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Abstract: Deep learning proves its promising results in various domains. The automatic identification
of plant diseases with deep convolutional neural networks attracts a lot of attention at present. This
article extends stochastic gradient descent momentum optimizer and presents a discount momentum
(DM) deep learning optimizer for plant diseases identification. To examine the recognition and
generalization capability of the DM optimizer, we discuss the hyper-parameter tuning and convo-
lutional neural networks models across the plantvillage dataset. We further conduct comparison
experiments on popular non-adaptive learning rate methods. The proposed approach achieves an
average validation accuracy of no less than 97% for plant diseases prediction on several state-of-
the-art deep learning models and holds a low sensitivity to hyper-parameter settings. Experimental
results demonstrate that the DM method can bring a higher identification performance, while still
maintaining a competitive performance over other non-adaptive learning rate methods in terms of

both training speed and generalization.

Keywords: convolutional neural networks; non-adaptive; optimization; hyper-parameter; crop
identification

1. Introduction

The outbreak of plant diseases is a threat to food production and security at the global
scale. It can cause disastrous consequences for smallholder farmers representing 85% of
the world’s farms whose livelihoods depend on healthy crops [1]. In order to manage
the detection and spread of plant diseases, several diagnostic protocols are developed
in literature. However, challenges exist that prevent this kind of technology from being
adopted in practice [2].

In previous research, a variety of generic machine learning (ML) methods are popu-
larity in plant diseases identification including K-nearest neighbor (KNN), support vector
machines (SVM), artificial neural networks (ANN), amongst others [3]. These methods
are relatively successful under limited and constrained setups. However, these traditional
machine learning methods have the problems of incomplete feature selection and fussy
manual feature selection [4]. Deep Learning (DL) in particular offers very novel approaches
to classify images because it extends classical ML by adding more “depth” (complexity)
into the model [5]. These complex models can increase classification accuracy or reduce
generalization error. The agricultural field, and especially the image-based plant diseases
identification task, has not been an exception to this [6]. Indeed, since 2015, research
on plant diseases detection has strongly veered towards using deep learning. AlexNet,
GoogLeNet, VGG, ResNet, and DenseNet deep learning models are commonly used [7].
Solemane [8] identifies a mildew disease in crop millet and takes VGG16 as a pre-trained
model with ImageNet as a source dataset. The method shows the effectiveness of transfer
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learning for disease classification with small data. The performance of the method gives
95.00% accuracy. It is not suitable for the identification of other plant diseases. Within the
plantvillage data set, Mohanty trains plant diseases identification model and achieves an
accuracy of 99.35% [9]. However, when tested on images taken under conditions different
from the images used for training, the model’s accuracy is reduced substantially. In [10], the
authors fine-tune pretrained deep convolutional neural networks of AlexNet, GoogLeNet,
and VGGNet using the LifeCLEF 2015 plant task dataset.They have improved the overall
validation accuracy of the top system by 15% points while outperforming the top three
competition participants in all categories. In [11], fine-tuning and evaluation of state-of-
the-art deep convolutional neural network for image-based plant disease classification are
performed. DenseNets obtains a test accuracy score of 99.75% for the 30th epoch, beating
the rest of the architectures. This research needs to be done to improve on the computa-
tional time and training process. As reported in [12], the authors focused on techniques
to achieve an accuracy score of over 93% with class weight, SMOTE (Synthetic Minority
Over-sampling Technique), and focal loss with deep convolutional neural networks from
scratch. The goal was to counter high-class imbalance so that the model can accurately
predict underrepresented classes. Their dataset biased towards Cassava Mosaic Disease
and Cassava Brown Streak Virus Disease classes. They need further research though for
multiple diseases on the same plant and multiple diseases on different plants.

Training CNNs (Convolutional Neural Networks) to achieve high multiple plant
diseases identification accuracy was very challenging due to two reasons: (1) Deep learning
is highly dependent on the dataset. However, there are few public data sets in the field of
plant diseases identification. (2) The deep learning model has more network layers and
parameters resulting in more time and cost for training and validation. (3) Existing methods
only focus on single-target and few-target plant diseases image with simple backgrounds.
In real life, crop diseases have the characteristics of various types, large quantity, and
complex backgrounds. To solve the above problems, this paper studies the optimization
method in deep learning towards plant identification tasks. The non-adaptive learning rate
optimization method has been widely applied in deep learning, with the virtues of global
optimization and rapid convergence. Based on the non-adaptive learning rate method, a
new optimization algorithm is presented to increase the accuracy of identification. As a
whole, the contribution of this article is as follows:

e Applying the discount weighted moving average to the momentum buffer m;, a
relative result reveals the higher recognition ability and faster convergence.

*  Another key contribution of this work is show that DM does provide performance gains
over other non-adaptive learning rate methods on plant diseases classification task.

¢ Itis proved that discount momentum optimizer is insensitive to deep learning archi-
tectures and hyper-parameters.

¢ The DM method is capable of recovering popular non-adaptive learning rate methods
in an efficient and accessible manner.

The rest of this paper is organized as follows: Section 2 introduces a state-of-the-art
of deep learning optimization technology. Section 3 describes the details of non-adaptive
learning rate methods as well as the proposed DM optimizer. Section 4 presents the
implementation, empirical results, and analysis. The major work is discussed and wrapped
up in Sections 5 and 6.

2. Related Work

Deep learning optimization methods are currently used to deal with the overfitting
and performance deterioration problems. There are several common optimization methods.
Here, we introduce the transfer learning method at first. As reported in [9-11,13], transfer
learning techniques fine-tune transmitted sub-networks to adapt to new data and then
mining depth features, which can effectively solve the small data sets problem. Another
optimization method called data augmentation. This method enlarges the dataset to reduce
the chance of over-fitting. Data enhancement methods include segmented symptom images,
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geometrical transformations, and intensity transformations [10,14]. With the exception
of the above-mentioned two optimization methods, optimizing network parameters of
the deep learning models is also commonly used. These optimization methods improve
the overall performance of models from convergence, over-fitting, running time, and
generalization. A stochastic gradient descent (SGD) optimizer is one of the heavily used
optimization methods in deep learning. Stochastic gradient descent (SGD) serves as a
popular optimizer in deep learning. It is a non-adaptive learning rate method. That is, the
learning rate needs to be manually determined. In [8,11,13-18], they have improved the
validation accuracy performance on plant diseases identification tasks by employing the
SGD optimizer. However, beyond that, k-fold cross-validation, batch normalization, and
dropout also have a positive impact on the performance in deep learning model training.
The k-fold cross-validation methods solve the over-fitting problems [12], and the batch
normalization method potentially helps in two ways: faster learning and higher overall
accuracy [11,12], and the dropout operation [18] prevents over-fitting and improves the
generalization ability. Performance gains achieved by different methods highlight the
important role of the optimization algorithm in deep learning.

3. Non-Adaptive Learning Rate Methods

This paper contributes to the plant diseases identification by investigating non-
adaptive learning rate techniques. A typical deep learning optimization task consists of
minimizing the objective function f(w) and fixing the best set of parameters. Non-adaptive
learning rate methods heavily utilized in optimization problems to update the weights are
the workhorse in literature. Inspired by classical and successful gradient descent methods,
we focus on the non-adaptive learning rate methods. Therefore, this paper provides an
expansion and improvement of SGDM for a more general and robust CNN model. A
generic framework of non-adaptive learning rate methods is shown in Algorithm 1. This
enables us to understand the rules of non-adaptive learning rate methods.

Algorithm 1 Generic framework of non-adaptive optimization methods

Require: x; € R4, initial step size (learning rate) a, sequence of functions ¢, {;

fort=1toT
gt = Vfi(wi)
my = (P(gl,. . ~/gt) and Vt = 12
Ny = & -Mmg
Wt = W1 — Nt
endfor

Here, V f;(w;) is the gradient at w;. For the sake of clarity, this paper summarizes
the non-adaptive learning rate methods including Stochastic Gradient Descent (SGD) [19],
Stochastic Gradient Descent with momentum (SGDM) [20], and Stochastic Gradient De-
scent with Nesterov momentum (NAG) [21] in Table 1. As observed in literature, there is
a subtle difference between these non-adaptive learning rate methods in theoretical and
implementation.

Table 1. An overview of non-adaptive learning rate methods.

SGD SGDM NAG
M = ge41 mq = pm+ (1 — B)g: St41 = V(w1 —a-mi//Vi)

3.1. Stochastic Gradient Descent Momentum

The momentum is a typical non-adaptive learning rate technique, like SGD, which
can achieve optimal convergence guarantees. The momentum technique modifies the
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SGD to accelerate convergence rate and to reduce oscillation. An update rule of SGD with
momentum can be efficiently written as:

mepg=B-me+(1—B)- g (1)
Wiyl = W — &My ()

where a new hyper-parameter € [0,1) called the momentum parameter is an exponential
discount factor. It determines how quickly the momentum buffer m; is updated and the
variance of a normalized momentum buffer.

In SGDM, the update rule can also be written as:

t .
wrpr = wi —a[(1—=B)- Y B - gl (3)
i=0

Definition 1. For B € (0,1), this paper defines the exponential discount function égxp p as:

Sexpp(i) = (1—B)B! )
Definition 2. For a discount function 6 and a sequence of vectors x € R%, we define a discounted

sum DSs(x) as:

DSs(x) = )_o(i) - x1— ©)

M-

=0

when Y-t _ 6(i) = 1forall t > 0; this paper calls it a discounted sum average, and the exponentially
weighted moving average EWMAg(x) is:

t .
EWMAR(x) = DS (x) = (1= ) - ) B x¢- (6)

i=0

EWMA can be viewed as a weighted average method to estimate the expectation of
random variable x = xg ... x;. The theoretical above indicates that the momentum buffer m;
is precisely an exponentially weighted moving average, viz., m; = EWMAg (Vg +(wo...+))-

3.2. The Proposed Method: Discount Momentum Optimizer

Inspired by EWMA, this paper extends the SGDM method to provide a distinct
improvement in performance. The proposed algorithm can be regarded as a simple
modification of the SGDM. Here, the details of the modifies are illustrated as follows:

Definition 3. Similarity, the equation of the proposed discount function dp,.,(i) and the dis-
count weighted moving average DWMApp,,,5(x) are shown as follows:

N i [ 1A i=0
Spmpun (i) = (1= A)A _{ WA= MDA P50 7)
DWMADM,V,A(X) = DS&pM,y,)\ (.X)
b
=1 -p)-xo+pu(l—2A) YA x, (8)
i=0

where discount momentum hyper-parameters y € Rand A € [0,1) are constant.
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Apply the update rule to the proposed algorithm:

t .
Wi =wr—af(1=pA) g +pu(1—A) Y A" g ] )
i=1

Like SGDM, the update rule can also be equivalently written as
mpg =A-m+(1—A)- g (10)

wir =wr— o [(T—p)- g+ p-mpyq] (11)

This suggested that the proposed discount momentum (DM) method is a simple
modification of exponentially weighted moving average. On the condition of momentum
hyper-parameter y = 1, the discount momentum (DM) is precisely the SGDM.

4. Results

In this section, we present our empirical study on the performance of DM method and
compare it with other non-adaptive learning rate methods on plant diseases identification
tasks in terms of training performance and generalization. We separate experiments into
those with hyper-parameter tuning and those with CNN architectures. In the experiment,
training occurs over 90 epochs (minibatch size 64). We apply the learning rate decay
schedule by a factor of 0.1 at 30 epochs’ stepsize, which is commonly used in literature [22].
Each training run uses dual GPU (2*RTX 2080Ti).

4.1. The Dataset

A publicly-available and well-known database, plantvillage, is used for the training
and testing of CNNs models. The plantvillage dataset contains 54,306 color leaf images
with a uniform background and has 38 crop-disease pairs. These 38 classes comprise 14
crop plants and 26 different healthy or diseased plants. Some randomly selected images
are shown in Figure 1. In our study, the images are divided into train and test subsets in an
80/20 ratio. It means that the training set contains 80% (43,810 images) of the total images
and the remaining 20% (10,495 images) are used for the test data. In these non-adaptive
learning rate approaches, we perform both model training and parameters’ optimization
on these images.

Figure 1. Randomly selected images from the plantvillage dataset.
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4.2. Hyper-Parameter Tuning

Hyper-parameter tuning has a great influence on the quality of optimization for deep
convolutional neural networks [23]. In this section, we discuss the discount momentum
hyper-parameters i and A sensitivity in an image classification task. We set p € {0.0,0.9}
and A € {0.9,0.99,0.999} [24]. Generalization error under several hyper-parameters setting
are presented in Figure 2. As observed in sensitivity experiments, there is little difference
between these discount momentum hyper-parameters y and A settings. Therefore, DM
holds a low sensitivity to hyper-parameters.

0.045 1.00
0.040 —— mu=0.0 lambda=0.90 0.95 7 7
0.035 mu=0.0 lambda=0.99 0.90 v

w 0.030 mu=0.0 lambda=0.999 085

3 —— mu=0.9 lambda=0.999 )

£ 0.025 b

- S 0.80

‘s 0.020 T 075 —— mu=0.0 lambhda=0.90

F 0.015 = 070 mu=0.0 lambda=0.99
0.010 : mu=0.0 lambda=0.999
0.005 0.65 —— mu=0.9 lambda=0.999
0.000 0.60

1 11 21 31 41 51 61 71 81 1 11 21 31 41 51 61 71 81
Epoch Epoch

Figure 2. Hyper-parameters u and A sensitivity experiments with DenseNet121 on the plantvillage
dataset.

4.3. Convolutional Neural Networks

In the experiment, the DM method is applied to a variety of models. ResNet and
DenseNet are typical convolutional neural networks” architectures, which are efficient and
widely-used in literature. We consider testing the task of plant diseases classification with
50-layer ResNet and the 121-layer DenseNet. We select DM as the baseline algorithm and
include comparisons with SGD, SGDM, and NAG non-adaptive learning rate methods.
For DM, SGD, SGDM, and NAG, the first 30 epochs use learning rate « = 1.0, the next
30 epochs use & = 0.1, and the final 30 epochs use « = 0.01. For SGDM and NAG, the
momentum parameter § is directly applied to default value 0.9.

Plantvillage-ResNet50 ResNet50 has 50 layer deep CNNs with skip connections for
image classification. We test our algorithm with the ResNet50 model on the plantvillage
dataset. We compare the performance of DM, SGD, SGDM, and NAG. The results are
shown in Figure 3, from which we can see that the DM algorithm is significantly better
than SGDM and NAG. We notice that the training speed and generalization performance
of DM are relatively superior SGD at the initial 30 epochs. In the later, DM and SGD share
competitive results, while DM is generally slightly better.

Plantvillage-DenseNet121 DenseNet121 is a 121-layer deep CNNs with dense con-
nections. Results of this experiment are reported in Figure 3. As is expected, the overall
performance of each algorithm on ResNet50 is similar to that on DenseNet121. We can
see that the DM method performs better than the non-adaptive ones in training. In addi-
tion, compared with non-adaptive learning rate methods, it converges as fast as SGD and
achieves a bit higher accuracy on the plant diseases identification task.
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Figure 3. Additional empirical results on convolutional neural networks. (The first figure on the left
is ResNet50-plantvillage train accuracy; the first figure on the right is ResNet50-plantvillage train
loss; the second figure on the left is ResNet50-plantvillage validation accuracy; the second figure
on the right is Densenet121-plantvillage train accuracy; the third figure on the left is Densenet121-
plantvillage train loss; and the third figure on the right is Densenet121-plantvillage validation
accuracy, respectively).

5. Discussion

With the widespread use of deep learning solutions in plant diseases identification
tasks, some limitations on model training have been highlighted. These issues mainly
include plant diseases images in different categories are unevenly distributed, the diversity
of images is low, and the complexity of the network model is increased. These problems
caused an increased training time, poor convergence, generalization performance, and
low recognition accuracy, which restricts the popularization of deep learning solutions in
disease recognition tasks. Thereby, the thesis undertakes a study on the network parameter
optimization aspect and proposes a DM method to enhance the overall performance of
CNNs. Actually, the proposed algorithm, referred to as discount momentum, is a variant of
the SGDM method. Compared with the results obtained in DM with the current state-of-the-
art non-adaptive learning rate algorithms, the DM method has improved the performance
of the model in identification accuracy, convergence speed, and parameter sensitivity.
In addition, DM can recover SGD, SGDM, and NAG methods by assigning parameters.
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Here, we discuss the updated rules of these non-adaptive learning rate methods and their
relationship with DM. The first is the SGD optimization algorithm. The SGD optimizer
is heavily used in deep learning and performs well across image recognition domains in
spite of its simplicity [25]. It considers mini batches to compute the unbiased estimate of
the expected gradient. At each iteration, m; = g;. The network parameters are updated by

Wiyl = Wr— & gri1 (12)

where, when the discount momentum hyper-parameter y = 0, the updates of parameter
wt in the DM method are precisely (12). Therefore, the DM method can recover the SGD
method with u = 0.

Next, we have the SGDM algorithm mentioned in Section 3.1. The details are shown in
Section 3.1. Comparing the update rules of DM and SGDM,, it is not difficult to find that,
when the discount momentum hyper-parameter = 1, the DM optimizer is precisely the
SGDM method.

Last but not the least is the NAG algorithm. NAG is provided as a variant of the SGDM
method. It can achieve a global convergence rate for general smooth convex functions.
NAG takes inspiration from Nesterov’s accelerated gradient method and slightly ahead
in the measure of loss function gradient of the momentum [26]. In fact, NAG replaces
the m; term of SGDM by using the [(1 — A) - g1 + A - m;]. Therefore, the parameters are
updated by

Wi =wr —af(1—A)-gr +A-myyq] (13)

The DM method recovers the NAG method with discount momentum hyper-parameter
# equal to hyper-parameter A.

6. Conclusions

On the basis of an analysis of theoretical and experiments, we provide overwhelming
evidence to the claim that the proposed algorithm is feasible to spread in deep learning
fields. In non-adaptive learning rate methods, there are difficulties in the selection of
hyper-parameters. This caused poor model performance and training to be difficult. We
discussed the hyper-parameters setting and found that there is little accuracy performance
change. Therefore, the DM algorithm is less sensitive to the change of hyper-parameters.
We also discussed the adaptability of the DM method in different deep learning models.
ResNet and DenseNet are typical convolutional neural networks architectures, which are
representative in network layers and model architecture. We considered testing the task of
plant diseases classification with 50-layer ResNet and 121-layer DenseNet. Results showed
that DM has higher accuracy and is independent of the model, which is superior to state-
of-the-art non-adaptive learning rate methods. We hope it is useful for the development
of smart agriculture. Further studies should be needed to verify the applicability of the
proposed algorithm in field experiments. In the future, we hope to integrate the proposed
method into the mobile client and apply it to the field environment.
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