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Abstract: The concentration of abutment pressure acting on coal seams induced by mining is a
key factor to trigger rock burst. Understanding of abutment pressure or stress concentration is
fundamental in preventing and controlling rock burst. The influence on abutment pressure fluctuation
caused by the inhomogeneity of coal seams needs to be considered, but it is difficult to obtain by
the present usual ways such as acoustic transmission, electromagnetic wave transmission, etc. In
this article, the relationship between the amount of cuttings drilled in a coal seam and stress level
was analyzed by considering the effect of drilling cutting expansion, and the drilling cutting test
was carried out in Xinglongzhuang Coal Mine, Shandong Energy Ltd. It is found that the amount of
cuttings drilled is positively related to the degree of stress concentration in both the plastic fracture
zone and elastic zone. The amount of drilling cuttings is closely related to the roof weighting. In
addition, the irregular fluctuation of drilling cuttings is an approximate map of distribution of stress
concentration because of the non-uniformity of cracks and other defects in the coal seam. In order
to meet the need of rock burst prevention by accurate pressure relief in high-stress zones, enough
boreholes are needed.

Keywords: abutment stress; drilling cutting; roof weighting; pressure relief

1. Introduction

With the continuous mining of the coal seam, the stress distribution in the coal seam
will move forward and change. The vertical stress is called the abutment pressure. The
concentration of abutment pressure in the coal seam generally causes serious damage to
roadways, even more induces rock burst. Therefore, how to determine abutment pressure
distribution has become a hot topic. Generally, analytical and numerical simulations are
the commonly used methods in rationale analysis [1]. Vibration wave detection and online
stress monitoring are utilized in situ [2,3]. However, because of the complexity of different
scale fissures or cracks in the coal seam structure and the influence of roof movement, the
detection accuracy of abutment pressure and its changes by using vibration wave detection
and online stress monitoring should be improved.

As one of the methods for monitoring the danger of rock burst, the drilling cuttings
method has been utilized. Its principle is to drill small-diameter holes into coal; the
amount of cuttings discharged through a hole per unit length is used to understand
the stress concentration. This method was used first in the early 1960s in Germany [4]
and then spread to the Soviet Union, Poland and the United Kingdom [5]. In China,
drilling cuttings began to be trialed for rock burst early warning in coal mines in 1985 [6,7].
In recent years, many investigations such as early warning threshold determination of
drilling cutting amount [8–10], methods of obtaining the evaluation index of drilling
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cuttings [11,12], analyses of influencing factors [13,14] and tests of pressure relief effect [15]
were done. One successful example is the prediction of rock burst risk in Kaiping Mines,
Hebei Province, China, in the early 1980s. The index of drilling powder rate was used
to determine the danger level of rock burst. After that, Longfeng Coal Mine in Fushun,
China, put forward a method combining drilling cuttings, laboratory experiments and
theoretical calculations to determine the grade of shock hazard. Many coal mines in China,
such as Mentougou Coal Mine in Beinjing, Quantai Coal Mine and Sanhejian Coal Mine
in Jiangsu Province, Zaozhuang Mining Bureau and Xinwen Coal Mine in Shandong
Provence, and Qianqiu Coal Mine in Henan Province have also carried out on-site drilling
cuttings monitoring for the prevention of rock burst. As an indicator of stress level, drilling
cutting was also used to evaluate gaseous properties of coal and gas stress [16,17]. Much
more, the relationship between acoustic emission (AE) signals and diamond drill bit
wear was obtained in order to gather and interpret data to allow overall improvement
of drilling performance, and through understanding the characteristics of AE signals in
terms of the operational parameters of the drilling apparatus, drilling performance was
improved [18,19].

Because distribution of abutment pressure or stress concentration is closely related
to roof movement, investigating the roof weighting influence on abutment stress changes
by drilling cutting is worth doing. This paper intends to analyze the relationship between
drilling cuttings amount and the stress firstly, then to investigate the relationship between
drilling cuttings and abutment pressure distribution in different stages of roof movement
as the coalface advances.

2. Rationale

When the coal seam is drilled, its powder discharge is composed of two parts: one
is the pulverized coal formed due to drilling broken with the same borehole diameter,
the other is the pulverized coal produced with the action of stress changing around the
borehole. The former is only related to pore size, while the latter is related to stress state
and mechanical properties of the coal seam and stress state of the surrounding rock. In
general, in order to explain the relationship between cuttings amount and stress, the Mohr–
Coulomb criterion and the Kastner formula based on the ideal elastoplastic assumption
are used [20–22]. Moreover, after strain softening behavior beyond the strength limit is
considered, a solution of plane strain of infinite medium with a circular hole based on
elastic-plastic assumption is obtained [20].

In an in situ elastic stress zone, a borehole affected by surrounding stress changes,
fracture zone, plastic softening zone and elastic zone appear in turn, as shown in Figure 1.
The amount of cuttings produced due to elastic displacement of the inner wall is named
f 2. Another part of coal cuttings produced by the plastic-fractured zone and dilatancy is
named f 3, which can be approximated as a linear shape in the plastic-fractured zone.
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The amount of drilling cuttings produced by elastic deformation, f 2, is

f2 = 2πr2ρσv
1 + µ

E
(1)

where µ is the Poisson’s ratio of coal, E is the Young’s modulus and σv is surround rock
stress.

The strain softening constitutive equation of coal is considered as [20]

σ =

{
Eε (ε ≤ εc)

σc

(
ε
εc

)m
(ε ≥ εc)

(2)

where m is the plastic softening coefficient, σc is the uniaxial compressive strength (MPa)
and εc is the strain corresponding to the uniaxial compressive strength.

In order to simplify the calculation, the equilibrium equations of plastic and failure
zone are the same as follows:

dσr

dr
+

σr − σθ

r
= 0 (3)

where σr is the radial stress and σθ is the tangential stress.
The Mohr–Coulomb criterion is considered as yield condition:

σθ = qσr + σc (4)

Considering boundary conditions: when r = r0, σr = 0; when r = R2, the stress must
be continuous at the boundary between the elastic and inelastic regions, the inelastic
deformation or plastic-fractured R2 was obtained as follows:

R2 = r0

[
1 +

(2m + ξ − 1)(2σv − σc)

σ1−m
c [σc + (ξ − 1)σv]

m(ξ + 1)

] 1
2m+ξ−1

(5)

where ξ = 1+sin ϕ
1−sin ϕ , ϕ is the internal friction angle.

If the dilatancy effect is not taken into account, the radial displacement at the junction
of the inelastic zone and the elastic zone of borehole, uR2, is

uR2 =
1 + µ

2E
R2

[
σc +

ξ − 1
ξ + 1

(2σv − σc)

]
(6)

The radial displacement of bore wall is easily obtained from the condition that the
volume is constant.

ur =
uR2

r0
R2 (7)

When the inelastic deformation of the coal is considered, and the dilatancy coefficient
n varies linearly along the radial direction of borehole, as shown in Figure 2, the radial
displacement caused by the expansion is

∫ R2
r0

2πl
[

n1−1
r0−R2

(l−r0)+n1

]
dl−π(R2

2−r0
2)

2πr0
= (n1−1)(R2−r0)(R2+2r0)

6r0 (8)

The radial displacement of the inner wall of the hole including expansion was ob-
tained,

ur =
uR2

r0
R2 +

(n1 − 1)(R2 − r0)(R2 + 2r0)

6r0
(9)

where ur is the radial displacement.
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Figure 2. Radial expansion coefficient of borehole.

The amount of cuttings per unit hole length including expansion, S3, was derived.

S3 = 2πr0ρur = 2πr0ρ
[ uR2

r0
R2 +

(n1−1)(R2−r0)(R2+2r0)
6r0

]
= 2πρR2uR2 +

1
3 πρ(n1 − 1)(R2 − r0)(R2 + 2r0)

= πρR2
2

1+µ
E

[
σc +

ξ−1
ξ+1 (2σv − σc)

]
+ 1

3 πρ(n1 − 1)(R2 − r0)(R2 + 2r0)

(10)

Thus, the total amount of cuttings per unit hole length was obtained,

S = ρπr0
2 + S2 + S3 (11)

where S is the total amount of cuttings.
As mentioned above, the amount of cuttings is approximately positively correlated

with the confining pressure; it can be regarded as a measure of the equivalent stress. This
was verified in Xinglongzhuang Coal Mine, as shown in Figure 3.
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Figure 3. Comparison of measured drilling cutting and measured stresss in Xinglongzhuang
Coal Mine.

3. In Situ Investigation
3.1. Geologic and Mining Conditions

In order to obtain the relationship between roof movement and equivalent stress
or drilling cuttings amount, the trial site was selected in the No. 10304 working face of
Xinglongzhuang Coal Mine, Shandong Energy Ltd. The trial working face is located in the
middle region of the 10th section, as shown in Figure 4.
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Figure 4. The location of No. 10304 working face.

The coal seam numbered as No. 10 is 8.8 m in average thickness. The strike length
and the incline length of the coalface are 2370 and 211 m, respectively. The mining depth
is 470 m, the uniaxial strength of coal is 19.34 MPa, Young’s Modulus is 38.62 MPa and
density is 1.436 × 104 KN/m3. When the trial work began, the coalface had been extracted
1661 m from east to west in orientation. Its north side is adjacent to No. 10303 goaf and
south side is adjacent to No. 10305 goaf, as shown in Figure 5.
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Figure 5. Working face layout plan.

The roof above the seam consists of three layers. The first layer is 2.4 m thick fine slit
sandstone with scattered beddings; it is called the immediate roof. The second layer is
11.5 m thick medium-grained sandstone; it is called the lower main roof. The third layer is
22.6 m thick interbedded sandstone; it is called the upper main roof, as shown in Figure 6.
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3.2. Drilling Arrangement

For the sake of investigation of stress concentration and changes in the coal seam as
the coalface advances, a number of boreholes with 42 mm diameter were drilled along the
coal wall in No. 10304 tail way. Borehole drilling is located near the center of the wall in the
direction altitude. In order to meet the need of pressure relief for rock burst prevention at
the same time, the trial stations were arranged 15, 45, 75 and 105 m away from the working
face, separately. Every hole length is 14 m, as shown in Figure 7. Drillings were performed
once a day, and cuttings were collected to be weighed out in time. Drilling works were
moved forward in turn with the advance of the working face. The drilling jobs were begun
at the location where the coalface is 1661 m long from the initial cut way, while the roof is
in a stable stage.
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ZQS series pneumatic hand-held drilling machines, manufactured by Hebei Chuanan
Coal Mine Machinery Manufacturing Co. Ltd., were used to drill. Drilling performed for
powder was in accordance with China’s national standards: Methods for test, monitoring
and prevention of rock burst—Part 6: Monitoring method of drilling bits (GB/t 25217.6-
2019) [8]. For each 1 m length borehole drilling, the cut coal powder in the hole was taken
out. After it was weighed, the change in cuttings with drilling length could be analyzed.
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3.3. Data Processing

The Thin Plate Spline (TPS) was used to smooth the difference of drilled powder
variation in different places and depths. The rationale can be described as follows: suppose
there are n sets of points in the region of Space R2, i.e., Pi, i = 1, 2, . . . , n; their coordinates
are expressed as (xi, yi, z(xi, yi)). If Z(xi, yi) has a quadratic continuous derivative, then the
energy function can be represented as

E =
x

R2

[(
∂2z
∂2x

)2

+ 2
(

∂2z
∂x∂y

)2

+

(
∂2z
∂2y

)2]
dxdy (12)

For TPS problem, it can be solved by minimizing the energy function:

Ztps = arg min E (13)

Since the data points are represented as discrete table columns when interpolating,
the minimization function is rewritten as

Z(x, y) =
n

∑
i=1

ci, ϕ(‖x− xi, y− yi‖) + b0 + b1x + b2y (14)

where ‖·‖ is Euclidean distance, ci is coefficient and ϕ is a kernel function of TPS with a
value of

ϕ(r) = r2 log(r) (15)

ri = (x− xi)
2 + (y− yi)

2 (16)

According to the algorithm mentioned above, three columns of XYZ data are converted
into matrix format, the Thin Plate Spline interpolation method is used to divide mesh, and
a smooth 3-D surface can be finally obtained.

3.4. Detection Results and Discussions

From 28 December 2020 to 14 January 2021, drilling cutting was performed nearly
every day, with the exception on 13 January 2021 due to mechanical failure of drilling
equipment. During this period, the working face advanced 69.25 m and experienced three
times of the lower roof weighting and three times of the upper roof weighting. The upper
roof weighting compelled lower roof weighting together. The drilling cuttings amount
per meter in different drilling lengths was obtained according to the above steps. Due to
serious breakage near the coal wall, which made a large error, the cuttings ranging from
0 m to 1 m in the borehole were not taken into account. The detection trails were divided
into three stages according to upper roof weighting.

3.4.1. Detection Results
Stage #1

As mentioned above, detections began on 29 December 2020, when the coalface
advanced 1661 m, while the roof was in the period of no-weighting. The detecting results
showed that the stress concentration zone appeared ahead of the coalface in the range from
9 to 14 m; the cuttings amount was 2.8–3.4 kg/m (Figure 8a). After the coalface advanced
4 m on 30 December 2020, a stress concentration zone indicated by drilling cuttings of
2.6–3.0 kg/m appeared in the range of 10–30 m ahead and 9–13 m laterally; another
concentration zone indicated by drilling cuttings 3.0 kg/m appeared in the range of 15–45 m
ahead and 13 m laterally (Figure 8b). On 31 December 2020, after the coalface advanced 4 m
again, a stress concentration zone indicated by cuttings amount of 2.6–3.0 kg/m appeared
in the range of 15–45 m ahead and 9–14 m laterally, and a multi-peak concentration zone
appeared at 45 m ahead and 13 m laterally; the maximum cuttings amount was 3.4 kg/m
(Figure 8c). On 1 January 2021, after a further 3.75 m coalface advance, a multi-peak
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stress concentration zone appeared in the range of 15–45 m ahead and 7–14 m laterally;
the maximum cuttings amount of 3.2 kg/m appeared (Figure 8d). On 2 January 2021, a
multi-peak stress concentration zone appeared in the range of 5–15 m ahead and 10–14 m
laterally, the maximum cuttings amount of 3.5 kg/m appeared (Figure 8e), and the lower
roof weighting began with a periodic span of 15.75 m.
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On 3 January 2021, further 3.75 m coalface advanced after the lower roof weighting, a
multi-peak stress concentration zone appeared in the range of 5–15 m ahead and 9–14 m
laterally, and the maximum cuttings amount of 4.0 kg/m was reached (Figure 9a). On
4 January 2021, multi-peak stress concentration areas appeared in the range of 20–45 m
ahead and 8–13 m laterally and in the range of 60–75 m ahead and 11–14 m laterally. The
maximum cuttings amount of 4.2 kg/m was reached (Figure 9b), the upper roof weighting
compelled lower roof weighting began together with a periodic span of 15.75 m.
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Stage #2

On 5 January 2021, the coalface advanced 3.75 m after stage #1 roof weighting was
completed, a multi-peak stress concentration zone appeared in the range of 5–15 m ahead
and 6–14 m laterally, and the maximum cuttings amount of 4.1 kg/m was reached; in the
range of 30–45 m ahead and 12–13 m laterally, the maximum cuttings amount of 3.2 kg/m
was reached (Figure 10a). On 6 January 2021, the coalface advanced 4 m continuously,
multi-peak stress concentration areas formed in the range of 5–15 m ahead and 7–14 m
laterally and in the range of 50–75 m ahead and 10–13 m laterally. The maximum cuttings
amount of 4.5 kg/m was reached (Figure 10b). On 7 January 2021, after the coalface
advanced 4 m, a stress concentration zone appeared in the range of 5–15 m ahead and
11–14 m laterally, the maximum cuttings amount of 3.3 kg/m appeared (Figure 10c), and
the lower roof weighting began with a periodic span of 11.75 m.

On 8 January 2021, the coalface advanced a further 3.85 m after the lower roof weight-
ing, a multi-peak stress concentration zone appeared in the range of 15–45 m ahead and
10–14 m laterally, and the maximum cuttings amount of 3.1 kg/m was reached (Figure 11a).
On 9 January 2021, after the coalface advanced 4 m, double-peak stress concentration zones
appeared in the range of 10–15 m ahead and 10–14 m laterally. The maximum cuttings
amount of 4.2 kg/m was reached (Figure 11b). On 10 January 2021, after the coalface ad-
vanced 5.4 m, a multi-peak stress concentration zone appeared in the range of 8–15 m ahead
and 5–14 m laterally. The maximum cuttings amount of 3.4 kg/m was reached (Figure 11c).
Then, the upper roof weighting compelled lower roof weighting began together with a
periodic span of 25 m.

Stage #3

On 11 January 2021, the coalface advanced 5.25 m after stage #2 roof weighting was
completed, a multi-peak stress concentration zone appeared in the range of 15–75 m
ahead and 5–14 m laterally, and the maximum cuttings amount of 4.3 kg/m was reached
(Figure 12a). On 12 January 2021, the coalface advanced 5.25 m continuously, a stress
concentration area formed in the range of 15–45 m ahead and 11–14 m laterally, and the
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maximum cuttings amount of 4.2 kg/m was reached (Figure 12b). Then, the lower roof
weighting began with a periodic span of 10.5 m.
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On 13 January 2021, the coalface advanced 5.25 m further after the lower roof weighting;
no detection was performed because the drilling machine was incorrect. On 14 January 2021,
after the coalface advanced 5.25 m again, a multi-peak stress concentration zone appeared
in the range of 15–45 m ahead and 6–14 m laterally. The maximum cuttings amount of
3.5 kg/m was reached (Figure 13). Then, the upper roof weighting compelled lower roof
weighting began together with a periodic span of 21 m.

To sum up, the average weighting span of the three times of lower roof weighting
alone and three times of upper roof weighting (forced lower roof weighting together) are
12.67 m and 23.1 m, separately. It must be implemented that the determination of roof
weighting was verified by the variation of the working resistance of supports in working
face. The results showed that the average resistance of supports is 6340 KN in the no-
weighting stage of roof, and the average resistance of supports is 7336 KN in the roof
weighting stage. The ratio of the latter to the former, i.e., the weighting factor, is 1.16.
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3.4.2. Discussions

The variation of drilling cuttings has good correspondence with roof movement and
weighting. The drilling cuttings amount reflects the different layers of roof strata. In this
investigation, when the lower roof is active, the concentration range of drilling cuttings is
relatively narrow, usually about 15–45 m. When the upper roof is active, the lower roof will
be forced to break off and move together; its corresponding drilling cuttings concentration
range is relatively large, up to 45–75 m. Therefore, through detecting the variation of the
concentrated area of drilling cuttings, the pattern of variation can be obtained, which can
be used to predict the weighting and its influence range.

The results of drilling cuttings detection showed that, with the change of coalface
advances, stress concentration zones can be identified in general. Especially, the hetero-
geneity and fluctuation of stress concentration can be mapped. As matter of fact, the coal
seam is uneven, and the regional characteristics are obvious, which is due to the uneven
distribution of joints and fractures in different scales in the coal seam. As the coalface
advances, in addition, the change of abutment pressure leads to the uneven damage and
destruction of the area, which causes the obvious non-uniformity of stress concentration
and the “multi-region” appearance. This investigation breaks the previous understanding
of homogenizing the mining-induced stress concentration area. Thus, it is very important
to obtain the stress concentration area based on the inhomogeneity of the defects in the
coal seam, in order to meet the need of accurate pressure relief in rock burst prevention.

At present, vibration wave detection and online stress monitoring methods are the
regular methods for rock burst early warning in some coal mines in China. However, a lot of
trials showed vibration wave detection accuracy is limited by penetration distance. Online
stress monitoring accuracy is limited by the low number of sensors installed. Generally,
there are two sensors installed in one station: the near sensor is only 5 m deep and the
far sensor is only 10 m deep, along the horizontal direction of the coal seam. In addition,
the stiffness matching between sensor and fractured rock or coal is another factor. Thus,
drilling cutting is an indispensable method for rock burst early warning. The description
revised as “the detection accuracy of abutment pressure and its changes by using vibration
wave detection and online stress monitoring” should be improved

How much influence does the fracture and fault structure of different scales have on
the concentration and distribution of stress due to extraction of the coal seam? How can
you get close to the actual result through the detection method? These are important issues
that need to be addressed. At present, the results of numerical simulation are mainly used
as the basis of cognition. However, from the drilling cutting results, the characteristics
of stress concentration aroused by extraction are far beyond the previous understanding.
Drilling cutting may be an effective approach to obtain the influence of different scale
fractures or faults on stress concentration patterns.

It should be noted that the large spacing and short length of boreholes affected the
accuracy of results in this investigation. For the detection of pressure concentration and the



Appl. Sci. 2021, 11, 9467 13 of 14

prediction of roof weighting, the length and spacing of boreholes have a great influence,
and the borehole arrangement should satisfy the engineering needs.

4. Conclusions

Through tests of variation of drilling cuttings amount with different movement stages
of the roof, which was performed in Xinglongzhuang Coal Mine, the following conclusions
are obtained.

1. The amount of drilling cuttings is related to the stress state as well as the damage
degree of the coal seam. It was found that the amount of cuttings drilled is positively
related to the degree of stress concentration in both the plastic fracture zone and
elastic zone. Thus, drilling cuttings can be taken as an indication for verifying the
distribution of abutment pressure and are helpful for pressure relief in mines.

2. The amount of drilling cuttings is closely related to the roof weighting; that is, the
stress concentration range is small in the roof stationary stage or the lower roof
movement stage, generally in the range of 15 m to 45 m; while in the upper roof
movement stage, the stress concentration range is relatively large, which can reach the
range of 45 m to 75 m, which also can be utilized for the forecasting of roof weighting.

3. The investigations have shown that the distribution of stress concentration has a
fluctuation pattern because of the non-uniformity of cracks and other defects in
the coal seam. Thus, there must be enough boreholes to cover the cared area, and
optimizing layout is necessary in order to meet the need of accurate pressure relief
in rock burst prevention. Although the Thin Plate Spline can be utilized to analyze
cutting data, how to distinguish the inhomogeneous distribution of the coal seam by
drilling cuttings is further research work in the future.

4. It must be pointed out that using drilling cuttings is only suitable for dry coal seams.
For the wet or watery coal seam, some other new effective detection ways should be
trialed.
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