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Abstract: Adaptive optics—optical coherence tomography (AO-OCT) is a non-invasive technique for
imaging retinal vascular and structural features at cellular-level resolution. Whereas retinal blood
vessel density is an important biomarker for ocular diseases, particularly glaucoma, automated
blood vessel segmentation tools in AO-OCT have not yet been explored. One reason for this is
that AO-OCT allows for variable input axial dimensions, which are not well accommodated by
2D-2D or 3D-3D segmentation tools. We propose a novel bidirectional long short-term memory
(LSTM)-based network for 3D-2D segmentation of blood vessels within AO-OCT volumes. This
technique incorporates inter-slice connectivity and allows for variable input slice numbers. We
compare this proposed model to a standard 2D UNet segmentation network considering only volume
projections. Furthermore, we expanded the proposed LSTM-based network with an additional UNet
to evaluate how it refines network performance. We trained, validated, and tested these architectures
in 177 AO-OCT volumes collected from 18 control and glaucoma subjects. The LSTM-UNet has
statistically significant improvement (p < 0.05) in AUC (0.88) and recall (0.80) compared to UNet
alone (0.83 and 0.70, respectively). LSTM-based approaches had longer evaluation times than the
UNet alone. This study shows that a bidirectional convolutional LSTM module improves standard
automated vessel segmentation in AO-OCT volumes, although with higher time cost.

Keywords: adaptive optics; optical coherence tomography; deep learning; vessel segmentation; long
short-term memory; recurrent neural network; glaucoma

1. Introduction

Adaptive optics optical coherence tomography (AO-OCT) imaging is a non-invasive
technique that provides improved lateral resolution compared to traditional optical coher-
ence tomography (OCT) by using adaptive optics (AO) to correct for ocular aberrations.
With AO-OCT, it is now possible to obtain three-dimensional (3D), cellular-level resolution
of the retina and optic nerve head to study ocular physiology and diseases [1–8]. As an
example of cellular resolution capabilities, AO-OCT based methods can reliably quantify
retinal ganglion cell (RGC) soma morphology [8–11] and distinguish individual retinal
vessels [12–14]. OCT and AO-OCT collect and register cross-sectional scans of the retina
in sequence that are combined to form 3D volumes. These volumes can be probed to
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observe vasculature changes in their natural depth-layered plexuses in the en face plane.
The anatomic relationship of these plexuses has been previously well-characterized [15]. In
the parafoveal and perifoveal macula, retinal vessels separate into three distinct vascular
plexuses: the superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and
deep capillary plexus (DCP) [15]. The SVP primarily nourishes retinal ganglion cells in
the ganglion cell layer (GCL). This layer also may be connected to the radial peripapillary
capillary complex (RPCP) which supplies the retinal nerve fiber layer (RNFL) in the peri-
papillary region. The ICP lies deeper to the SVP and supplies the dendritic synapses in the
GCL as well as the cells in the inner nuclear layer (INL). Finally, the DCP is at the base of
the INL and mainly supplies the bipolar and horizontal cells and their connections to the
photoreceptor outer nuclear layer [16].

Glaucoma is an ocular disease that significantly affects the inner retina, specifically
the RGC somas and vasculature that supplies them [17]. It is a leading cause of irreversible
blindness with a projected global disease prevalence of greater than 111.8 million by
2040 [18]. Reduction of intraocular pressure (IOP) is the only current treatment for the
disease, but glaucoma can worsen even with adequate IOP control and up to one-third of
patients develop glaucoma with an IOP in normal range [19]. This indicates the need to
understand non-IOP related factors that contribute to the disease, including retinal vascular
dysfunction [17,20]. Previous studies have shown that glaucoma, and specifically thinning
of the GCL is associated with lower retinal vascular density in OCT images [21]. However,
GCL thickness is an approximate surrogate for RGC density. AO-OCT has provided great
capability to simultaneously measure RGC and vessel characteristics. We have previously
leveraged AO-OCT to determine the association between RGC density and vessel density
using a laborious and semi-automated process [22].

To further explore the relationship between RGC damage and vascular dysfunction
characterized by vessel drop-out, automated quantification methods to extract these metrics
from AO-OCT volumes are needed. A weakly-supervised segmentation method using
a deep learning algorithm has been investigated to automatically quantify individual
ganglion cell layer soma in AO-OCT volumes [9]. However, automated vessel segmentation
in AO-OCT volumes, which resolve vessels down to the capillary scale, has not yet been
explored. Automated retinal vessel segmentation tools for this modality will be increasingly
useful and relevant for AO-OCT clinical translation.

Retinal blood vessel segmentation using deep learning is an area of active research in
other retinal imaging modalities, such as traditional OCT and OCT angiography
(OCTA) [23,24]. While OCTA collects multiple axial cross-sections, commonly referred to
as B-scans, which can be used to form a 3D volume, typically this volume is projected
back onto an en face 2D plane for vessel segmentation and interpretation. 2D-2D seg-
mentation loses inter-slice connectivity between the en face plane slices of the 3D volume
that can potentially be valuable context for automated segmentation. However, training
end-to-end 3D-3D segmentation models, which receive the 3D volume and output 3D
vessel labels, are also challenging. 3D-3D convolutional techniques require uniform input
sizes [25,26], which may be an obstacle given the variability in retinal layer thickness across
patients [27,28]. Furthermore, acquisition of 3D labeled data for deep learning algorithm
training is costly requiring up to 50 h per scan to label, even for an expert grader [29]. Such
models are also computationally expensive for high resolution data and can potentially
be more difficult for providers and researchers to interpret if they are accustomed to a
2D en face view of vascular networks. 3D-2D segmentation, which receives the entire 3D
volume as input and generates a 2D label, is a possible tool to leverage inter-slice connec-
tivity while using relatively low-cost labels from 2D segmentation maps. Recurrent neural
networks (RNN) are deep learning architectures originally designed to model sequential in-
formation with dependence on previous states, such as language processing or time-series
forecasting. These tools notably do not require a uniform input size, which offers a unique
advantage for the segmentation of AO-OCT vessel images with variable input thickness.
The primary purpose of this study is to investigate the performance of novel RNN, specif-
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ically bidirectional convolutional long short-term memory networks (LSTM), for 3D-2D
vessel segmentation of AO-OCT volumes compared to traditional 2D-2D segmentation.

2. Materials and Methods
2.1. In-Vivo Adaptive Optics Imaging

This study used AO-OCT data collected from a study of ganglion cell layer soma
quantification in 18 glaucoma and control subjects (six glaucoma and 12 control subjects).
The data from both glaucoma and control subjects were combined for this study and no
analysis differentiated the disease state. The full details of subject clinical assessment
and AO imaging are found in previously published papers [8,22]. Pupillary dilation and
cycloplegia were achieved with 1% tropicamide in subjects, who were subsequently imaged
using the FDA multimodal adaptive optics (mAO) device previously described [8,30]. We
examined 1.5◦ × 1.5◦ regions located symmetrically 2.5◦ superior and inferior about the
horizontal midline at eccentricities 3◦, 6◦, and 12◦ in the temporal retina (Figure 1A). The
AO focus was set approximately to the ganglion cell layer and 300 AO-OCT volumes were
collected, registered, and averaged at each location.

In the AO-OCT volumes, the SVP, ICP, and DCP, were segmented separately by
creating en face average intensity projections across the axial pixels in which each plexus
resides (Figure 2) [15]. After undergoing ImageJ automatic contrast enhancement, all
vessels in each en face projection were then manually labeled by a single expert grader
(co-author R.V.) using a uniform brush size for each capillary segment. For each capillary
branch, the brush size was readjusted depending on the grader’s visual estimate of that
segment’s vessel width. These tracings were binarized in ImageJ, reviewed for quality
by the principal investigator, and used as the ground-truth standard for our models
(Figure 2) [31].

2.2. Nested Model Architectures

Three models, referred to as UNet, LSTM-UNet, and UNet-LSTM-UNet, were de-
signed and examined. To sequentially evaluate the conferred benefit from each archi-
tecture’s design, the models were nested such that LSTM-UNet incorporated the UNet
architecture, and UNet-LSTM-UNet incorporated the LSTM-UNet architecture.

The UNet architecture was selected as a base architecture as is commonly done for
medical image segmentation, including for previous OCT and retinal vascular imaging
applications [23,24,32]. Our standard UNet received a 2D image as input and output a
2D image following a process comprised of an encoder, skip connections, and a decoder.
The encoder used convolutional layers to extract features at variable input resolutions.
Max-pooling during the encoding process shrank input resolution, further allowing identi-
fication of segmentation features at different scales. At each resolution, skip connections
were used to concatenate the convolution layer output to a corresponding resolution in the
decoding pathway. The decoder uses these convolution outputs along with the up-sampled
images as inputs for deconvolution layers to generate the resulting segmentation output
following sigmoid activation. The resulting output has two channels, one for vessel activa-
tion and one for background activation. Our base model had a network depth of 3 utilizing
skip connections at each layer (Figure 1A). We also performed batch normalization and
transformation with a leaky rectified linear unit (slope = 0.01) at each convolutional layer.

The LSTM-UNet is our proposed 3D-2D deep learning framework that uses bidirec-
tional convolutional LSTM networks to incorporate the 3D context (i.e., inter-slice connec-
tivity) from 3D input slices with unfixed depths to output 2D segmentation maps. LSTM
networks are a form of RNNs that extend base RNN’s ability to model sequential data by
updating a hidden state representation with input-to-state and state-to-state operations,
namely an input gate, output gate, forget gate, and cell-state, which can better account for
long-term sequential data [33]. Importantly, a LSTM model allows for varying numbers
of input slices, which is necessary for our task, as the volumes containing each vessel
plexus can vary in size when considering retinal layer thickness variability across patient
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populations [27,28]. While the standard LSTM classically uses fully connected layers for
language processing applications, for our purposes, we employed a convolutional LSTM,
which uses convolutional structures in the input-to-state and state-to-state transitions to
more efficiently handle sequential spatial data (Figure 1B) [34]. Furthermore, to incorporate
the inter-slice context from both the previous and following slices, we presented slices to
two distinct LSTM units in forward (top-to-bottom) and reverse (bottom-to-top) order and
concatenated the outputs to generate a bidirectional convolutional LSTM (Figure 1C) [35].
In our LSTM-UNet architecture, we used bidirectional LSTM units at three input resolu-
tions during image encoding (Figure 3). The encoded outputs were concatenated with
up-sampled images during decoding, eventually resulting in a single channel 2D output
that could be fed into a UNet unit.

Figure 1. Architecture schematics (A) UNet architecture with a depth of three layers (Conv2d = two-
dimensional convolutional operation, batch normalization (BatchNorm), rectified linear activation
(ReLU) function) (B) convolutional LSTM (cLSTM) unit schematic demonstrating the incorporation
of previous cell state memory and output in the generation of current cell state and output (C)
Bidirectional cLSTM (Bi-cLSTM) architecture schematic with forward and reverse cLSTM as distinct
units.
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Figure 2. Sample Z-projection image and manual segmentation for each plexus (superficial vascular plexus (SVP), interme-
diate capillary plexus (ICP), deep capillary plexus (DCP)).

Figure 3. Schematic outlining the nested architectures compared in the study: (A) UNet Only, (B) Long Short-Term
Memory (LSTM)-UNet, and (C) UNet-LSTM-UNet (two-dimensional convolutional operation (Conv2d), batch normalization
(BatchNorm), rectified linear activation function (ReLU), bidirectional convolutional long short-term memory network
(Bi-cLSTM)).
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The UNet-LSTM-UNet appends another UNet as an additional image pre-processing
step before each slice is fed into the LSTM-UNet. This design, inspired by cascading
architectures for brain tumor segmentation [36], similarly allows for variable slice number
volumes, 3D-2D segmentation, and provides increased numbers of trainable convolutions
and parameters earlier within the architecture, potentially allowing for improved labeling
of vessels within each slice.

2.3. Model Training and Performance Evaluation

AO-OCT volumes (n = 177) were randomly split into training, validation, and testing
datasets in a 60%–20%–20% split, respectively, ensuring an equal composition of SVP, ICP,
and DCP volumes in each split. The characteristics of these splits are shown in Table 1.
Each slice for each volume underwent automatic contrast adjustment following the Im-
ageJ automatic contrast function that is based on histogram stretching [31]. To improve
model robustness, we performed image augmentation [37] on the training dataset with
random horizontal flip, vertical flip, affine transformation with translation and scaling,
and random cropping to patches of 64 × 64 pixels. All models were trained using a bi-
nary cross-entropy loss function. Convolutional and deconvolutional layer weights were
initialized as described by Kaiming et al. [38]. All models were trained for 600 epochs
using an Adam optimizer at a learning rate of 0.0001. We also employed early stopping
criteria based on validation set performance with a patience of 180 epochs. During evalu-
ation, the model with the lowest binary cross-entropy loss on the validation set for each
architecture was selected as the “best model” and used to segment volumes from each
testing set in 64 × 64 × Ni pixel patches, where N was number of slices for a volume, i.
The 64 × 64 segmented masks were reassembled to form the final 2D mask output.

Table 1. Descriptive characteristics for adaptive optics optical coherence tomography volumes and image slices used for
training, validation, and testing sets.

Volumes

Train Validation Testing Total Volumes
Mean ± Standard

Deviation # Slices per
Volume (range)

Superficial Vascular Plexus 43 13 13 69 34 ± 20
(range: 5–76)

Intermediate
Capillary Plexus 40 13 13 66 32 ±10

(range: 14–57)

Deep Capillary Plexus 26 8 8 42 33 ± 11
(range: 12–60)

Total Volumes 109 34 34 177 33 ± 15
(range: 5–76)

Mean ± Standard
Deviation # Slices per Volume

(range)

33 ± 15
(range: 5–76)

32 ± 13
(range: 10–71)

31 ± 15
(range: 5–60)

33 ± 15
(range: 5–76)

We evaluated each model’s performance on the testing set with an average Dice
coefficient, area under receiver operating characteristic curve (AUC), precision, recall,
and accuracy [39–41]. The metrics were compared between the models using a one-way
ANOVA and follow-up Tukey test with statistical significance of differences determined to
be p-value < 0.05. We also recorded the time it took each model to generate a segmentation
for a single 30-slice volume. This volume was selected as it was the closest to average
number of slices per volume within our testing set. All the algorithms were implemented
on a computer with a NVIDA GeForce RTX 2070 (8GB) GPU and AMD Ryzen 5 3600 6-Core
Processor @ 3.6 GHz (16 GB RAM). All image processing, model training, and model
evaluation was performed in ImageJ and PyTorch 1.7.1 using Python 3 [31,42].
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3. Results

The UNet, LSTM-UNet, and UNet-LSTM-UNet were each trained with the same
109 training and 34 testing AO-OCT volumes. We evaluated each model’s performance on
the testing set with an average Dice coefficient, area under receiver operating characteristic
curve (AUC), precision, recall, and accuracy and report their relative performance in
Figure 4 and Table 2. Of the three models, the LSTM-UNet had the greatest average Dice
coefficient (0.69), recall (0.80), and AUC (0.88), while the UNet-LSTM-UNet had the best
precision (0.65). The LSTM-UNet and UNet-LSTM-UNet had similar average pixel-wise
classification accuracy (0.92). Both the LSTM-UNet and UNet-LSTM-UNet had significantly
better AUC (p value < 0.001 for both) and recall (p value < 0.001 and = 0.001, respectively)
performance on the testing set than UNet alone.

Figure 4. Performance metrics (unitless) on testing set for the three segmentation architectures (AUC = area under receiver
operating characteristic curve). Error bars indicate standard deviation. * indicates significant difference (p-value < 0.05 by
one-way analysis of variance).

Table 2. Performance metrics (with standard deviation) on testing set for the three segmentation architectures. Area under
receiver operating characteristic curve (AUC). * indicates significant difference (p-value < 0.05 by one-way analysis of
variance).

Model Dice
Coefficient Precision Recall * Accuracy AUC *

UNet Only 0.645 (0.114) 0.629 (0.161) 0.703 (0.109) 0.914 (0.027) 0.830 (0.053)

LSTM-UNet 0.687 (0.140) 0.635 (0.122) 0.799 (0.070) 0.924 (0.023) 0.880 (0.036)

UNet-LSTM-UNet 0.684 (0.141) 0.645 (0.127) 0.779 (0.072) 0.924 (0.024) 0.870 (0.036)
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We show representative examples of all three models’ qualitative performance in
Figure 5. Visually we observe that all three models were affected by shadowing artifacts in
deeper layers (ICP and DCP), but generally the LSTM-UNet and UNet-LSTM-UNet were
less affected than the UNet model.

Figure 5. Sample segmentation for each architecture for each retinal layer (superficial vascular plexus (SVP), intermediate
capillary plexus (ICP), deep capillary plexus (DCP)).

Table 3 shows the number of learnable parameters and the evaluation time on a
sample 30 slice volume for each architecture, demonstrating that the size of the model was
correlated with evaluation time. However, the relationship between number of parameters
and time to evaluation was not necessarily linear, with the LSTM-UNet and UNet-LSTM-
UNet segmenting the sample volume in 184.8 and 241.7 s respectively, while the UNet alone,
which had 20–25% of the number of parameters of the LSTM-based models, segmented a
single 2D projection of the 30 slices in 1.6 s, including image loading speed.

Table 3. Number of parameters and evaluation time for a 30-slice volume for each architecture.

Model # of Parameters (Million) Evaluation Time on 30 Slice
Image (Seconds)

UNet Only 0.52 1.56
LSTM-UNet 1.82 184.79

UNet-LSTM-UNet 2.34 241.692

4. Discussion

This is the first study to explore automated vessel segmentation in AO–OCT volumes.
In this work, we found that augmentation of a UNet with a LSTM could significantly
improve vessel segmentation performance with respect to AUC and recall on our held-out
testing set when compared to a UNet alone.
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Previous studies have examined alternative 3D-2D vessel segmentation approaches
in OCTA retinal imaging and other imaging modalities. Li et al., have developed a novel
image projection network (IPN) which uses a unidirectional pooling layer to effectively
learn weights for each slice within the projection step [43]. This unidirectional pooling
layer in the IPN necessitates consistent pixel volumes as input, which would require
interpolation or compression of non-uniform input for individual retinal layer blood vessel
segmentation. In a large dataset of 500 OCTA volumes, their most recent iteration has
shown a best Dice coefficient of 0.93 representing a 0.03 improvement over the baseline 2D-
2D UNet with a Dice coefficient of 0.90 in their dataset [44]. As an imaging modality, OCTA
uses motion-based processing to improve vessel contras [45] and it is expected that the
segmentation performance on OCTA data would be greater in both the base UNet and the
IPN than in AO-OCT volumes, which in its current form, does not perform any additional
processing to improve vessel contrast. In comparison to the added benefit demonstrated by
the 3D-2D architecture of Li et al. over baseline UNet, we achieve similar improvement of
0.04 with a Dice coefficient of 0.69 with our LSTM-UNet relative to 0.65 in the UNet alone.
Lee et al. developed a Spider U-Net, which similarly uses bidirectional convolutional
LSTM to capture inter-slice connectivity, but employs the LSTM in between the encoding
and decoding path of several UNet modules for each slice [46]. This architecture was
trained and evaluated on multiple modalities, specifically Brain MRA, Abdomen CT and
Cardiac MRI, for 3D-3D segmentation of blood vessels with Dice coefficients for Spider
U-Net improving over 2D UNet by 0.05, 0.13, and 0.06, respectively for each dataset. While
this architecture differs from ours in that it requires annotations for each slice within a 3D
volume for training and was evaluated on (non-retinal) vessel and organ segmentation
tasks, Lee et al., found that incorporating a LSTM for inter-slice connectivity for their
task produced fewer false-negative pixels. Our results are consistent with this finding as
the recall for our LSTM-based models were significantly improved over the UNet based
models alone.

Our study also found that vessels in the ICP and DCP that are subject to shadowing ar-
tifacts evident in the raw image are more likely to be partially or fully segmented within the
LSTM-based models compared to the UNet alone. This finding is expected, as an averaged
projection would have lower pixel intensity and would be more difficult to distinguish
in the 2D-2D approach, but in the inter-slice context gained from the LSTM could assist
with identification of these vessels and could indicate that deeper plexuses may benefit
from LSTM-based segmentation methods. When comparing the two LSTM-based archi-
tectures, we found that the UNet-LSTM-UNet architecture has similar performance to the
LSTM-UNet architecture alone, with non-significantly different precision (p value = 0.96),
Dice coefficient (p value = 0.99), recall (p value = 0.61), accuracy (p value = 0.99) and AUC
(p value = 0.65), indicating that increased parameters alone are not guaranteed to signifi-
cantly improve performance. In fact, when factoring in the cost of increased evaluation
time by the UNet-LSTM-UNet model, our work suggests that the LSTM-UNet approach
is superior to the higher capacity model. Additionally, while the LSTM-based models
demonstrate greater segmentation performance than the UNet alone, the evaluation time
for a 30-slice volume (184.8 or 241.7 s) was 100–200 times longer than the projection seg-
mentation (1.6 s). These differences indicate a trade-off between segmentation performance
and speed inherent in the two architectures. Whether the time cost of LSTM-based models
is a significant barrier for real-world segmentation and outweighs the benefit of greater
fidelity performance will be an important consideration when implementing these models
for research or clinical use in the future.

This work is not without limitations. Our sample size represents 177 volumes collected
from a limited cohort of 18 patients. We note that this is a substantial number of volumes
and on a greater or similar scale to previously published OCTA vessel segmentation
datasets [47] and that theoretically the computer vision task of classifying pixels from
grayscale images should be agnostic to the individual patient identity or disease state.
However, more studies will be needed to ensure these results generalize to a greater subject
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population and perform consistently across glaucoma and control eyes separately. The
design of studies to ensure no differences in model segmentation performance of glaucoma
and control eyes is especially important if these tools are intended to be utilized to quantify
biomarkers between the two disease states. Additionally, as our ground-truth labels were
derived from annotating the 2D projection of each volume, rather than 3D annotations with
masks for each slice, there is the possibility of human judgement impacting our model’s
training and performance. However, any error in manual labeling resulting from tracing
the 2D projection would more likely bias our results towards the 2D-2D UNet alone, yet
our 3D-2D approach remains significantly superior.

5. Conclusions

The results of this study demonstrate that augmenting traditional UNet approaches
with LSTM enables improved automated vessel segmentation in AO-OCT volumes. This
3D-2D approach would enable researchers to continue using lower cost 2D labels on readily
available 3D AO-OCT data to train deep learning tools for AO-OCT vessel segmentation.

6. Disclaimer

The mention of commercial products, their sources, or their use in connection with
material reported herein is not to be construed as either an actual or implied endorsement
of such products by the U.S. Department of Health and Human Services.

Author Contributions: Conceptualization, C.T.L., D.W. and O.J.S.; methodology, C.T.L. and D.W.;
software, C.T.L. and D.W.; validation, C.T.L. and D.W.; formal analysis, C.T.L., D.W., Z.L. and D.X.H.;
investigation, C.T.L. and D.W.; data curation, C.T.L., D.W., Z.L., D.X.H. and R.V.; writing—original
draft preparation, C.T.L., D.W. and O.J.S.; writing—review and editing, C.T.L., D.W., Z.L., D.X.H., Y.T.
and O.J.S.; visualization, C.T.L.; supervision, O.J.S.; project administration, O.J.S.; funding acquisition,
Y.T. and O.J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding support from NIH/NEI award (R01EY031731) and the
UMD BIOE Fischell Fellowship program. We acknowledge the support of the University of Maryland,
Baltimore, Institute for Clinical & Translational Research (ICTR) and the National Center for Ad-
vancing Translational Sciences (NCATS) Clinical Translational Science Award (CTSA) grant number
1UL1TR003098.

Institutional Review Board Statement: This study was conducted according to the Declaration of
Helsinki and was approved by the Institutional Review Boards of the Food and Drug Administration
(FDA) (protocol code 17-062R, Approved: 11 January 2018) and the University of Maryland (protocol
code HP-00078023, Approved 17 January 2018).

Informed Consent Statement: Informed consent for the collection and analysis of data was obtained
from all subjects involved in the study.

Data Availability Statement: Computer code and best performance states for computational models
can be found at https://github.com/ctnle/AO-OCT-Vessel-Segmentation (accessed on 10 October
2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nadler, Z.; Wang, B.; Wollstein, G.; Nevins, J.E.; Ishikawa, H.; Bilonick, R.; Kagemann, L.; Sigal, I.A.; Ferguson, R.D.; Patel, A.;

et al. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence
tomography. Biomed. Opt. Express 2014, 5, 1114–1123. [CrossRef]

2. Akagi, T.; Hangai, M.; Takayama, K.; Nonaka, A.; Ooto, S.; Yoshimura, N. In Vivo Imaging of Lamina Cribrosa Pores by Adaptive
Optics Scanning Laser Ophthalmoscopy. Investig. Opthalmol. Vis. Sci. 2012, 53, 4111–4119. [CrossRef] [PubMed]

3. Hood, N.C.; Lee, N.; Jarukasetphon, R.; Nunez, J.; Mavrommatis, M.A.; Rosen, R.B.; Ritch, R.; Dubra, A.; Chui, T.Y.P. Progression
of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging. Transl. Vis. Sci. Technol. 2017, 6, 6.
[CrossRef] [PubMed]

https://github.com/ctnle/AO-OCT-Vessel-Segmentation
http://doi.org/10.1364/BOE.5.001114
http://doi.org/10.1167/iovs.11-7536
http://www.ncbi.nlm.nih.gov/pubmed/22669726
http://doi.org/10.1167/tvst.6.4.6
http://www.ncbi.nlm.nih.gov/pubmed/28713646


Appl. Sci. 2021, 11, 9475 11 of 12

4. Takayama, K.; Ooto, S.; Hangai, M.; Ueda-Arakawa, N.; Yoshida, S.; Akagi, T.; Ikeda, H.; Nonaka, A.; Hanebuchi, M.; In-
oue, T.; et al. High-Resolution Imaging of Retinal Nerve Fiber Bundles in Glaucoma Using Adaptive Optics Scanning Laser
Ophthalmoscopy. Am. J. Ophthalmol. 2013, 155, 870–881.e3. [CrossRef] [PubMed]

5. Chen, M.F.; Chui, T.Y.P.; Alhadeff, P.; Rosen, R.B.; Ritch, R.; Dubra, A.; Hood, D.C. Adaptive Optics Imaging of Healthy and
Abnormal Regions of Retinal Nerve Fiber Bundles of Patients with Glaucoma. Investig. Opthalmol. Vis. Sci. 2015, 56, 674–681.
[CrossRef]

6. Huang, G.; Luo, T.; Gast, T.J.; Burns, S.A.; Malinovsky, V.E.; Swanson, W.H. Imaging Glaucomatous Damage Across the Temporal
Raphe. Investig. Opthalmol. Vis. Sci. 2015, 56, 3496–3504. [CrossRef]

7. Liu, Z.; Kurokawa, K.; Zhang, F.; Lee, J.J.; Miller, D.T. Imaging and quantifying ganglion cells and other transparent neurons in
the living human retina. Proc. Natl. Acad. Sci. USA 2017, 114, 12803–12808. [CrossRef] [PubMed]

8. Liu, Z.; Saeedi, O.; Zhang, F.; Villanueva, R.; Asanad, S.; Agrawal, A.; Hammer, D.X. Quantification of Retinal Ganglion Cell
Morphology in Human Glaucomatous Eyes. Investig. Opthalmol. Vis. Sci. 2021, 62, 34. [CrossRef] [PubMed]

9. Soltanian-Zadeh, S.; Kurokawa, K.; Liu, Z.; Zhang, F.; Saeedi, O.; Hammer, D.X.; Miller, D.T.; Farsiu, S. Weakly supervised
individual ganglion cell segmentation from adaptive optics OCT images for glaucomatous damage assessment. Optica 2021, 8,
642. [CrossRef]

10. Miller, D.T.; Kurokawa, K. Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical
Coherence Tomography. Annu. Rev. Vis. Sci. 2020, 6, 115–148. [CrossRef]

11. Kurokawa, K.; Crowell, J.A.; Zhang, F.; Miller, D.T. Suite of methods for assessing inner retinal temporal dynamics across spatial
and temporal scales in the living human eye. Neurophotonics 2020, 7, 015013. [CrossRef]

12. Karst, S.G.; Salas, M.; Hafner, J.; Scholda, C.; Vogl, W.-D.; Drexler, W.; Pircher, M.; Schmidt-Erfurth, U. Three-dimensional analysis
of retinal microaneurysms with adaptive optics optical coherence tomography. Retina 2019, 39, 465–472. [CrossRef]

13. Iwasaki, M.; Inomata, H. Relation between superficial capillaries and foveal structures in the human retina. Investig. Ophthalmol.
Vis. Sci. 1986, 27, 1698–1705.

14. Felberer, F.; Rechenmacher, M.; Haindl, R.; Baumann, B.; Hitzenberger, C.; Pircher, M. Imaging of retinal vasculature using
adaptive optics SLO/OCT. Biomed. Opt. Express 2015, 6, 1407–1418. [CrossRef] [PubMed]

15. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography Scientific
Reports. Available online: https://www.nature.com/articles/srep42201 (accessed on 15 June 2021).

16. Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence
Tomography Angiography. JAMA Ophthalmol. 2015, 133, 45–50. [CrossRef] [PubMed]

17. Jones, A.; Kaplowitz, K.; Saeedi, O. Autoregulation of optic nerve head blood flow and its role in open-angle glaucoma. Expert
Rev. Ophthalmol. 2014, 9, 487–501. [CrossRef]

18. Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma
Burden through 2040. Ophthalmology 2014, 121, 2081–2090. [CrossRef]

19. Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E. Factors for Glaucoma Progression and the Effect of
Treatment. Arch. Ophthalmol. 2003, 121, 48–56. [CrossRef]

20. Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma. JAMA 2014, 311, 1901–1911. [CrossRef]
21. Richter, G.M.; Madi, I.; Chu, Z.; Burkemper, B.; Chang, R.; Zaman, A.; Sylvester, B.; Reznik, A.; Kashani, A.; Wang, R.; et al.

Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma
Using Optical Coherence Tomography Angiography. J. Glaucoma 2018, 27, 281–290. [CrossRef]

22. Villanueva, R.; Le, C.; Liu, Z.; Zhang, F.; Magder, L.; Hammer, D.X.; Saeedi, O. Cell-Vessel Mismatch in Glaucoma: Correlation of
Ganglion Cell Layer Soma and Capillary Densities. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2. [CrossRef] [PubMed]

23. Guo, C.; Szemenyei, M.; Hu, Y.; Wang, W.; Zhou, W.; Yi, Y. Channel Attention Residual U-Net for Retinal Vessel Segmentation. In
Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Cananda, 6–11 June 2021; pp. 1185–1189. [CrossRef]

24. Zhang, J.; Zhang, Y.; Xu, X. Pyramid U-Net for Retinal Vessel Segmentation. arXiv 2021, arXiv:2104.02333, 1125–1129. [CrossRef]
25. Içek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from

Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Strasbourg, France, 27 September–1 October 2021. Available online: http://arxiv.org/abs/1606.06650 (accessed on
25 July 2021).

26. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Seg-
mentation. 2016 Fourth International Conference on 3d Vision (3dv), Stanford, CA, USA, 25–28 October 2016. Available online:
http://arxiv.org/abs/1606.04797 (accessed on 25 July 2021).

27. Demirkaya, N.; Van Dijk, H.W.; Van Schuppen, S.M.; Abramoff, M.; Garvin, M.K.; Sonka, M.; Schlingemann, R.O.; Verbraak,
F.D. Effect of Age on Individual Retinal Layer Thickness in Normal Eyes as Measured with Spectral-Domain Optical Coherence
Tomography. Investig. Opthalmol. Vis. Sci. 2013, 54, 4934–4940. [CrossRef] [PubMed]

28. Kim, J.H.; Lee, S.H.; Han, J.Y.; Kang, H.G.; Byeon, S.H.; Kim, S.S.; Koh, H.J.; Kim, M. Comparison of Individual Retinal Layer
Thicknesses between Highly Myopic Eyes and Normal Control Eyes Using Retinal Layer Segmentation Analysis. Sci. Rep. 2019,
9, 1–11. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ajo.2012.11.016
http://www.ncbi.nlm.nih.gov/pubmed/23352341
http://doi.org/10.1167/iovs.14-15936
http://doi.org/10.1167/iovs.15-16730
http://doi.org/10.1073/pnas.1711734114
http://www.ncbi.nlm.nih.gov/pubmed/29138314
http://doi.org/10.1167/iovs.62.3.34
http://www.ncbi.nlm.nih.gov/pubmed/33760041
http://doi.org/10.1364/OPTICA.418274
http://doi.org/10.1146/annurev-vision-030320-041255
http://doi.org/10.1117/1.NPh.7.1.015013
http://doi.org/10.1097/IAE.0000000000002037
http://doi.org/10.1364/BOE.6.001407
http://www.ncbi.nlm.nih.gov/pubmed/25909024
https://www.nature.com/articles/srep42201
http://doi.org/10.1001/jamaophthalmol.2014.3616
http://www.ncbi.nlm.nih.gov/pubmed/25317632
http://doi.org/10.1586/17469899.2014.975796
http://doi.org/10.1016/j.ophtha.2014.05.013
http://doi.org/10.1001/archopht.121.1.48
http://doi.org/10.1001/jama.2014.3192
http://doi.org/10.1097/IJG.0000000000000888
http://doi.org/10.1167/iovs.62.13.2
http://www.ncbi.nlm.nih.gov/pubmed/34605879
http://doi.org/10.1109/icassp39728.2021.9414282
http://doi.org/10.1109/icassp39728.2021.9414164
http://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.04797
http://doi.org/10.1167/iovs.13-11913
http://www.ncbi.nlm.nih.gov/pubmed/23761080
http://doi.org/10.1038/s41598-019-50306-w
http://www.ncbi.nlm.nih.gov/pubmed/31570740


Appl. Sci. 2021, 11, 9475 12 of 12

29. Wilson, M.; Chopra, R.; Wilson, M.Z.; Cooper, C.; MacWilliams, P.; Liu, Y.; Wulczyn, E.; Florea, D.; Hughes, C.O.; Karthikesalingam,
A.; et al. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in
Retinal Disease Using Deep Learning. JAMA Ophthalmol. 2021, 139, 964. [CrossRef]

30. Liu, Z.; Tam, J.; Saeedi, O.; Hammer, D.X. Trans-retinal cellular imaging with multimodal adaptive optics. Biomed. Opt. Express
2018, 9, 4246–4262. [CrossRef]

31. NIH Image to ImageJ: 25 years of image analysis|Nature Methods. Available online: https://www.nature.com/articles/nmeth.
2089 (accessed on 15 June 2021).

32. Wang, D.; Haytham, A.; Pottenburgh, J.; Saeedi, O.; Tao, Y. Hard Attention Net for Automatic Retinal Vessel Segmentation. EEE J.
Biomed. Health Inform. 2020, 24, 3384–3396. [CrossRef]

33. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
34. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for

Precipitation Nowcasting. Processing of the Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015. Available online: https://papers.nips.
cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html (accessed on 15 June 2021).

35. Liu, Q.; Zhou, F.; Hang, R.; Yuan, X. Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral
Image Classification. Remote Sens. 2017, 9, 1330. [CrossRef]

36. Liu, H.; Shen, X.; Shang, F.; Ge, F.; Wang, F. CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation;
Springer: Berlin, Germany, 2019; pp. 102–111. [CrossRef]

37. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
38. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034.
[CrossRef]

39. Zou, K.H.; Warfield, S.; Bharatha, A.; Tempany, C.M.; Kaus, M.R.; Haker, S.J.; Wells, W.M.; Jolesz, F.A.; Kikinis, R. Statistical
validation of image segmentation quality based on a spatial overlap index1: Scientific reports. Acad. Radiol. 2004, 11, 178–189.
[CrossRef]

40. Zou, K.H.; Wells, W.M.; Kikinis, R.; Warfield, S.K. Three validation metrics for automated probabilistic image segmentation of
brain tumours. Stat. Med. 2004, 23, 1259–1282. [CrossRef]

41. Al-Faris, A.Q.; Ngah, U.K.; Isa, N.A.M.; Shuaib, I.L. MRI Breast Skin-line Segmentation and Removal using Integration Method
of Level Set Active Contour and Morphological Thinning Algorithms. J. Med. Sci. 2012, 12, 286–291. [CrossRef]

42. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Processing of the Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14
December 2019. Available online: http://arxiv.org/abs/1912.01703 (accessed on 15 June 2021).

43. Li, M.; Chen, Y.; Ji, Z.; Xie, K.; Yuan, S.; Chen, Q.; Li, S. Image Projection Network: 3D to 2D Image Segmentation in OCTA Images.
IEEE Trans. Med. Imag. 2020, 39, 3343–3354. [CrossRef]

44. Li, M.; Zhang, Y.; Ji, Z.; Xie, K.; Yuan, S.; Liu, Q.; Chen, Q. IPN-V2 and OCTA-500: Methodology and Dataset for Retinal Image
Segmentation. arXiv Prepr. 2020, arXiv:2012.07261.

45. De Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J.
Retin. Vitr. 2015, 1, 1–15. [CrossRef]

46. Lee, K.; Sunwoo, L.; Kim, T.; Lee, K. Spider U-Net: Incorporating Inter-Slice Connectivity Using LSTM for 3D Blood Vessel
Segmentation. Appl. Sci. 2021, 11, 2014. [CrossRef]

47. Ma, Y.; Hao, H.; Xie, J.; Fu, H.; Zhang, J.; Yang, J.; Wang, Z.; Liu, J.; Zheng, Y.; Zhao, Y. ROSE: A Retinal OCT-Angiography Vessel
Segmentation Dataset and New Model. IEEE Trans. Med. Imag. 2020, 40, 928–939. [CrossRef]

http://doi.org/10.1001/jamaophthalmol.2021.2273
http://doi.org/10.1364/BOE.9.004246
https://www.nature.com/articles/nmeth.2089
https://www.nature.com/articles/nmeth.2089
http://doi.org/10.1109/JBHI.2020.3002985
http://doi.org/10.1162/neco.1997.9.8.1735
https://papers.nips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://papers.nips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
http://doi.org/10.3390/rs9121330
http://doi.org/10.1007/978-3-030-33226-6_12
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1109/iccv.2015.123
http://doi.org/10.1016/S1076-6332(03)00671-8
http://doi.org/10.1002/sim.1723
http://doi.org/10.3923/jms.2012.286.291
http://arxiv.org/abs/1912.01703
http://doi.org/10.1109/TMI.2020.2992244
http://doi.org/10.1186/s40942-015-0005-8
http://doi.org/10.3390/app11052014
http://doi.org/10.1109/TMI.2020.3042802

	Introduction 
	Materials and Methods 
	In-Vivo Adaptive Optics Imaging 
	Nested Model Architectures 
	Model Training and Performance Evaluation 

	Results 
	Discussion 
	Conclusions 
	Disclaimer 
	References

