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Abstract: With the start of the Fourth Industrial Revolution, Internet of Things (IoT), artificial
intelligence (AI), and big data technologies are attracting global attention. AI can achieve fast
computational speed, and big data makes it possible to store and use vast amounts of data. In
addition, smartphones, which are IoT devices, are owned by most people. Based on these advantages,
the above three technologies can be combined and effectively applied to navigation technology. In
the case of an outdoor environment, global positioning system (GPS) technology has been developed
to enable relatively accurate positioning of the user. However, due to the problem of radio wave
loss because of many obstacles and walls, there are obvious limitations in applying GPS to indoor
environments. Hence, we propose a method to increase the accuracy of user positioning in indoor
environments using wireless-fidelity (Wi-Fi). The core technology of the proposed method is to limit
the initial search region of the particle swarm optimization (PSO), an intelligent particle algorithm;
doing so increases the probability that particles converge to the global optimum and shortens the
convergence time of the algorithm. For this reason, the proposed method can achieve fast processing
time and high accuracy. To limit the initial search region of the PSO, we first build an received
signal strength indicator (RSSI) database for each sample point (SP) using a fingerprinting scheme.
Then, a limited region is established through a fuzzy matching algorithm. Finally, the particles are
randomly distributed within a limited region, and then the user’s location is positioned through a PSO.
Simulation results confirm that the method proposed in this paper achieves the highest positioning
accuracy, with an error of about 1 m when the SP interval is 3 m in an indoor environment.

Keywords: indoor positioning; wireless-fidelity (Wi-Fi); fingerprinting; fuzzy matching;
particle swarm optimization (PSO)

1. Introduction

With the start of the Fourth Industrial Revolution around the world, Internet of Things
(IoT), artificial intelligence (AI), and big data are attracting attention as major technologies.
Most people these days own a smartphone, which is an IoT device. In addition, a large
volume of data can be stored and used through big data technology. These two technologies
of IoT and big data can be combined with AI to increase efficiency in the navigation field.

It is very important for navigation technology to estimate the initial location of the
user to perform accurate route guidance. If the user’s initial location cannot be accurately
positioned, the user is guided to an inefficient path. The global positioning system (GPS)
technology currently used in outdoor environments has reliable positioning accuracy [1].
However, GPS has a limitation in performing indoor positioning due to a signal loss prob-
lem caused by obstacles and walls existing in indoor environments [2–4]. Hence, various
positioning technologies are developed for indoor office environments [5]. Such indoor
positioning technology is generally based on two types of communication technology and
positioning algorithm.

Mobile communication technologies are wireless-fidelity (Wi-Fi) [6], ultra-wide band
(UWB) [7], and Bluetooth [8]. Fingerprinting, triangulation, and particle swarm optimiza-
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tion (PSO) techniques can be used as location positioning techniques [9]. These existing
wireless sensor positioning algorithms can be divided into range-based algorithms and
range-free algorithms. The former are applied more widely for convenience in engineering
practice. Typical range-based technologies include received signal strength indicator (RSSI),
angle of arrival (AoA) [10], time of arrival (ToA) [11], time difference of arrival (TDoA) [12],
etc. However, in an indoor environment, the signal path is short and due to the complexity
of the radio wave environment, it is difficult to achieve an accurate measurement distance
with ToA, TDoA, and AoA, causing a problem in obtaining an accurate location. In contrast,
RSSI can obtain relatively high positioning accuracy at a low cost by combining it with
a fingerprinting scheme, which are generally applied for user positioning in an indoor
environment [13].

Therefore, in this work, a study was conducted to improve the performance of the PSO
algorithm to increase the indoor positioning accuracy based on Wi-Fi in the indoor office
environment suggested by the Third Generation Partnership Project (3GPP) [14]. First, the
database is built based on RSSI by performing the fingerprinting scheme in the offline step.
As the indoor environment expands, these fingerprinting databases can be stored through
big data. Thereafter, sample points (SPs) adjacent to the user can be derived through a
fuzzy matching algorithm in the online step, and a region can be limited based on the
derived SPs. Distributed particles within a limited region are then subjected to the PSO.
The PSO locates the user by performing optimizations based on intelligent particles. There
are two advantages to limiting the initial search region of the PSO. First, the probability
of reaching the global optimum is improved in the PSO optimization process. Second,
the processing time for target accuracy is reduced. Based on these two advantages, the
proposed scheme can achieve fast processing time and high accuracy when positioning the
user’s location. The main contributions of this paper are described as follows:

(1) We propose an improved PSO method for positioning the user’s location, based on a
new method for limiting the initial search region of the PSO.

(2) It uses a single algorithm (fingerprinting, fuzzy matching) to find the region where
the user is most likely to exist and limits that region to the initial search region of the
PSO. It then locates the user by deploying intelligent particles within a limited region.

(3) Through the simulation results, it can be confirmed that when the PSO is performed
in a limited region, high positioning accuracy and fast processing time are achieved.

This paper is structured as follows. Section 2 analyzes related work for performing
indoor localization. Section 3 describes the system model. Section 4 describes the proposed
positioning scheme in detail. Sections 4 and 5 describe the parameter values used in
the simulation and the simulation results. Finally, Section 6 presents the conclusion of
this paper.

2. Related Work

There have been three types of models suggested regarding indoor user location
positioning. First, in [15], a method of identifying the user’s location using a particle
filter in a complex indoor environment was proposed. The particle filter is a method of
moving each particle in the same direction and speed according to the user’s movement.
After moving the particle, if the particle is in an invalid position, the resampling process
relocates the particle. As mentioned above, the movement and resampling of the particles
are repeated to position the user. However, for resampling to be performed, many obstacles
and walls must exist indoors.

The second uses fingerprinting. The fingerprinting scheme has been adopted by
many existing indoor positioning systems [16,17]. The fingerprinting scheme collects RSS
samples from SPs of the indoor environment and constructs a database. After that, the
measured value in the online step is matched with the database to determine the user’s
location. In [18], an F-score-weighted indoor positioning algorithm that combines RSSI and
magnetic field (MF) fingerprints in a Wi-Fi communication environment was proposed.
The proposed scheme creates a learning database for indoor positioning based on the RSSI
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value and MF fingerprint value from each AP at the location of each SP (SP) in the offline
step. Next, in the online step, the F-score-weighted algorithm is used to estimate the real
user’s location. However, the experimental results of the authors could achieve 91% of the
average positioning error less than 3 m. Despite this relatively high positioning accuracy, it
requires a lot of time to calculate the user’s location in the online step.

The third method locates the user’s location based on the PSO. In [19], the maximum
likelihood estimation (MLE) method and PSO are used together. In the proposed method,
the approximate location of the user is determined using MLE. Thereafter, the initial search
region of the PSO is limited by setting a certain radius around the estimated position.
The PSO distributes particles within a limited region to derive the user’s final location.
However, there may be a problem that the user does not exist within a limited radius
due to the RSSI error according to the distance. In [20], the authors proposed a hybrid
PSO-artificial neural network (ANN). A feed-forward neural network was chosen for this
algorithm. The algorithm used Levenberg-Marquardt to estimate the distance between the
AP and the user. Although the algorithm’s positioning accuracy has improved, it requires
a large data set to train a feedforward neural network. If there are not enough data sets
for training, it cannot converge to the best local minimum or global minimum. In [21], the
authors propose an improved algorithm for hybrid annealing particle swarm optimization
(HAPSO). The proposed method improved the convergence speed and accuracy of PSO
based on the annealing mechanism. However, the benefits of the proposed algorithm
diminish as the number of access points (APs) increases. In [22], the authors performed a
comparison of the improved PSO of four methods. Although the hierarchical PSO with
time acceleration coefficients in the literature achieved the highest positioning accuracy,
the total number of iterations used in the simulation is 100, so the PSO processing time is
very long.

Therefore, in this work we try to use a fingerprinting scheme [23], weighted fuzzy
matching (WFM) algorithm [24,25], and PSO algorithm to improve the positioning accuracy.
Compared with the existing studies, the main improvements of this paper are as follows:

• In [15], each particle acts as a filter that moves in the same way as the user’s movement.
However, when there are no obstacles in the indoor environment, the algorithm
processing time is slowed down. The proposed method in this paper can shorten the
convergence time by using intelligent particles.

• In [19], a merger of MLE and PSO was proposed. However, if the initial PSO search
region is limited to a radius centered on the MLE result due to an error in the RSSI
value, particles may not converge to an optimal position. The method proposed in
this paper can achieve higher accuracy by setting the region where the user actually
exists as a limited region through fuzzy matching.

3. System Model

This paper performs a simulation in the indoor environment suggested by 3GPP. The
environment suggested by 3GPP is shown in Figure 1 [14].

As shown in Figure 1, the suggested indoor environment is a space of 120 m × 50 m.
There is a total of 12 APs for positioning in the environment.

The indoor environment is based on Wi-Fi and uses RSSI values for positioning the
user’s location. The RSSI value can be obtained by the following (1):

RSSId = TXpower− Pathloss (1)

where RSSId is the received power between the AP and the receiver for distance d. Further,
the pathloss value defined in 3GPP is used as it is. The pathloss model is as follows:

Pathloss = 32.4 + 17.3 log10 d + 20 log10 f (2)

where f represents the frequency of Wi-Fi (we use 2.4 GHz in this paper). Further, the
shadow fading standard deviation is denoted by σSF, with a value of 3 dB.
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Figure 1. Indoor environment suggested by 3GPP.

4. Proposed Indoor Positioning

Figure 2 shows the block diagram of the proposed scheme in this paper. The proposed
scheme sequentially applies the fingerprinting scheme, the WFM algorithm, the initial
search region limitation, and the PSO. First, the fingerprinting scheme is performed in an
offline step, and the RSSI value for each AP is measured at a SP. A fingerprinting database
is built based on the measured RSSI values. In the online step, the RSSI value of the actual
user is measured from the AP. The measured RSSI value of the user performs a WFM
algorithm with the value of the fingerprinting database. When the WFM algorithm is
applied, the closest SP can be derived based on the degree of correlation between the user
and the SP [26,27].
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The core idea of the proposed scheme is to limit the initial search region of the PSO
to the closest SPs derived above. When the initial search region is limited, the probability
that the user exists within the limited region can be increased. It is possible to increase
the probability that intelligent particles converge to the global optimum (i.e., the user’s
position) in the PSO process and shorten the convergence time for achieving the target
positioning accuracy.

The PSO, which is then performed in a limited region, is an intelligent evolutionary
computation algorithm that uses intelligent particles to find the optimal location of the
user. The PSO has many advantages, such as high location accuracy, few parameters, and
simple implementation [21,28]. During the search, all particles within the cluster share
their optimal position. Each particle determines its own direction of movement based on
shared information. Therefore, all particles must be periodically updated not only to the
optimal position of the individual but also to the optimal position of the cluster. If the
information of each particle is not shared or updated, all particles converge to the wrong
position, which causes a serious position error. Each scheme is analyzed in detail through
the following subsections.

4.1. Fingerprinting Scheme

The fingerprinting scheme is a method of constructing a database by measuring
RSSI values at a specific location in the offline step. In the case of a real environment,
the RSSI value from the AP must be collected at a certain location. In recent years, as
indoor environments have become wider and more complex, i.e., large department stores,
skyscrapers, and airports—big data technology that can store a large number of RSS
samples has been needed when constructing fingerprinting databases. Hence, if a large
number of SPs are used, problems arise in terms of time to measure the RSSI value for each
SP and cost when managing the measured data. Conversely, if a small number of SPs are
used, the error in positioning accuracy increases. Therefore, in a real environment, the two
aspects should be considered, and an appropriate number of SPs suitable for the size of the
positioning environment should be used. Due to this problem, in this paper, we perform a
fingerprinting scheme based on simulation. To conduct this, we initially place the SP at a
certain location. After that, each AP calculates the RSSI value for each SP based on (1) and
builds the fingerprint database HRSSI . The established fingerprinting database HRSSI can
be expressed as (3) below.

HRSSI =



h1
1 · · · hm

1 · · · hM
1

...
...

...
h1

n · · · hm
n · · · hM

n
...

...
...

h1
N · · · hm

N · · · hM
N

 (3)

where hm
n represents an RSSI value between the m-th AP and the n-th SP. Thereafter, the

HRSSI value is used to estimate the actual user’s position in WFM.

4.2. WFM Algorithm

WFM is performed in the online step where the real user is present. Each AP calculates
the RSSI value from user equipment (UE) k. The corresponding RSSI value can be expressed
as (4).

URSSI
k =

[
h1

k , h2
k , h3

k , . . . , hM
k

]
(4)

where hm
k represents an RSSI value between AP m and UE k. The Euclidean distance vector

can then be derived after evaluating the correlation between HRSSI and URSSI
k . For the j-th

AP, the correlation between the RSSI value of the UE k position in the online step and the
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RSSI value of the SP n position in the offline step is given by rk, n and can be expressed
as (5).

rk,n =‖ URSSI
k − HRSSI

n ‖=

√√√√ M

∑
m=1

(
hm

k − hm
n
)2 (5)

After that, the value of rk, n is normalized based on the min–max normalization
formula, and it is defined as ρk, n. ρk, n can be expressed as (6).

ρk, n =
rk, n − rmin

rmax − rmin
(6)

where rk, n represents the degree of correlation between UE k and SP n. According to (5),
as rk, n has a smaller value, it means that the distance between UE k and SP n is smaller,
and it is determined that the correlation is high. rmax and rmin represent the maximum and
minimum values of all correlations, respectively. The range of defined ρk, n is 0 ≤ ρk, n ≤ 1.
The Euclidean distance vector can be derived as (7) as the result obtained from the
above equation.

dk =
(
1− ρk, n

)
= [dk,1, dk,2, . . . dk,N] (7)

Thereafter, the four fingerprinting vectors closest to UE k, which is the target for the
current location positioning, may be selected. After that, the selected fingerprinting values
can be sorted sequentially, starting from nearest. Furthermore, the coordinates of the UE
can be calculated as follows.

X0 =
4

∑
n=1

βnXn (8)

Y0 =
4

∑
n=1

βnYn (9)

Z0 =
4

∑
n=1

βnZn (10)

where βn is the closeness weighting factor obtained using the four SP coordinate values
closest to the UE and the Euclidean distance vector. The larger the value of βn, the smaller
the distance between the UE and SP n. βn can be defined as (11).

βn =
αn

αsum
, αsum =

4

∑
n=1

αn (11)

where αn represents the Euclidean distance vector of the four SPs nearest to the location
of the user derived in (7). Therefore, it can be expressed as αn = [α1 , α2 , α3 , α4], and α1
is the largest Euclidean distance vector value. αsum represents the sum of the values of
the four SP Euclidean distance vectors closest to the UE. Using αsum and αn, we obtain the
closeness weighting factor βn corresponding to the four SPs closest to the UE.

As above, the user’s location can be estimated through WFM. However, in this paper,
we propose a method to limit the initial search region of the PSO by using the four SPs
nearest the actual user derived through fuzzy matching.

4.3. Limiting of Initial Search Region

The method of limiting the initial search region described in this subsection is the
main contribution of this paper. The PSO is a technology to find the global optimum based
on intelligent particles. When positioning a user’s location through the PSO, it is very
important to limit the initial search region. Therefore, in this paper, we propose a scheme
of limiting the initial search region to highly correlated SPs derived through fingerprinting
and WFM algorithms.
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First, the closeness between the user and each SP can be known based on the Euclidean
distance vectors obtained through (7). After that, the Euclidean distance vectors are sorted
in descending order from the largest value. The sorted values can be expressed as follows.

dk,c = [dk,c,1, dk,c,2, . . . , dk,c,n, . . . , dk,c,N ] (12)

where dk,c,1 is the SP closest to the user among all SPs. To limit the initial search region,
three or more SPs should be selected. Therefore, the proposed method limits the initial
region by selecting four SPs from among the SPs sorted in descending order based on the
results in Figure 3.
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Figure 3 shows the initial particle distribution of the PSO in both cases with a limited
initial search region and a non-limited initial search region. As shown in Figure 3, a
high positioning accuracy can be obtained if the region is limited based on four SPs. SSP
represents the number of SPs selected for region limitation. When the initial search region
is limited and not limited, the initial distribution region of particles can be expressed as in
(13) and (14), respectively.

Alimited = d2
SP (13)

Anon_limited = dw × dl (14)

where dw represents the width of the search region, dl represents the length of the search
region, and dSP represents the distance between SPs. In general, the range of dSP is
0 < dSP < dw, dl , so if the region is limited by SPs, it is possible to narrow the region that
the particle needs to search to find the global optimum.

Figure 4 shows the initial particle distribution of PSO in the case where the initial
search region is limited and in the case where the initial search region is non-limited. As
shown in Figure 4, when the region is limited, it can be confirmed that the particles are
distributed close to the actual user’s location XR. Based on this, the PSO process can be
performed to precisely position the user’s location. The next subsection describes the PSO.
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4.4. PSO Algorithm

The PSO is an intelligent evolutionary computational algorithm proposed by James
Kennedy and Russell Eberhart in 1995. The PSO is a population-based probabilistic
approach used to optimize nonlinear problems. The detailed process of the PSO algorithm
is as follows.

First, all particles undergo an initialization process. After that, the particles are
randomly distributed in the search region to estimate the location of the UE. The distributed
particles perform an iterative process of finding an optimal location estimated as the actual
location of the UE. At each iteration, the particles follow the individual optimal position
pbest and the swarm optimal position gbest. Particles derive the optimal location of the
actual user based on the values of pbest and gbest that are continuously updated during
the iteration process. The iterative process is performed using the equation below.

Vi(τ + 1) = wVi(τ) + c r [pbesti(τ)− xi(τ)] + c r [gbest(τ)− xi(τ)] (15)

Xi(τ + 1) = Xi(τ) + Vi(τ + 1) (16)

w = wmax −
τ

T
(wmax − wmin) (17)

where Vi(τ) is the velocity of the i-th particle in the τ-th iteration and Xi(τ) is the position
of the i-th particle in the τ-th iteration. In addition, c is an acceleration coefficient, w is an
inertia coefficient, and r is an arbitrary coefficient of contraction. τ represents the current
number of iterations, and T is the total number of iterations of the PSO algorithm.

In general, the PSO algorithm is applied to optimization problems. However, in this
paper, it is applied and used as one of the positioning schemes. In a practical environment,
an error exists in the RSSI the UE receives from each Wi-Fi AP due to propagation loss,
which obviously causes an error in the positioning process. Therefore, through the PSO
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process, the error can be converted to obtain a fitness with a minimum value. At this time,
the function to determine the fitness of each particle can be written as (18).

fm
(
X̂
)
= dm −

∣∣∣X̂− XT
m

∣∣∣ (18)

where dm is the distance between AP m and the receiver, and XT
m is the location of AP m.

We update swarm with the PSO and optimize the fit of each particle in (19).

F
(
X̂
)
=

M

∑
m=1

f 2
m
(
X̂
)

(19)

After that, the PSO process ends when the preset accuracy error and number of
iterations are reached. After the PSO process ends, the position of the particle with the best
fit becomes the final UE’s estimated position. The process of the proposed algorithm is
detailed in Algorithm 1.

Algorithm 1: Proposed Indoor Positioning Algorithm

Result: Estimated Positioning
Initialization
Distribute the SP at a specific location within the region
for m = 1:M

where M is the total number of Wi-Fi APs
Measure Wi-Fi AP m and each SP’s RSSI value

End
Fingerprinting database HRSSI construction and Euclidean vector D calculation
for m = 1:M

Measure Wi-Fi AP m and UE’s RSSI value
End
Construction of ZRSSI

k with measured values
WFM with HRSSI and ZRSSI

k
Select the 4 SPs nearest to the UE and obtain a limited region
Randomly distribute particles over the limited region
For t = 1:T

PSO algorithm implementation
End
Obtain the position of the particle with the most optimal fit and use it as the UE’s
estimated position

5. Simulation Results

In this section, simulation is performed to verify the performance of the proposed
scheme. The parameters used in the simulation are described in Table 1.

Table 1. Simulation parameters.

Parameter Value

Number of iterations 10,000
Room size 120 m × 50 m
Pathloss 32.4 + 17.3 log10 d + 20 log10 f

Shadow fading std (σSF ) 3 dB
Number of APs 12

Number of particles 10
Distance between SPs 3, 6, 9 m

Transmit power of APs 20 dBm
c, r, wmin, wmax, T 2, 0.3, 1, 0.4, 10

The simulation uses the indoor environment proposed by 3GPP [14]. The size of the
environment is defined as a space of 120 m × 50 m. The number of APs deployed in the
indoor environment is 12, the same as the environment proposed by 3GPP. The power
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of each AP is set to 20 dBm. For N, the shadow fading standard deviation is used, and
the value is σSF = 3 dB. If the N value is large, the error in the initial limited region will
occur, which will result in a larger positioning error. The total number of iterations of the
simulation is set to 10,000. At this time, the location is estimated using one UE. In addition,
as the distance between SPs changes, the number of SPs also changes, and accordingly, the
positioning accuracy is evaluated. The location of the Wi-Fi AP is shown in Figure 5.
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As shown in Figure 5, 12 APs are deployed in the indoor environment. In addition,
to analyze the performance of the proposed method, simulations are performed while
changing the distance between SPs to 3, 6, and 9 m. Table 2 shows the change of the number
of SPs according to the change of the distance between SPs in the proposed environment.

Table 2. Number of SPs vs. distance between SPs.

Distance between SPs [m] 3 6 9

Number of SPs 697 189 84

As can be seen in Table 2, the number of SPs significantly decreases as the distance
between SPs increases.

Table 3 is the result of comparing the positioning accuracy of the ToA, TDoA, AoA,
RSSI, and RSSI + FP (Fingerprinting) schemes. As shown in Table 3, the positioning error is
the largest when triangulating based on RSSI. However, when RSSI is used together with the
FP technique in an indoor environment, the highest positioning accuracy can be achieved.
Based on these results, in this paper, the RSSI and FP schemes are applied together.

Table 3. Comparison of positioning schemes.

Scheme Positioning Error [m]

ToA 7.886
TDoA 7.884
AoA 8.327
RSSI 9.319

RSSI + FP 2.562

First, each AP builds a fingerprinting database by measuring RSSI values for all SPs
in the offline phase. In the online positioning step, each AP measures the RSSI value for
the actual user location. After that, the RSSI value of the actual user performs WFM with
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the built fingerprinting database. As a result of fuzzy matching, the four closest SPs can be
derived from the actual UE location. The SPs derived through the simulation are shown in
Figure 6.
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In Figure 6, the green circles, red circles, and blue triangles represent the SPs, the
actual UE locations, and the Wi-Fi APs, respectively. The yellow circles represent the SPs
closest to the actual UE locations. The distance between SPs is 3 m, and the total number of
SPs is 697.

Figure 7 shows the results of improving the performance through the PSO algorithm
after performing the WFM algorithm. The simulation limits the region to the four SPs
closest to the UE obtained through the WFM algorithm. This can further improve the
average positioning accuracy and convergence speed by limiting the initial region of the
PSO algorithm. Location accuracy can be obtained by calculating the difference between
the actual UE location and the estimated location.

As shown in Figure 7, it can be confirmed that the four SPs nearest to the UE are
selected through the WFM algorithm. In addition, the black triangle is the user’s final
position obtained by performing the PSO algorithm. In other words, this is the position
of the particle with the smallest value by evaluating the fitness of each particle after the
PSO algorithm is ended. That position can be used as the UE’s final estimated position and
compared to the UE’s actual location. The simulation is performed a total of 10,000 times,
and the position of the UE is changed randomly during iterations. The final positioning
error is determined by averaging all the values from the 10,000 different locations of the UE.

Figure 8 shows the result of comparing the proposed scheme with the existing position-
ing algorithm. To perform the performance comparison, positioning errors are compared
while changing the distance between SPs. The PSO algorithm ends when the maximum
number of iterations T is reached.

In Figure 8, WFM is a result of estimating the location of the UE through a WFM
algorithm. The cosine similarity (CS) is a result of estimating the location of the UE through
a CS scheme [29]. MLE-PSO is the result of estimating the location of the UE through the
combination of MLE and a PSO scheme [19]. Finally, the range-limited (RL)-PSO executes
the PSO algorithm within a limited region. The simulation result is the result of measuring
the positioning error while changing the distance between the SPs. The WFM algorithm
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is the result of determining the final location of the UE based on the closeness weight. It
can be seen that the smaller the spacing between the SPs, the higher the accuracy achieved.
However, as can be seen in Table 2, the number of SPs increases rapidly as the distance
between SPs decreases. This causes a complexity problem when building a database in
the fingerprinting scheme. The CS is the result of estimating the final position of the
UE through a CS scheme. The CS is a method of calculating the similarity between the
fingerprinting database of SPs measured at each AP and the RSSI of the real user. After
that, the location of the SP with the highest similarity to the actual user is mapped to the
user’s estimated location. As can be seen from Figure 8, the positioning error increases as
the distance between SPs increases. Additionally, it is confirmed that the result obtained
through fuzzy matching is the same when the four SPs adjacent to the actual user are
derived based on the CS.

Appl. Sci. 2021, 11, 9522 12 of 16 
 

closest to the UE obtained through the WFM algorithm. This can further improve the av-
erage positioning accuracy and convergence speed by limiting the initial region of the PSO 
algorithm. Location accuracy can be obtained by calculating the difference between the 
actual UE location and the estimated location. 

 
Figure 7. Result of final SP by using PSO. 

As shown in Figure 7, it can be confirmed that the four SPs nearest to the UE are 
selected through the WFM algorithm. In addition, the black triangle is the user’s final po-
sition obtained by performing the PSO algorithm. In other words, this is the position of 
the particle with the smallest value by evaluating the fitness of each particle after the PSO 
algorithm is ended. That position can be used as the UE’s final estimated position and 
compared to the UE’s actual location. The simulation is performed a total of 10,000 times, 
and the position of the UE is changed randomly during iterations. The final positioning 
error is determined by averaging all the values from the 10,000 different locations of the 
UE. 

Figure 8 shows the result of comparing the proposed scheme with the existing posi-
tioning algorithm. To perform the performance comparison, positioning errors are com-
pared while changing the distance between SPs. The PSO algorithm ends when the max-
imum number of iterations T is reached. 

In Figure 8, WFM is a result of estimating the location of the UE through a WFM 
algorithm. The cosine similarity (CS) is a result of estimating the location of the UE 
through a CS scheme [29]. MLE-PSO is the result of estimating the location of the UE 
through the combination of MLE and a PSO scheme [19]. Finally, the range-limited (RL)-
PSO executes the PSO algorithm within a limited region. The simulation result is the result 
of measuring the positioning error while changing the distance between the SPs. The 
WFM algorithm is the result of determining the final location of the UE based on the close-
ness weight. It can be seen that the smaller the spacing between the SPs, the higher the 
accuracy achieved. However, as can be seen in Table 2, the number of SPs increases rap-
idly as the distance between SPs decreases. This causes a complexity problem when build-
ing a database in the fingerprinting scheme. The CS is the result of estimating the final 
position of the UE through a CS scheme. The CS is a method of calculating the similarity 
between the fingerprinting database of SPs measured at each AP and the RSSI of the real 
user. After that, the location of the SP with the highest similarity to the actual user is 
mapped to the user’s estimated location. As can be seen from Figure 8, the positioning 
error increases as the distance between SPs increases. Additionally, it is confirmed that 

Figure 7. Result of final SP by using PSO.

The MLE-PSO is a method of estimating the position of the UE through MLE and
limiting the initial region of the PSO algorithm based on a circle centered on the estimated
location. It can be seen that this scheme also shows a constant positioning error irrespective
of the distance between the SPs in the same way as PSO only. In addition, it can be
confirmed that the MLE-PSO scheme achieves higher accuracy when the distance between
the SPs is increased compared to the scheme that depends on the distance between the
SPs. However, it is difficult to allow an error of about 4 m in an indoor environment. To
summarize the previous information, the positioning accuracy and the number of SPs are
in a tradeoff relationship. Therefore, research is needed to improve the indoor positioning
accuracy by fusing several single algorithms, as in the method proposed in this paper. As
can be seen in Figure 8, the RL-PSO scheme proposed in this paper achieves the highest
positioning accuracy. With the RL-PSO, as mentioned above, if the initial search region
of the PSO is limited, faster convergence speed and higher positioning accuracy can be
achieved. This result was verified through simulation. Furthermore, we confirmed that we
achieved high positioning accuracy performance when using a single algorithm by fusing
it rather than using a single algorithm such as WFM or CS.
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Table 4 shows the processing time required to achieve a positioning error of 1 m
through each scheme. The distance between the SPs of the RL-PSO scheme is 3 m, and
there are a total of 697 SPs, as shown in Table 2. The number of particles of the particle
filter is 697, the same as the number of SPs of the RL-PSO. As can be seen from the results
of Table 4, the processing time of the RL-PSO is shorter. The RL-PSO can position the
user by performing the RSSI-based positioning process once, but the particle filter is a
sensor-based positioning method of the UE and moves particles according to the movement
of the UE to the position the user. Although the above result is the processing time obtained
through simulation, it can be seen that a longer processing time is required for positioning,
considering that the user’s moving speed is about 3 to 5 km/h in the real environment.

Table 4. Comparison of average processing time of each scheme to achieve positioning error of 1 m.

Scheme Average Processing Time

Particle Filter [15] 0.50162
RL-PSO 0.15314

Figure 9 shows the cumulative distribution function(CDF) of the positioning error
according to the distance between SPs. In the figure, it can be seen that when the distance
between SPs is 3 m, about 90% of the positioning errors are within 1.5 m. However, it
can also be seen that the positioning error increases as the distance between SPs increases.
This is because when the number of iterations of PSO is fixed, as the distance between SPs
increases, the region where particles need to be searched becomes wider. Therefore, it is
necessary to set the distance between SPs in consideration of the algorithm processing time
and target positioning accuracy.
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6. Conclusions

Generally, in an indoor environment, a user’s location is located using mobile commu-
nication technologies such as Wi-Fi, Bluetooth, and UWB. However, a positioning error
occurs in an indoor environment due to a propagation loss problem because of many walls
and obstacles. In this paper, we proposed a positioning method based on the modified PSO
to improve the positioning error. The proposed scheme innovatively establishes the initial
search region of the traditional PSO. Limiting the initial search region of the PSO helps
the intelligent particle converge to the global optimum in the optimization problem. In
addition, the time required for convergence to the optimal value can be shortened. Based on
the above two advantages, it was confirmed through simulation that the proposed method
can provide high positioning accuracy. In the future, we plan to study the positioning
performance according to the change of the parameter values of the particles distributed
within the limited region. In addition, we plan to verify the performance of the proposed
method by building a testbed in a real scenario.
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