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Abstract: An integrated software for calculating the major mechanical properties of materials was
newly programmed. The material mechanical properties are determined from a peak position and
the broadness of X-ray diffraction (XRD) line using profile function method, including Gaussian,
Parabola, Half-width, and Centroid. The X-ray diffraction line in software is also corrected by the
generalized X-ray absorption function. The results show that the precision coefficient (R2) of the
dhkl-sin2 ψ linear regression depends on tested materials and the method of the 2θ determination.
The Parabola and Gaussian methods show greater fitting accuracy in comparison to the other two
methods in determining stress. The mechanical properties calculated using this software agreed
well with the values determined from the conventional methods. In addition, this XRD software
also allows computing the 95% confidential limits of the results from a single measurement without
conducting repetitive measurements. Therefore, the new software allows widening the experimental
scopes of an X-ray diffraction device in both laboratories and the industrial sector.

Keywords: X-ray diffraction; hardness evaluation; residual stress; analysis of phase compositions;
integrated software

1. Introduction

Since they were discovered in 1890, X-rays and the techniques using X-ray diffrac-
tion [1,2] have shown great progress and have seen a variety of applications in industry
because of their advantages over other nondestructive techniques. They can evaluate many
mechanical properties including stress [2–4], crystalline grain size [5], phase composition
analysis [6,7], hardness [8], the thickness of plating or coating layer [9,10], etc. Moreover,
X-ray diffraction has also been used to identify modifications of phase, texture, dislocation
density, and mechanical twins of materials [11]. Ultrasonic and magnetic techniques have
many applications for many kinds of materials at the macro level to determine material
inhomogeneity; however, they cannot determine the properties at the micro- and nano-
level. The laser technique can only determine the outer profile of the sample surface such
as roughness. The microscopic technique is used to observe crystalline microstructure,
and when combined with image processing, it can determine crystal grain size, phase
components in multi-phase materials, and layer thickness [12]; however, it has difficulty
in determining the state of materials such as stress, hardness, etc. Fortunately, X-rays
with short wavelengths can detect the change or characteristics of a crystalline matrix
from macro- to micro- and even nano-level, and it can therefore determine the hereabove
parameters of crystalline materials. Moreover, a distinguished advantage of the XRD
method over the other methods is that it can determine the standard deviations from a
single measurement without replication of measurement. This is because the diffraction of
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photons in the crystal matrix occurs in all directions, and thus functions calculated from
X-ray counting, such as peak position, stress, line width, and others, are random functions
and contain coherent reproducibility of measured values [13,14].

On the other hand, in order to obtain the correct value of X-ray intensity, and thus the
accurate peak position and the full width at half of the diffraction line, the diffracted X-ray
intensity must be corrected for the Lorentz-polarization and absorption factor [2,15,16].
The absorption factor for only the iso-inclination method (Ω-type goniometer) using the
fixed-ψ method was computed and widely used [16]. However, the position-sensitive
proportional counter (PSPC), in which the incident beams are fixed during the scanning
process (fixed-ψ0 method), is used more widely. Moreover, to increase the diffraction angle
2θ up to approximately 170◦ and the inclination angle ψ up to approximately 165◦, the
side-inclination method (Ψ-type goniometer) is used. For these measurement methods, the
absorption factor is still not fully derived and is not embedded in commercial X-ray systems.
Furthermore, there are many methods of approximating the diffraction line to determine
the diffraction peak. The choice of mathematical function to interpolate the peak diffraction
greatly affected the accuracy of the measurement results. This has been reported in stress
measurements using X-ray diffraction (XRD) [17,18]. To enlarge the scope of application of
XRD for various measurements in a single device, there should be a computation system
that can accurately determine many material properties. In a previous study, automated
controlling and calculating software using C++ and commercial MS Excel was used for
determining the residual stress of polycrystalline materials [13]. This research represents a
new computation program for polycrystalline materials that determines their properties
using XRD, with total integration of absorption factors and mathematical function for the
correction of diffraction lines. It can evaluate common mechanical properties in industry.
The following measurements are carried out:

i. Residual stress computation for the aluminum alloy A1060;
ii. Surface hardness of quenched and tempered carbon steel JIS-type S50C;
iii. Quantitative analysis for triple-phase carbide T15K6 containing three phases, WC,

TiC, and Co;
iv. Thickness measurement of the nickel-coating layer on substrate carbon steel S45C;
v. Determining grain size of the zeolite material ZSM-5.

The demonstration measurements using X-rays and conventional methods were
also compared to verify the validity of the computation and thus the applicability to the
manufacturing site. All XRD measurements in this study use the X-ray characteristic
CuKαwith a wavelength λ of 1.5 Å and Ni foil filter. The use of a graphical user interface
(GUI) also allows beginner-level programmers to easily reprogram resource codes for their
individual computation.

2. Material Analyzing Software
2.1. Selection of Development Language

Structured programming (SP) languages such as Basic, Pascal, and C have a common
structure [19]:

Programs = Data structures + Algorithms

The advantage of SP includes ease of following; however, for large projects, the
resource code cannot be reused and the algorithm strictly depends on the data structure.
In contrast, object-oriented programming languages, including Turbo Pascal, C++, and
C#, use the classes containing functions and variables to solve tasks of the objects [20].
Among these strong languages, C# is a .NET Framework background language, and is easy
for programmers to use since it has various libraries of functions and parameters [20,21].
Therefore, in this study, C# is used to build the new analyzing software XPro 2.0.

The routine of the software is as below:

Step 1: Measurement data are read. They are raw data files, obtained from the commercial
X-ray diffractometer, which is Panalytical XPert system in this paper.
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Step 2: Analyzing X-ray diffraction lines; background and LPA factor correction.
Step 3: Determining peak positions with many mathematical functions.
Step 4: Calculation of the mechanical properties.
Step 5: Representation of computed values.

2.2. Lorentz-Polarization and Absorption (LPA) Factor

There are two inclination methods using X-ray diffraction, including the iso- and
side-inclination methods (sometimes called Ω- and Ψ-type goniometers); however, the
latter gives measurement at higher ψ angles. The absorption function for iso-inclination
has been calculated [16]; however, side-inclination has not been calculated. Therefore, this
research will introduce the determination of the general absorption function for material
using the iso- and side-inclination method.

Figures 1 and 2 show the incident beam AO and diffracted beam OB from a material
fraction with sizes l1 × l2 × dz at the depth z from the surface. OD is the diffraction plane
normal. The incident and diffraction beams, respectively, make angles α and β to the
normal of the specimen. 2θ is the diffraction angle and η = 90◦ − θ. The angles ψ0 and ψ
are the angles between incident beam and normal of the diffraction l plane. Therefore, the
X-ray intensity diffracted from the fraction is given by

dI = aI0 exp[−µ(AB + BC)]Sdz (1)

where a is the diffraction efficiency and µ is the linear absorption coefficient of the measured
material. The irradiated area S is rectangular with the dimensions l1 and l2. AB and BC in
Equation (1) are AB = z

cos α , BC = z
cos β

I =
∞∫
0

I0a exp
[
−µ
(

z
cos α + z

cos β

)]
l1l2dz

⇒ I = I0a
µ l1l2

cos α· cos β
cos α+cos β
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Figure 1. X-ray diffraction methods. (a) Iso-inclination method; (b) Side-inclination method. Figure 1. X-ray diffraction methods. (a) Iso-inclination method; (b) Side-inclination method.
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Omitting the constants, we obtain the generalized absorption factor for anisotropic
material:

A =
I
I0

= l1l2
cos α· cos β

cos α + cos β
(2)

2.2.1. Without Limitation of the Irradiated Area

In the case of the Iso-inclination method without limitation of the irradiated area,
substituting l1=1/cosα and l2 = 1 into Equation (2) gives us:

A =
1

cos α

cos α cos β

cos β + cos α
(3)

In the fixed-ψ0 method, the following relations hold: α = ψ0, β = ψ0 + 2η, η = 90◦ − θ.
Substituting these Equations into the generalized Equation (3), we have the absorption
factor for the fixed-ψ0 method:

A =
− cos(ψ0 − 2θ)

cos ψ0 − cos(ψ0 − 2θ)
(4)

In the fixed-ψmethod, the following relation holds:{
cos α = sin(ψ + θ)
cos β = cos(ψ + 90◦ − θ) = − sin(ψ− θ)

By substituting the relation into the generalized absorption factor in Equation (3), we
obtain the absorption factor in the fixed-ψmethod:

A =
− sin(ψ− θ)

sin(ψ + θ)− sin(ψ− θ)
= 1− tanψ cot θ (5)

In the case of the side-inclination method, by substituting l1 = 1/cosψ and l2 = 1/cosη
into Equation (2), we obtain the generalized absorption factor:

A =
1

cos ψ cos η

cos α cos β

cos α + cos β
(6)

In the fixed-η0 method, the incident x-rays make an angle η0 to the normal specimen,
and we have cosα = cosψsinη0 and cosβ = cosψsinη* where η* = 180◦ − 2θ − η0 and
η0 = 90◦ − θ0. Substituting the above relations into Equation (6), we have the absorption
function:

A =
sin(2θ − θ0)

sin θ0 + sin(2θ − θ0)
(7)

In the fixed-η method, by substituting θ0 = θ into Equation (7), we obtain the
absorption function:

A =
1
2

(8)

Since A is a constant, the absorption correction in this method is omitted.

2.2.2. With Limitation of the Irradiated Area

In the case of the Iso-inclination method without limitation of the irradiated area,
substituting l1 = 1 and l2 = 1 into Equation (2) gives us:

A =
cos α cos β

cos β + cos α
(9)
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In the fixed-ψ0 method, the following relations hold: α = ψ0, β = ψ0 + 2η, η = 90◦ − θ.
Substituting these Equations into the generalized Equation (9) gives us the absorption
factor for the fixed-ψ0 method:

A =
− cos ψ0· cos(ψ0 − 2θ)

cos ψ0 − cos(ψ0 − 2θ)
(10)

In the fixed-ψmethod, the following relation holds:{
cos α = sin(ψ + θ)
cos β = cos(ψ + 90

◦ − θ) = − sin(ψ− θ)

Substituting the relation into the generalized absorption factor in Equation (9), we
obtain the absorption factor in the fixed-ψmethod:

A =
cos 2ψ− cos 2θ

4· sin θ· cos ψ
(11)

In the case of the side-inclination using the fixed-η0 method, the incident X-rays make
an angle η0 to the normal specimen, and we have cosα = cosψsinη0 and cosβ = cosψsinη*
where η0 = 90◦ − θ0 and η* = 180◦ − 2θ − η0. Substituting the above relations into
Equation (9), we have the following absorption function:

A =
cos ψ· sin θ0· sin(2θ − θ0)

sin θ0 + sin(2θ − θ0)
(12)

In the fixed-ηmethod, substituting θ0 = θ into Equation (12), we obtain the absorption
function:

A =
1
2

cos ψ· sin θ (13)

2.3. Analysis of Diffraction Line

Figure 3 shows the X-ray intensities obtained from the measurement data files mea-
sured from the diffraction device. The most important line parameters include line peak
position p and broadness B for specific diffraction planes (hkl), which are computed and
displayed on the screen. The peak position determination methods and correction for the
LPA factor and the background can be selected.
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2.4. Smoothing

Figure 4 shows the diagram to smooth the roughly measured X-ray counts. The data
are calculated from three data (x1,y1), (xi,yi), and (x2,y2), with an interval of n × c, where n
is an integer and c is the step size of diffraction angle 2θ. The slope tanα of the line (1,2) is:

tan α =
y2 − y1

x2 − x1
(14)
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For most normal measurements, the angle α is preset at 10◦ to distinguish between
the diffraction peak and the background diffraction. The value of n can be preset between
1 and 10 to change the smoothing level.

2.5. Stress Measurement by X-ray Diffraction

Stress determination is based on lattice strain, which is expressed by the following
Bragg’s law as:

nλ = 2dhkl sinθ (15)

where λ is wavelength, θ is Bragg angle, dhkl is interplanar spacing, and n is an integer. If
the Bragg angle θ in the stress direction is measured, the lattice spacing dhkl, and thus the
stress, is determined. Figure 5 shows the coordinate system 11, 22, and 33 on the surface of
the specimen. The stress measurement direction L3 is the normal plane of the crystalline
matrix. The stresses σij generate the strains εij.
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33 and the stresses σij generated in the surface layer.
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The strain εL
33 in the measurement direction is determined from the lattice spacing dhkl

as [2,3]

εL
33 =

dhkl − d0

d0
(16)

where d0 is the lattice spacing in the non-stress state. Equation (16) can be expressed in terms
of strains εij (i,j = 1 to 3) in the specimen coordinate system by the tensor transformation as

εL
33 = a3ka3kε3l (17)

where a3k, a3l are, respectively, the directional cosines between the normal of the diffraction
plane and the axes 11, 22, and 33 to the direction cosine matrix as shown in Figure 5 by

aik =

 cos ϕ cos ψ sin ϕ cos ψ − sin ψ
− sin ϕ cos ϕ 0

cos ϕ sin ψ sin ϕ sin ψ cos ψ

 (18)

From Equations (16)–(18), the relation between a strain in the laboratory system and
the strain components in the specimen system is:

εL
33 = dhkl−d0

d0
= ε11 cos2 ϕ sin2 ψ + ε12 sin 2ϕ sin2 ψ + ε22 sin2 ϕ sin2 ψ

+ε33 cos2 ψ + ε13 cos ϕ sin 2ψ + ε23 sin ϕ sin 2ψ
(19)

From the elastic theory, strain–stress relation gives:

εL
33 = 1+ν

E (σ11 cos2 ϕ + σ12 sin 2ϕ + σ22 sin2 ϕ− σ33) sin2 ψ

+ 1+ν
E σ33 − ν

E (σ11 + σ22 + σ33)

+ 1+ν
E (σ13 cos ϕ + σ23 sin ϕ) sin 2ψ

(20)

where E is the Young’s modulus and v is Poisson’s ratio. For a plane stress state of the
specimen, the third stress components are zero. Equation (20) becomes:

εL
33 =

1 + ν

E
σϕ sin2 ψ− ν

E
(σ11 + σ22) (21)

where σφ is the term stress in the φ azimuth. Equation (21) can be written as:

dhkl = d0
1 + ν

E
σϕ sin2 ψ− d0

ν

E
(σ11 + σ22) + d0 (22)

If we put m as the slope of the straight line fitted to the lattice spacing d in the
dhkl-sin2ψ diagram, the stress can be determined as:

σϕ =
m
d0

(
E

1 + ν
) (23)

where m is the slope in Equation (22). Now, m is determined experimentally from the
sin2ψ diagram by fitting a straight line to a set of experimental points (dhkl1, sin2ψ1), (dhkl2,
sin2ψ2), . . . (dhkln, sin2ψn) using the least-squared method. The precision coefficient (R2) of
the linear regression is determined as:

R2 = 1− SSresidual
SStotal

= 1−

n
∑

i=1
(dhkli − fi)

2

n
∑

i=1
(dhkli − dhkl)2

(24)
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where SSresidual and SStotal are the sum squared of regression error and sum squared total
error of experimental values in comparison to the estimated values, f i is predicted or

estimated function, and dhkl =
1
n

n
∑

i=1
dhkli is the mean of the experimental data.

3. Results and Discussion
3.1. Analysis of Stress

The dialog box in Figure 6 allows us to select the material and its elastic constants
used to determine stress. This also allows us to revise a material or add a new material and
then save it to the program library. Figure 7 shows the display for choosing methods of
peak position determination, and the correction factors used for stress computation. The
corrected X-ray diffraction line, peak positions, and stress and their 95% confidential limits
representing the reproducibility of the calculated value are shown.
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where m is the slope in Equation (22). Now, m is determined experimentally from the 

sin2ψ diagram by fitting a straight line to a set of experimental points (dhkl1, sin2ψ1), (dhkl2, 

sin2ψ2), … (dhkln, sin2ψn) using the least-squared method. The precision coefficient (R2) of 

the linear regression is determined as: 
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where SSresidual and SStotal are the sum squared of regression error and sum squared total 

error of experimental values in comparison to the estimated values, fi is predicted or es-

timated function, and 
1

1 n

hkl hkli
i

d d
n =

=  is the mean of the experimental data.  
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Figure 7. Peak positions and stress determination of aluminum alloy 1060.

The sample was made from aluminum alloy 1060 with dimensions of 250 × 50 × 5 mm.
The sample surface was ground to remove the surface layer of about 1 mm and then pol-
ished with emery paper to obtain the roughness of 0.64 µm. Table 1 shows the experimental
conditions for stress measurement using XRD.
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Table 1. The experimental conditions for stress measurement using XRD.

Diffraction Method Ω-Type, Fixed-η

Diffraction plane (422) of hexagonal
Bragg angle 82.3◦

Scanning range 132–142◦

Step size 0.04◦

Preset time 5 s
Voltage and current 20 kV and 10 mA

Table 2 shows the residual stresses of aluminum alloy 1060 calculated from XPro
2.0. The peak positions are computed using four methods of peak position determination
Parabola, Gaussian, Half-width, and Centroid with their 95% confidence limits. They
are also compared to the result computed from the commercial Origin. The stress val-
ues determined from the Parabola method and Gaussian curve method strongly agree
with the Origin. They have a precision coefficient R2 of fitting regression of 0.91 ± 0.06
and 0.89 ± 0.08, respectively. In contrast, the Half-width and the Centroid methods gave
much larger 95% confidential limits with lower R2 of 0.72 ± 0.15 and 0.68 ± 0.18, re-
spectively. Therefore, the Parabola and Gaussian methods are the most suitable in XRD
stress investigation.

Table 2. Residual stresses of alumina alloy 1060 (MPa).

Zones
XPert 2.0 Origin 3.0

Gaussian Parabola Half-Width Centroid Gaussian

1 −17.3 ± 2.8 −17.3 ±0.2 5.4 ± 19.7 7.5 ± 9.4 −25.3
2 −26.0 ± 8.9 26.0 ± 0.4 −3.2 ± 18.3 −2.4 ± 7.2 −30.4
3 13.2 ± 3.1 13.2 ± 0.4 11.6 ± 42.8 8.7 ± 8.5 10.1
4 −29.5 ± 6.0 −29.4 ± 0.6 −19.8 ± 27.7 −23 ± 9.6 −28.3

3.2. Analysis of Phase Compositions

The phase compositions of multi-phase materials (triple-phase carbide in this study)
can be analyzed simply using XPro 2.0. Figure 8 is diffraction peaks in accordance with the
diffraction planes for various phases. A formula for calculating the phase component was
proposed in the previous studies [6,7] as the following.

qx =

n
∑

α=1
Eα
(hkl)α

i λj

∑ Eα
(hkl)α

i λj
+ . . . + ∑ En

(hkl)n
i λj

(25)

Figure 9 represents the diffraction line from a three-phase material. The areas under
a peak of a phase are the diffracted energy portion of that phase. Therefore, the phase
composition is determined from the energy portion qα, qβ, and qγ diffracted from phases α,
β, and γwith the total diffracted energy of material as:

qα =
∑ Eα

(hkl)αi λj

∑ Eα
(hkl)αi λj

+∑ Eγ

(hkl)γi λj
+∑ Eβ

(hkl)β
i λj

qβ =

∑ Eβ

(hkl)β
i λj

∑ Eα
(hkl)αi λj

+∑ Eγ

(hkl)γi λj
+∑ Eβ

(hkl)β
i λj

qγ =
∑ Eγ

(hkl)γi λj

∑ Eα
(hkl)αi λj

+∑ Eγ

(hkl)γi λj
+∑ Eβ

(hkl)β
i λj

(26)
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where Eα
(hkl)α

i λj
;Eβ

(hkl)β
i λj

;Eγ

(hkl)γ
i λj

are the energy portion diffracted from phase α, β, γ from

the ith plane (hkl)i for wavelength λj.
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Five samples of commercial triple-phase ceramic T15K6, containing three phases
WC-TiC-Co, were prepared with dimensions of 15 × 15 × 20 (mm). The average chemical
compositions of the phases WC, TiC, and Co, respectively, were 78.63%, 14.17%, and 6.79%,
together with their 95% confidence limits. Table 3 lists the XRD experimental conditions
for analyzing phase compositions of carbide T15K6.

Table 3. XRD conditions for analyzing phase compositions of T15K6.

Measurement Method Ω Type, Fixed-η

Preset time 5 s
Step size 0.02◦

Voltage and current 20 kV and 10 mA

Table 4 compares the phase composition determined from the XRD method and
chemical analysis method, which is known as a traditional and accurate technique for
determining compositions. The results show good agreement between the methods, con-
firming the validity of proposed Equations (25) and (26) using the XRD technique.
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Table 4. Phase compositions of carbide T15K6 (%).

Phase XRD Chemical Analysis

WC 77.86 ± 1.30 78.63 ± 0.59
TiC 14.96 ± 1.65 14.17 ± 0.52
Co 5.86 ± 1.47 6.79 ± 0.02

3.3. Evaluation of Hardness

Many studies have found that the full width of the maximum X-ray diffraction line
(half-width) has a relation to the dislocation or disordering of crystalline matrixes. This
is a result of many changes in the crystalline matrix in various industrial processes such
as alloying by other metallic elements, hardening by quenching, plastic deformation,
fatigue stress, etc. In this study, the hardening levels of quenched steel specimens were
nondestructively investigated using XRD. A previous study has determined a linear relation
between the Rockwell hardness HRC and the half-width of the diffraction line of quenched
and tempered carbon steel [8]:

HRC = 87.85B + 20.34 (27)

where B = 2
√

2 ln 2σ = 0.35σ is the half-width of the diffraction line and σ is the standard
deviation of the Gaussian curve. In the case of the parabola method,

HRC = 103.01FHW + 21.31 (28)

where FHW is the full width at half of the maximum X-ray intensity of the diffraction line.
Ten JIS-type S50C samples with dimensions of 50 × 50 × 200 mm were quenched at

850 ◦C in water, and then nine of them were tempered from 250 ◦C to 650 ◦C, in steps of
50 ◦C, for 45 min to eliminate the inhomogeneous distribution. The sample surfaces were
polished with emery paper and then electrolytically polished to remove about 1 mm of the
surface layer. The hardness of samples was measured using the Rockwell hardness testing
method. Table 5 shows the experimental conditions for XRD measurement.

Table 5. XRD experimental conditions for JIS S50C steel.

Diffraction Type Ω-Type, Fixed-η

Diffraction plane (211)
Scanning range 80–85◦

Step size 0.04◦

Preset time 5 s
Voltage and current 20 kV and 10 mA

Figure 10 compares the HRC hardness with the line half-width. A straight line is
fitted to the experimental points to establish the relation between FHW and HRC using
Equations (27) and (28). From this practical linear relation, the hardness of quenched
carbon steel can be easily estimated from the measured half-width. The same procedure
can be applied to determine the hardness of quenched copper, stainless steel, plastically
deformed steel, nickel alloys, etc.
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Figure 10. Dialog box for determining the hardness of quenched S50C.

3.4. Thickness of Coating Layer

To determine the thickness of the coating layer, the measurements using tilt angles
ψ and ψ0 were used. When “Count” is pressed, the thickness of the coating layer is
determined, as shown in Figure 11. The coating thickness t is determined from the formulas
as below [10]:

f (I, ψ, ψ0, θ) =
Iψ cos ψ0[1− cot(θ − ψ0) cot θ

Iψ sin(θ + ψ)[1− tan ψ cot θ]
(29)

g(µ, ψ0, θ) = µ f (
1

cos ψ0[1− cot(θ − ψ0) cot θ
− 1

sin(θ + ψ)[1− tan ψ cot θ]
) (30)

t =
ln[ f ((I, ψ, ψ0, θ)]

g(µ, ψ0, θ)
(31)

where θ is Bragg angle and µ and µf are the linear absorption coefficients of the sub-
strate and coating layer used, respectively, and Iψ is the maximum X-ray intensity in the
fixed-ψmethod.
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Three JIS-type SS400 samples with dimensions of 10 × 40 × 40 mm were polished,
electroplated for 6 to 30 min to obtain the thicknesses of 2 µm, 2.25 µm, 2.75 µm, 3.25 µm
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and 3.5 µm, and observed directly under a microscope (MS). The thicknesses were mea-
sured by the Eddy current technique at nine positions in the central area of each sample to
obtain the average values and their standard deviations.

Table 6 lists experimental conditions for XRD thickness measurements. Figure 11
shows the diffraction lines of the 3 µm plating sample. Table 7 compares the thickness of
nickel-coating layers, measured using microscope techniques, Eddy current (EC), and XRD.
The XRD technique allows determining 95% confidence limits of the computed values
using a single measurement. The three techniques gave agreed thickness, and they are
within the confidential limits.

Table 6. XRD conditions in thickness measurement of nickel-coating layer.

Diffraction Method Ω-Type, Fixed-ψ and ψ0

Scanning range 40–96◦

Step size 0.03◦

Preset time 2.5 s
X-ray characteristic CuKα

Filter Ni foil
Voltage and current 20 kV and 10 mA

Table 7. Thickness for nickel-plating layers with MS, ED, and XRD techniques (µm).

Samples MS EC XRD

1 2.00 1.94 ± 0.13 2.02 ± 0.49
2 2.25 2.38 ± 0.17 2.34 ± 0.50
3 2.75 2.63 ± 0.22 2.99 ± 0.49
4 3.25 3.14 ± 0.35 2.96 ± 0.45
5 3.50 3.35 ± 0.21 3.40 ± 0.43

3.5. Determination of Crystalline Grain Size

The well-known Scherrer formula below is used to calculate a grain size t [1]:

t =
Kλ

B cos θB
(32)

where K is a constant referring to the cell geometry of lattice, where K = 0.94 for the cubic
lattice; λ is X-ray wave length; B is the half-width of diffraction line; and θB is the Bragg
angle of a peak position.

The experimental conditions for determining grain size of commercial synthetic zeolite
ZSM-5 used in environment treatment are listed in Table 8. Table 9 represents the grain
sizes of zeolite crystals, determined from XRD and observed using SEM techniques. It is
shown that the XRD technique gives accurate results, in comparison to the SEM method.

Table 8. XRD conditions for thickness measurement of nickel-plating layer.

Diffraction Method Ω-Type, Fixed-ψ

Scanning range 10–50◦

Step size 0.03◦

Preset time 3 s
Voltage and current 40 kV and 20 mA

Table 9. Grain size of zeolite crystals using XRD and SEM techniques (in µm).

Specimens XRD SEM

1 3.06 ± 0.09 2.5
2 3.64 ± 0.12 1 to 8
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4. Conclusions

The following conclusions are made:

a. Various functions for determining major mechanical properties of crystalline materi-
als were integrated into the computational program as shown in Section 3;

b. Generalized absorption functions for many measurement methods were embed-
ded into the program to accurately determine the peak positions of the X-ray
diffraction lines;

c. The properties of many kinds of materials measured using XRD are compared to the
conventional techniques, and they showed high agreement;

d. The new computation program shows the high applicability of a universal X-ray
diffraction device in evaluating crystalline materials.

Some proposals for further research include the evaluation of surface roughness or
the measurement of various kinds of alloys and stainless steels.
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