 
crack as well as wrinkling, though either would be sufficient to classify the part as defective. 

 
Figure 2. Process diagram of metal forming with the Smart Forming Algorithm. The process dia-
gram without the Smart Forming Algorithm would jump directly from “Roll out metal” to “Choose 
motion”. 

Figure 1. Example of parts manufactured by metal forming. Note that the defective part has both a
crack as well as wrinkling, though either would be sufficient to classify the part as defective.
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Figure 2. Process diagram of metal forming with the Smart Forming Algorithm. The process diagram
without the Smart Forming Algorithm would jump directly from “Roll out metal” to “Choose motion”.

Returning to the simple approach of using one pre-configured press setting, one
strategy of making a profit is to choose the press setting that produces the greatest number
of good parts based on previously collected data. However, this approach could be
improved, as press motions can yield different results even when the material properties
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of the input sheet metal are similar. Although, ideally, suppliers would produce sheet
metal with consistent material properties, the reality is that material properties vary across
batches, even from the same supplier.

The proposed Smart Forming Algorithm is a framework for taking both press motion
and material property variability into account when predicting the probability that the
part produced will be good. Applying the theory of expected utility to the Smart Forming
Algorithm can then provide profit estimates. The manufacturer can use these estimates
to make an informed decision in its strategy to make a profit. The proof-of-concept work
presented here suggests that manufacturers can expect to achieve substantial cost savings
as smart forming approaches are generalized for wider application.

2. Previous Work

Various techniques have been used to monitor, model, optimize, and control servo
press motion to minimize defects [3–7]. As an example of the benefits and key consid-
erations when designing a press motion profile, pulse motion named JIM-FORM was
developed for improved deep draw forming. The pulse motion allows lubrication to
re-flow between the die and the surface allowing a higher drawing height. However, pulse
motion also increases the cycle time [8]. As a second example of the importance of carefully
designing the motion profile, it has been shown that the press motion can be designed to
avoid strain path failures [9].

Current solutions to improving good part production rates typically use an itera-
tive approach known as metamodeling, wherein (1) simulations are run in search of an
optimal parameter setting, (2) a part is then produced based on the simulations results,
and (3) the actual results are incorporated into optimal parameter searching for another
round of simulations and actual runs [10–12] (see also Yang et al. [13], for an additive
manufacturing example). More recent work adopts neural networks in place of traditional
simulations within the metamodeling process [14] (see also Zimmerling et al. [15], for
a textile forming example; for machine learning more generally within manufacturing,
see [16,17]). The work most similar to what is presented here developed a Bayesian frame-
work to predict variables within a full production line [18]. Like other previous work,
it was interested in building accurate but quickly computed data to replace simulation,
ultimately to be used in line with production. The proposed Smart Forming Algorithm is a
simpler Bayesian model and does not attempt to replace simulation. It is instead focused
on helping make inline process decisions.

3. Smart Forming Algorithm

At its core, the Smart Forming Algorithm trains a Bayesian Logistic Regression that
takes yield strength and elongation data as inputs and outputs the probability of a part
being good. (Although in general, the yield strength of a material is correlated with its
elongation, it is not perfectly correlated. Initial investigations showed that yield strength
and elongation were less correlated to each other than they were to tensile strength. In fact,
it was only after ignoring tensile strength that model training reached convergence). One
regression is trained for each press motion. Once each of these sub-models is trained, the
model can answer the question, “What is the probability of a part being good given X press
motion, and an input metal with Y yield strength and Z elongation?”.

Bayesian statistical models, such as the one used in the Smart Forming Algorithm,
begin with prior probability distributions, which are parameterized with initial model
parameters. As data are included for inference, the posterior distribution can be sampled
from with Markov Chain Monte Carlo (MCMC). While the posterior distribution may not
have a recognizable form with parameters, Bayesian inference nevertheless works on the
basis that the prior distributions (or the assumed probability distributions) are updated
as more data become available. In this way, the initial model parameters act as a starting
belief, which is updated according to the data.
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3.1. Data

The data used to train the Smart Forming Algorithm in this paper were from forming
experiments that were conducted on three batches of 0.75 mm thick BH340 steel [19].
A 3MA system was used to measure the magnetic properties of a sample of the input
sheets, after which ASTM E8/E8M-16a (Specimen 1 in Table 13 of ASTM E8/E8M-16a)
tensile tests were performed on the measured material to calibrate the magnetic response.
A quasistatic strain rate of 0.008 s−1 was used for the uniaxial tensile testing. Three different
orientations, 0◦, 45◦, and 90◦ with respect to the rolling direction, were selected for tensile
testing. This approach was found to be reliable in past works [20]. The calibration data
were used to calculate the material properties of subsequent sheets. Those sheets were then
stamped according to a variety of press motions. Finally, the resulting parts were evaluated
either as a good part or not.

3.2. Bayesian Logistic Regression

Bayesian Logistic Regression is a Bayesian formulation of Logistic Regression, which
is the classical machine learning approach to predicting the probability of an outcome given
feature information [21]. In other words, Bayesian Logistic Regression not only provides
the probability of an outcome, it also provides an uncertainty for the predicted outcome.

The graphical model (Figure 3) shows a representation of the Bayesian Logistic Regres-
sions trained for the Smart Forming Algorithm. (Note that Figure 3, which is a probabilistic
graphical model, should not be confused with a block diagram of a closed-loop feedback
system). “E” refers to elongation, “Y” refers to yield strength, “w” refers to weights applied
to terms, “b” refers to an intercept term, “p” refers to the probability of a part being good,
and “R” refers to the observed outcome. As the plate notation shows, the model learns
from N data points, and there are two weighted terms. The model parameters are related
in the following way:

wi ∼ N
(

0, 103
)

, i ∈ {1, 2} (1a)

b ∼ Uniform(−∞, ∞) (1b)

pj = w1Ej + w2Yj + b, j ∈ {1, 2, . . . , N} (1c)

Rj ∼ Bernoulli
(

pj
)
, j ∈ {1, 2, . . . , N} (1d)
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such model for each motion.



Appl. Sci. 2021, 11, 9530 5 of 11

In other words, each weight has a prior of a normal distribution centered at 0 and
with standard deviation of 1000, b has a completely uninformative prior, p is a linear
combination of E and Y, and R is distributed as a Bernoulli with probability p.

Data standardization (subtraction of sample mean and division by sample standard
deviation) is applied to yield strength and elongation, respectively. Training is accom-
plished by MCMC to probabilistically estimate the model’s parameters based on training
data consisting of yield strength, elongation, and outcome (i.e., whether the part was good
or defective) for a particular press motion. PYMC3 was used to build and train the model
by MCMC [22] (see also [23] for a descriptive example of the implementation of Bayesian
logistic regression using PYMC3).

Note that by design, model parameters are not shared across different press motions
because it was expected that each press motion could exhibit different outcomes, even on
metals with similar material properties. The Smart Forming Algorithm trained sub-models
for three different press motions: “Crank”, “LowHigh”, and Attach–Detach 15 mm (which
is referred to as “AD15”). Details on these motions can be found in previous work [19]; in
summary, Crank is the conventional method for metal forming; LowHigh is Crank with
adjustments to the blank holder force during the stroke; and AD15 is an advanced motion
of the servo press. (Tests were implemented with a 300-ton AIDA servo press. The final
drawing depth was set to be 68.8 mm for most testing conditions. Fuchs Anticorit PL 39 LV
12 was uniformly applied on the blank surfaces before the test using the motorized roller
application equipment, UNIST. The Crank motion is a simple stamping motion applied
with a blank holder force of 150 kN, while LowHigh is Crank motion with an adjustment
to the blank holder force from 100 kN to 150 kN during the stroke. Figure 4 illustrates the
AD15 motion from the bottom dead center. The press ram changes its moving directions
during drawing the blank under a constant BHF. The intermediately drawn part does
not release from the die and binder during the slide detach while the drawn top surface
is separated with the stationary bottom punch that makes local springback possible and
creates new contact points with the punch at the second-stroke drawing [19]). Since training
with MCMC took roughly a minute per press motion, this model is not ideal for real-time
updating in a metamodel approach. However, each of the trained model parameters can
be saved for later reuse, allowing for real-time prediction.
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Figure 4. Attach–detach slide motion with 15 mm offset from bottom dead center.

Using the model’s prediction capabilities for whether a good part is produced for
a particular yield strength, elongation, and press motion, decision plots can be made
(Figure 5). Since the model provides uncertainty estimations in its predictions, an upper
and lower bound can be given on the prediction, by calculating the Highest Density Interval
(HDI) for a given percentage. For the results presented, 68.27% was used, as that is the
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probability of choosing a random value within one standard deviation of the mean of a
normal distribution. For simplicity, the HDI calculation was constrained so that the interval
would be continuous. (A more accurate but complex HDI could be discontinuous, as
would be the case where the distribution has two peaks on the extremes and a valley in
the center).
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Plotting this information was accomplished using matplotlib (Figure 5). The circles
and crosses represent measured data points, placed according to their yield strength
and elongation. The coloring of the top row reflects the model’s expected probability
of a good part. Each point in the 500 × 500 grid of yield strength and elongation was
queried against the model for the specified motion profile. The coloring of the bottom
row reflects the difference between the upper and lower bounds of the credibility interval.
Again, a 500 × 500 grid was used as query points against the appropriately trained model.
Upper and lower bounds were computed according to the HDI parameters specified earlier.

The first thing to note about the decision surfaces is where the good parts (circles) and
the defective parts (crosses) tend to be. As expected, each motion produced good parts at
different ranges. For example, AD15 managed to make good parts in the yield strength
range of 250–262 with elongation range of 28–31.5%, although it showed some variations.
Meanwhile, in the same range, Crank seemed to get mostly defective parts, and LowHigh
had few data points. On the other hand, they all consistently produced good parts when
yield strength was in the 240–245 range, and elongation was in the 33–36% range (upper
left corners).

The decision surfaces (top plots) indicate how the expected probability of a good part
increased or decreased depending on material properties. Yellow (light) indicates higher
probability of a good part, while purple (dark) indicates lower probability of a good part.
Based on the top plots, the models learned the relationship between material properties
and part quality reasonably well, as the circles tend to be in the yellow regions and the
crosses tend to be in the purple regions. The transition regions between yellow and purple
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in these top plots indicate a change from lower to higher (or higher to lower) probability.
It is expected that for each plot, the change from yellow to purple follows a line, as the
Bayesian Logistic Regression used a linear relationship to predict good part probabilities.

The interval width surfaces (bottom plots) indicate the difference between the upper
and lower bound probabilities for a particular point in the material properties space.
Lighter regions indicate a wider interval between the upper and lower bounds calculated
by the models, while darker regions indicate a narrower interval. As expected, the lighter
regions tend to be around the regions where probabilities change from lower to higher (or
higher to lower).

These decision surfaces show some of the strengths and weaknesses in the Bayesian
Logistic Regression approach used in this paper. All the top plots are yellow along the left,
which means the models learned that good parts tend to come from metal with lower yield
strength. This makes sense, given the cluster of good parts that all plots show in the upper
left region. Unfortunately, the models seem not to have learned to put boundaries on how
far out good parts can be: the interval width plots are purple for most of the good parts
region, indicating that the models are very certain about metals with arbitrarily low yield
strength to come out good. This is due to the linear assumption made by the Bayesian
Logistic Regression used in this paper. A more sophisticated method that could allow for
non-linear relationships might be able to restrict high certainty of good parts regions to
around the circles instead of extrapolating out indefinitely. (A Bayesian Logistic Regression
with a non-linear kernel function was tested along with the linear version presented in
this paper. Unfortunately, the non-linear version tended to overfit to the training data,
causing even more problematic regions of high certainty. For example, the non-linear
Crank model had high certainty that good parts could come from the right region, likely
due to overfitting on the good parts that appear among the defective parts. On the other
hand, the non-linear LowHigh model learned to have high certainty of high probabilities
in what appeared to be an oval-shaped region around the blue dots. There was also a large
region of low certainty along the bottom. These ideal patterns probably arose as a result of
LowHigh’s blue dots tending not to mingle with red dots).

3.3. Expected Utility

Expected utility theory provides a framework for making decisions under uncertain-
ties [24]. The core calculation to make decisions requires quantification of uncertainties
for the context in which a decision is made. The Smart Forming Algorithm can provide
such uncertainty quantities in the form of probabilities for part quality given press motion
and material properties of input metal. For the problem of choosing an appropriate press
motion for a given batch of metal, expected utility can calculate expected returns for each
press motion with the given batch of metal if it is also given estimates for good part profit
and defective part loss. In addition, the number of parts produced by a given motion in a
particular amount of time can be accounted for, thus leading to estimates for the expected
returns over a length of time.

4. Use Cases
4.1. Expected Profits

As an example of using the Smart Forming Algorithm with expected utility, consider
the following problem. Suppose that α, the profit from a good part, equals USD 2, and that
γ, the loss from a defective part, equals USD 3. Given an hour to run, AD15 can yield 1538
parts, while Crank and LowHigh can yield 2000 parts. Now suppose a batch of metal comes
in with a yield strength of 255 MPa and an elongation of 30%. The expected profit/loss for
each press motion within that hour can be estimated with the help of expected utility.

The expected utility of each motion can be calculated as follows:

EU(m) = α ∗ Nm ∗ P(o = 1|m, 255, 30)− γ ∗ Nm ∗ P(o = 0|m, 255, 30) (2)
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In the equation, m refers to the press motion, Nm refers to the number of parts produced
by motion m in an hour, P(o = 1|m, 255, 30) refers to the probability of the part being
good given that motion m was used on a metal with yield strength 255 MPa and elongation
30%, and P(o = 0|m, 255, 30) refers to the probability of the part being defective under
the same conditions.

Because the Smart Forming Algorithm returns a distribution of probabilities for a
good part being produced, upper and lower bound probabilities can be easily obtained.
The Smart Forming Algorithm’s expected probability of good part production is estimated
by taking the median of the probabilities sampled by MCMC. (Technically, the expected
value of an empirical distribution created from the MCMC samples should be the mean of
the sampled values. However, because MCMC samples converge to the correct distribution
after an infinite number of samples, values that are highly unlikely may still get into the
finite sample collection, skewing the mean. To avoid this problem, the median was chosen
as an estimation of the expected probability of a good part being produced. This also
ensured that the expected probability lay within the lower and upper bounds computed by
the continuous HDI). Using this process, the following numbers can be obtained, where the
expected return is given first and the parenthesized values show the lower bound expected
return and the upper bound expected return:

• AD15: +USD 844.62 (+USD 205.55, +USD 1847.48);
• Crank: −USD 5999.99 (−USD 5999.99, −USD 5999.98);
• LowHigh: −USD 1294.92 (−USD 5999.27, +USD 1360.05).

The expected return bounds for Crank are quite narrow, indicating that the model is
quite certain about defective parts from Crank. The expected return bounds for LowHigh,
however, are far apart. This indicates that the model is uncertain about how probable
LowHigh is to produce good parts, though it expects that the parts are more likely to
be defective. AD15 manages to remain positive not only in expected returns but also in
both bounds.

4.2. Preferred Strategy for Press Motion Selection

To investigate the effect of expected utility theory in action, a simulation was devel-
oped. The simulation assumes a year of production with 2800 working hours. For each
hour, a batch of metal comes in with some yield strength and elongation. Four options
are available to the operator: AD15, Crank, LowHigh, and Downtime. The first three
options correspond with using the press motion with the same name for that batch, while
Downtime is the decision to produce nothing that hour and wait for the next batch of metal.

To simulate a production-relevant distribution of material, multiple mixtures of Gaus-
sians were trained on the data (Figure 6) to create a data model. One mixture of Gaussian
was trained for every combination of motion and outcome (i.e., good part or defective
part). Data points were sampled from each mixture of Gaussian such that the samples were
distributed as the distribution of the full data set. One data point was collected for each
simulated hour. This plot was created using the Python matplotlib package. The measured
data points were used to model a Bayesian Gaussian mixture with five components with
the scikit-learn package in Python.

The results of the simulation repeated 1000 times (Table 1) show expected utility values
in the case of the following strategies: (1) always choose AD15, (2) always choose Crank,
(3) always choose LowHigh, and (4) use the Smart Forming Algorithm’s expected values
with expected utility. Expected utility with the Smart Forming Algorithm is the winning
strategy, with a mean expected return of about USD 6.097 million over all 1000 simulation
runs. The losing strategy was Crank, with a mean expected loss of USD 5.058 million.



Appl. Sci. 2021, 11, 9530 9 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 12 
 

4.2. Preferred Strategy for Press Motion Selection 
To investigate the effect of expected utility theory in action, a simulation was devel-

oped. The simulation assumes a year of production with 2800 working hours. For each 
hour, a batch of metal comes in with some yield strength and elongation. Four options are 
available to the operator: AD15, Crank, LowHigh, and Downtime. The first three options 
correspond with using the press motion with the same name for that batch, while Down-
time is the decision to produce nothing that hour and wait for the next batch of metal. 

To simulate a production-relevant distribution of material, multiple mixtures of 
Gaussians were trained on the data (Figure 6) to create a data model. One mixture of 
Gaussian was trained for every combination of motion and outcome (i.e., good part or 
defective part). Data points were sampled from each mixture of Gaussian such that the 
samples were distributed as the distribution of the full data set. One data point was col-
lected for each simulated hour. This plot was created using the Python matplotlib pack-
age. The measured data points were used to model a Bayesian Gaussian mixture with five 
components with the scikit-learn package in Python. 

 
Figure 6. Distributions of training data for different press motions. Columns represent press motion, 
rows separate good and defective data points, circles show training data points, and the coloring is 
based on the probabilities predicted by a Gaussian Mixtures model. 

The results of the simulation repeated 1000 times (Table 1) show expected utility val-
ues in the case of the following strategies: (1) always choose AD15, (2) always choose 
Crank, (3) always choose LowHigh, and (4) use the Smart Forming Algorithm’s expected 
values with expected utility. Expected utility with the Smart Forming Algorithm is the 
winning strategy, with a mean expected return of about USD 6.097 million over all 1000 
simulation runs. The losing strategy was Crank, with a mean expected loss of USD 5.058 
million. 

It may be surprising that the Smart Forming Algorithm could beat AD15 in expected 
returns when the other motions had negative expected returns. One factor that allows the 
Smart Forming Algorithm to beat AD15 is the number of parts that each motion produces 
per hour. Recall that AD15 produces fewer parts per hour than Crank or LowHigh. Thus, 
if a batch of metal arrives from which all three methods are equally likely to produce a 
good part, it would be better to choose Crank or LowHigh, as they will produce more 
good parts than AD15 in the same amount of time. Another factor is the flexibility to 

Figure 6. Distributions of training data for different press motions. Columns represent press motion, rows separate good
and defective data points, circles show training data points, and the coloring is based on the probabilities predicted by a
Gaussian Mixtures model.

Table 1. Expected Utility Predictions.

Strategy Returns Good Parts Total Parts

AD15 3.940 (+/− 0.090) 3.372 (+/− 0.018) 4.306 (+/− 0.000)
Crank −5.058 (+/− 0.170) 2.348 (+/− 0.034) 5.6 (+/− 0.000)

LowHigh −4.299 (+/− 0.187) 2.500 (+/− 0.037) 5.6 (+/− 0.000)
Smart Forming 6.097 (+/− 0.063) 3.597 (+/− 0.029) 3.963 (+/− 0.029)

Note: Values are reported in millions of USD and arbitrarily truncated at the third decimal place for readability.
AD15, Crank, and LowHigh refer to the strategy of using the named press motion exclusively, on every batch. The
Smart Forming strategy employs expected utility with expected probabilities from the Smart Forming Algorithm
to choose an appropriate press motion based on the material properties of incoming metal. Mean and standard
deviation values are reported, rounded to the thousands place. For example, the AD15 strategy has a mean
expected return of about USD 3.94 million over all simulation runs, and the standard deviation of the returns over
all simulation runs was about USD 90,000. The winning strategy is Smart Forming, which had a mean expected
return of USD 6.097 million.

It may be surprising that the Smart Forming Algorithm could beat AD15 in expected
returns when the other motions had negative expected returns. One factor that allows the
Smart Forming Algorithm to beat AD15 is the number of parts that each motion produces
per hour. Recall that AD15 produces fewer parts per hour than Crank or LowHigh. Thus,
if a batch of metal arrives from which all three methods are equally likely to produce a
good part, it would be better to choose Crank or LowHigh, as they will produce more good
parts than AD15 in the same amount of time. Another factor is the flexibility to choose a
motion that is most likely to produce a good part. For example, if a metal comes in that
LowHigh has a higher probability of producing a good part than Crank and AD15, then
LowHigh can be used for that hour. A final factor in the Smart Forming Algorithm’s ability
to beat AD15 is the choice to not produce anything. When the probability of a good part is
so low that the current metal will not produce enough good parts to offset the loss of the
defective parts, it would be better to stop production and wait for the next batch rather
than take the loss from the defective parts.
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4.3. Flagging Model Uncertainty

Because of the Bayesian basis of the model, uncertainty in model prediction can be
detected and used advantageously. Suppose that a batch of metal comes in with a yield
strength of 257 MPa and an elongation of 26%, and AD15 was chosen as the press motion.
According to the decision plots (Figure 5), the AD15 model is uncertain of the probability
of a good part being produced (the region is yellow in the bottom plot). The Smart Forming
Algorithm could raise an indicator to the operator to pay extra attention to the parts
produced. If defective parts start coming out, the operator can halt production to stop
further losses.

5. Summary and Conclusions

This paper presented a Bayesian model that accounts for the uncertainty of a formed
part being good, given a press motion as well as the yield strength and elongation properties
of the input sheet metal. Combined with the theory of expected utility, this model not only
provides revenue estimates for using a particular motion but also recommends a motion
strategy to maximize profits.

The future of this model is promising. An important next step will be the generaliza-
tion of this proof-of-concept model for different presses, designs, materials, and failures
modes. We expect additional sensor modalities, such as lubrication sensors and thickness
sensors, and the use of simulations will play a large part in generalizing this approach
and broadly realizing the value of this approach. Further, the model could be generalized
to continuously modify servo motion parameters rather than selecting from a series of
pre-determined motion profiles.

Another change potentially worth investigating is incorporation of raw 3MA data in
place of material property data. Since material properties are measured by a calibrated
device, the model may become more accurate by using the raw sensor measurements
instead of the material properties calculated by the calibrated device. Finally, the method
used to generate data in the optimal strategy case study could be integrated with the model
to advise users when the model is extrapolating to a data point far from the training data.

Of course, the wisdom of experienced operators should not be ignored. The model is
a tool to help operators and manufacturers make more informed press setting decisions.
Grounded in Bayesian statistics, the model is not a replacement for experts and laborers.
Rather, it is a framework to aid in thinking about what motion to use when presented with
a batch of sheet metal.
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