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Featured Application: This work has developed an adaptive multipoint model reduction model
based on the Arnoldi algorithm to obtain reduced-order models of a 3-D temperature field.

Abstract: In simulations of three-dimensional transient physics filled through a numerical approach,
the order of the equation set of high-fidelity models is extremely high. To eliminate the large
dimension of equations, a model order reduction (MOR) technique is introduced. In the existing
MOR methods, the block Arnoldi algorithm-based MOR method is numerically stable, achieving a
passively reduced order model. Nevertheless, this method performs poorly when it is applied to
very wide-frequency transients. To eliminate this deficiency, multipoint MOR methods are emerging.
However, it is hard to directly apply an existing multipoint MOR method to a 3-D transient field
equation set. The implementation issues in a reduction process (such as the selection of expansion
points, the number of moments matched at a point and the error bound) have not been explored in
detail. In this respect, an adaptive multipoint model reduction model based on the Arnoldi algorithm
is proposed to obtain the reduced-order models of a 3-D temperature field. The originality of this
study is the proposal of a novel adaptive algorithm for selecting expansion points, matching moments
automatically, using a posterior-error estimator based on temperature response coupled with a
network topological method (NTM). The computational efficiency and accuracy of the proposed
method are evaluated by the numerical results from solving the temperature field of a prototype
insulated-gate bipolar transistor (IGBT).

Keywords: model order reduction (MOR); 3-D transient field problems; broad-band frequency;
moment matching; multi-point

1. Introduction

In computations of three-dimensional transient fields of a high-fidelity model, the order
of the equation set is extremely high. It is thus infeasible to directly use the high-fidelity
model to simulate the transient behavior of an electromagnetic device over a long-time span.
To compromise the computational time and model accuracy performances, a model order
reduction (MOR) technique is used to generate a reduced-order model to substitute the
original high-fidelity one. The reduced-order model diminishes the computational complexity,
utilizing less computational resources compared to the original system.

Different MOR techniques have been proposed and applied to combat the complexity
of interconnected problems [1–3] and finite-element equations of electromagnetic prob-
lems [4–7]. However, there are few works oriented for 3-D temperature fields. Moreover,
in addition to the solution efficiency, an MOR approach should also be compromised of dif-
ferent implementation criteria. Implementation issues include the number and generating
mechanism of the expansion points, the approximate order of the model for each expansion
point, and so on. In this direction, some MOR techniques have already been reported. For
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example, the Asymptotic Waveform Evaluation (AWE), as reported in [8], has focused on
solving the number and generating mechanism of the expansion points by considering
complex frequency hopping (CFH). Authors in [9–11] have focused on the error bound and
selection of expansion points for Páde-via-Lanczos (PVL). In addition, authors in [12] have
focused on the error bound and selection of expansion points for Efficient Nodal Order
Reduction (ENOR) by embedding proper orthogonal decomposition (POD).

However, both AWE and ENOR use a recursive expression to explicitly compute
the moments of the high-fidelity model. Therefore, AWE and ENOR are not numerically
stable [13]. Although PVL is a powerful and efficient algorithm, it cannot preserve some
physically feasible conditions such as model passivity [13]. On the other hand, in the MOR
methods based on moment matching, the Passive Reduced-order Interconnect Macromod-
eling Algorithms (PRIMA), based on the Arnoldi method, are numerically stable and can
preserve the passivity of the high-fidelity model in RLC circuits. Nevertheless, this method
is difficult to directly employ on a high-fidelity model of a three-dimensional transient
field since this methodology is intended to deal with interconnect circuit equations, which
are different in form from 3-D transient field equations. Furthermore, the difficulty of
applications in broadband situations for PRIMA has not been explored in detail in the
literature. In this regard, we propose an adaptive multipoint model reduction model based
on the Arnoldi algorithm to obtain the reduced-order models of a 3-D temperature field.

2. Proposed Order Reduction Methodology
2.1. Three-Dimensional Transient Temperature Field Problems

In general, the general equation set of a transient temperature filed can be formulated
as [12]:

B
dT
dt

+ AT(t) = PJ(t) (1)

where, B ∈ <n×n, T ∈ <n×1, A ∈ <n×n, P ∈ <n×N , J ∈ <N×1, T| t=0 = 0, and their
definitions are referred to [12] for space limitations. Applying Laplace transform to both
sides of (1), one has

(Bs + A)T(s) = PJ(s) (2)

2.2. Moment Matching Method for 3-D Transient Field Problems

Moment matching is a projection-based method. In a moment-matching method,
a subspace basis V ∈ <n×r is first determined to approximate the residing manifold of
the state vector, with the Petrov–Galerkin projection then used to construct the ROM.
To preserve the passivity of the high-fidelity model, W = V [14] is selected, yielding a
reduced-order model:

B̃
dT̃
dt

+ ÃT̃(t) = P̃J(t) (3)

where, B̃ = VTBV, Ã = VTAV, P̃ = VTP, T = T̃VT and r ≤ n is the size of the reduced
model (3). The matrix V is computed from the following procedures. The transfer function
(matrix) is

H(s) = (Bs + A)−1P (4)

One expands H(s) at point s0 to

H(s) = (Bs + A)−1P = (Bs0 + A + (s− s0)B)
−1P

=
+∞
∑

i=0
Mi(s− s0)

i (5)

where, Mi = (−(Bs0 + A)−1A)
i
(Bs0 + A)−1P, i (0, 1, 2, . . .) is the ith moment of the

system at the expansion point s0. The subspace spanned by the columns of V is

range{V} = span
{

P̂(s0), (( Â(s0))
−1A)P̂(s0), . . . , (( Â(s0))

−1A)
q
P̂(s0)

}
(6)



Appl. Sci. 2021, 11, 9435 3 of 15

where, P̂(s0) = (Bs0 + A)−1P, Â(s0) = Bs0 + A. In this paper, (( Â(s0))
−1A)

iP̂(s0) is the
ith order moment vector.

From [14], one has
Hr(s)−H(s) = (s− s0)

q (7)

where, Hr(s) is the transfer function of the reduced model. It implies that a s0 will guarantee
that the reduced-order model achieves a relatively high accuracy of a specified frequency,
with a larger q yielding a more accurate Hr(s).

From (7), it is obvious that Hr(s) depends also on s0. For a fixed q, the error of Hr at s′

is inversely proportional to the distance of s′ and s0. In other words, if s0 is put at zero, then
Hr(s) is probably not accurate at high frequencies, which is explained in detail in Figure 1.
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2.3. Multipoint Expansion

The development of a feasible methodology for a wide-frequency band ROM requires
compromising the accuracy of the constructed projection basis and computational cost of
the procedure.

Nevertheless, a basic MOR algorithm generally employs one expansion point in
developing the projection basis. However, as aforementioned, the single-point moment-
matching reduced model is a locally optimal one, and it is applicable to simulating the
transient response only around the frequency in question. As the frequency band of
interest increases, a large number of moments need to be included to guarantee the model’s
accuracy in the frequency band in question, increasing the computational and memory costs.
Moreover, such a reduced model is inaccurate for simulating the transient performance
of a frequency whose distance to the frequency expansion point is large. To address
the locally supported approximation characteristics of a single-point moment-matching
approach, the Reduced-Basis Method (RBM) [15] or Balanced Truncation Proper Orthogonal
Decomposition (BT-POD) [16], based on solution snapshots [17,18] from different frequency
points, is introduced. However, it involves computing snapshots on a large number of
points. Moreover, for each point, a factorization operation on the system matrix is required.
Consequently, such an approach considerably increases computational cost.

To take advantage of both a snapshot-based and a single-point moment-matching
approach, a multipoint MOR method is developed [19–22]. A multipoint MOR method
obtains the projection basis from the moments of the transfer function at multiple frequency
points, as explained in Figure 2.
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In [19], a fully adaptive scheme based on Krylov space was presented to reduce
the size of a large-scale integrated circuit. This approach provides an interesting way of
adaptively choosing expansion points by a posterior error estimation based on admittance
or impedance. However, the computational process is rather complex and inefficient.
Moreover, in 3-D transient field computations, the concern is more the precision or accuracy
of the solution rather than the admittance or impedance parameters. Consequently, a
posterior-error estimate, based on admittance or impedance, is not suitable. In [20], a
greedy multipoint MOR technique chose expansion points from an arithmetic midpoint,
using a posterior-error estimation based on scattering parameters, to reduce the size of a
second-order electromagnetic system. In [21], an adaptive multipoint-MOR scheme, using
eigen values as the stopping criterion and an error estimator, chose the new expansion point
by computing error estimators at three points every time to reduce the computational cost of
large-scale inductive partial element equivalent circuits (PEEC). In [22], a multipoint MOR
scheme was used to reduce the size of the finite-element equation of second-order systems.
The location of the expansion point and size of the projection basis were determined based
on an error estimator. However, the scheme cannot be applied directly to the transient
temperature problem.

In this regard, we propose a novel block Arnoldi-based multipoint-MOR scheme for
3-D transient field problems. The proposed approach not only benefits from the work
of [20–22], but also explores the application of Krylov subspaces. The originality of this
study is a novel adaptive algorithm for determining expansion points, matching moments
automatically, as well as a posterior-error estimator based on the temperature response,
coupled with a network topological method (NTM).

It should be noted that the optimal expansion point should be the one that gives the
largest error between the current ROM and the high-fidelity model. However, finding such
an ideal point is neither practical nor feasible [9]. On the other hand, although the perfor-
mance of the ROM is related to the expansion point, the Krylov-based MOR is relatively
insensitive to it. It is usually chosen at the point in the right-half plane whose distance to
the imaginary axis is of the same magnitude as the frequency of interest [13]. From this
point of view, in our application of 3-D transient field problems, the new expansion point
is determined using a logarithmic scale to minimize large errors overall.

2.4. Adaptive Scheme

To start, because of the aforementioned reasons explained in 2.3, to choose the new
expansion point, the logarithm midpoint is obtained from the two old expansion points as

f s
mid = 10(log( f s

min)+log( f s
max))/2 (8)

where, f s
mid denotes the midpoint frequency in logarithmic scale, with f s

min and f s
max

denoting the minimum and maximum frequencies of the two old points, respectively.
Second, the “local error” is defined as the error between the reduced-order model

(ROM) and the full model at frequency, with the “global error” as the error between the
ROM and the full model over the frequency interval [ fmin, fmax]. The tolerances of the
“local error” and “global errors” are initially set as toll and tolg, respectively. Moreover,
one defines a posteriori-error estimator, as given in (9), to determine whether the current
reduced model satisfies the accuracy requirements over a certain frequency band or only at
one frequency point. Moreover,

E = max
j

∥∥∥Tj(t)− Tr
j(t)
∥∥∥

2∥∥∥Tj(t)
∥∥∥

2

(9)

where, Tj(t) and Tr
j(t) denote the time-domain responses of the jth variable of full- and

reduced-order models under an excitation signal, respectively.
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Parameter Nmoments
max is defined as the limit of the number of moments calculated in

one expansion point, and parameter Ns
max as the limit of the number of total expansion

points used in the MOR procedure. The larger the number of moments at one frequency,
the smaller the error between the ROM and the full model at this frequency is. Therefore,
once the error of a frequency is smaller than the predefined tolerance, the algorithm stops
moment matching at this frequency. In other words, Nmoments

max is equal to the smallest
number of moments under which the error between the ROM and the full model is smaller
than the tolerance at the frequency. Moreover, if the actual number of the expansion points
used is larger than Ns

max, the tolerance of the “local error” (toll) is reduced.
To facilitate the implementation of the proposed scheme, it is explained step by step

as follows.
An expansion point is first chosen (here we choose s1 = fmin). The moment-matching

procedure at s1 is then activated sequentially until the local error between the ROM and
the full model at frequency fmin is smaller than the predefined tolerance. The global error
(E over the frequency interval [ fmin, fmax]) checking procedure is then followed. If the
error is E < tolg, the algorithm stops and outputs the reduced model; otherwise fmax
is selected as the second expansion point. The moment-matching producer is repeated
for fmax until the “local error” between the ROM and the high fidelity model is smaller
than the tolerance, and the subsequent block moments are aggregated to the basis formed
by the previous ones, with an orthogonal normalization then performed to compress the
projection basis. The global error E, between the ROM and high-fidelity model over the
frequency interval [ fmin, fmax], is then checked. If the error is E < tol, the algorithm stops
and outputs the reduced-model; otherwise a middle frequency point fmid is determined
by (8), between fmin and fmax selected as the third expansion point. For convenience of
explanation, the serial numbers of 1©, 3©, 2© are used to represent fmin, fmid, and fmax,
respectively. Since the moments at fmin, fmid, and fmax have already been added to the
subspace of the projection basis, the next expansion point added to the subspace is chosen
at the middle point between 1©, 3© ( fmin, fmid) by Equation (8), with the serial number
of the new point marked as 1©- 3©. If the transformation matrix constructed by 1©, 1©- 3©,
3©, and 2© does not satisfy the accuracy tolerance, a new point is chosen, i.e., the middle

point between 3© and 2©, with the serial number of the new point marked as 3©- 2©. It can
be seen that the middle point between every two adjacent points is used, with the serial
numbers corresponding to the points as { 1©, 1©- 3©, 3©, 3©- 2©, 2©}. If the error is still larger
than tolg, the middle point between every two adjacent points is chosen, i.e., the middle
point between 1© and 1©- 3©, 1©- 3© and 3©, 3©and 3©- 2©, and 3©- 2© and 2©. The iterative
procedure is repeated until the error is smaller than the predefined value.

Moreover, an orthogonalization operation is applied to the so-far generated projection
basis to minimize its size by discarding its redundant vectors. Although the orthogonalization
and compression procedures increase computational cost, a significant improvement in
performances is obtained in the projection size and reliability of the whole reduction process.

Algorithms 1–3 give the pseudocodes of the proposed MOR methodology. Algorithm 1
is the main loop of the proposed MOR scheme for 3-D transient field problems. Algorithm 2
gives the block–Arnoldi-based moment-matching methodology at a single frequency point.
Algorithm 3 presents the error estimator used in the scheme.

The new Krylov subspace, a combination of the different subspaces for each expansion
point, is formulated as

Um = span

P̂(s1), (( Â(s1))
−1A)P̂(s1), . . . , (( Â(s1))

−1A)
q1P̂(s1)︸ ︷︷ ︸,

point s=s1

· · · P̂(sk), (( Â(sk))
−1A)P̂(sk), . . . , (( Â(sk))

−1A)
qk P̂(sk)︸ ︷︷ ︸,

point s=sk


= span{s1, s2, · · · , sk}

(10)
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where, s1, · · · , sk are the expansion points used to obtain the ROM, and q1, · · · qk are the
number of moments matched at the corresponding expansion point.

Algorithm 1. Main loop of the proposed scheme for 3-D transient field problems

Input: The range of the broadband frequency ( fmin, fmax), coefficient matrices of NTM
model (A,B,P), global error tolerance tolg and local error tolerance toll.

1. fs = fmin
2. [Q0] = S-POINT ( fs, toll)
3. errorg = EST − ERROR( fmin, fmax, Q0, A, B, P)
4. while errorg > tolg do
fs ← set new expansion point
Ns ← Ns + 1
[Q1] = S-POINT ( fs, toll)
5. end while
6. Ã = Q0

TAQ0,B̃ = Q0
TBQ0,P̃ = Q0

TP
Output: The coefficient matrices of a reduced system(Ã,B̃,P̃)

Algorithm 2. S-POINT: Block Arnoldi-based moment matching at a single frequency point

Input: The current expansion point fs, local error tolerance toll and coefficient matrices
of the high-fidelity model (Ã,B̃,P̃)

1. r = 1
2. s = fs
3. while errorl > toll do
Q0 = blockArnoldi(s, r, A, B, P)
errorl = EST-ERROR ( fs,Q0,A,B,P)
r ← r + 1
4. end while
Output: Q0

Algorithm 3. EST-ERROR: Error estimator

Input: Q0,A, B,P, local error: the single frequency point fs, global error, the range of
the broadband frequency ( fa, fb)

1. Ã = Q0
TAQ0,B̃ = Q0

TBQ0,P̃ = Q0
TP

2. Local error:
f = fs

J(t) = 0.5× sin(2π f t)
Get T from Equation (1) under A, B, P
Get T1 from Equation (3) under Ã, B̃, P̃
ε = max{‖T− T1‖/‖T‖}
3. Global error:

fk = fa : ∆ f : fb
J(t) = ∑

k
0.5× sin(2π fkt)

Get T from Equation (1) under A, B, P
Get T1 from Equation (3) under Ã, B̃, P̃
ε = max{‖T− T1‖/‖T‖}
4. error = maxε

Output: error

3. Numerical Application

The proposed scheme and model are used to compute the transient temperature fields
of a prototype insulated-gate bipolar transistor (IGBT) module (Figure 3a) to validate its
advantages. The temperature field is computed by the network topological approach [23].
Figure 3b shows meshes of the NTM for the prototype IGBT module. In the numerical
implementation of NTM, the numbers of the total elements and nodes are, respectively, 3364
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and 4303, with the number of the NTM equations equal to 4303. Obviously, the solution of
such a large equation set will consume an enormous amount of computational resources.
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Figure 3. Prototype (a) IGBT module and its (b) NTM model.

To simulate the wide-frequency-band transient response, the frequency broadband
of excitation signals consisted of 100 liner-spaced samples from 10 Hz to 100 kHz. For
performance comparisons, the NTM, the proposed reduced model and the conventional
block–Arnoldi reduced model are used to compute the transient temperature field of this
case study under the predefined, tested broadband excitation signal. In order to take both
the minimum and maximum frequencies into consideration, the time step should be small
enough and the total excitation time large enough. Consequently, the total excitation time
was set as 0.2 s, the discrete number as 80,000 and the time step as 2.5 us. The equation was
solved by ode15 s of MATLAB. In the solver settings, the relative tolerance (RelTol) was set
as 10−3 and the absolute tolerance (AbsTol) as 10−6. The final expansion points used were:
10, 105, 103, and 102. As explained in the adaptive scheme, Nmoments

max is equal to the smallest
number of moments under which the error between the ROM and the full model is smaller
than the tolerance at the frequency. Nmoments

max , at 10, 105, 103, and 102, is finally set as 6,
6, 7, and 9, respectively. Finally, Ns

max is set as 100 to limit the number of total expansion
points used in the MOR procedure. Moreover, the local error tolerance toll is set as 0.005,
with the global error tolerance set as 0.01. Typical observing points (points 1, 2, and 3, see
Figure 3b) are used for performance comparison of different ROMs. The numerical results
are presented in Figures 4–9.

Figures 4–6 present the time-domain response observed on points 1, 2, and 3 of the
NTM model and those of the proposed reduced model (size = 28), respectively. From the
numerical results, it is obvious that the proposed reduced-order system can accurately
imitate the dynamic response of the original high-fidelity model. Moreover, Figures 7–9
provide the absolute errors observed on points 1, 2, and 3, between the results of the NTM
model and those of the proposed reduced model (size = 28), and those of the conven-
tional block–Arnoldi reduced model (size = 30), respectively. From the numerical results
(Figures 7–9), one can see that for a dynamic response to a broadband frequency signal,
the absolute transient errors of the proposed model are much smaller than those for the
conventional reduced model. For point 1, the maximum error of the proposed model
is 0.3603, whereas the conventional reduced model can reach 3.2275. For point 2, the
maximum error of the proposed approach is 0.0986, whereas the conventional reduced
model can reach 0.9803. For point 3, the maximum error of the proposed model is 0.1459,
whereas the conventional reduced model can reach 6.3752. More performance comparison
statistics are shown in Tables 1 and 2. Table 1 compares the transient response of different
observing points using the proposed and NTM models. Table 2 compares the absolute



Appl. Sci. 2021, 11, 9435 8 of 15

errors on different observing points using the proposed and conventional schemes. The
numerical results in Tables 1 and 2 also validate the conclusion obtained from Figures 4–9.

Table 3 gives the relative errors (norm-2 error) computed by Equation (9) on points 1,
2, and 3 of the results of the NTM model, those of the proposed reduced model (size = 28),
those of the conventional block-Arnoldi reduced model (size = 20) and those of the con-
ventional block-Arnoldi reduced model (size = 30). From the numerical results of the two
conventional ROMs, it is easy to observe that a high-order reduced model produces a
more accurate result compared to a low-order one. However, the high-order conventional
reduced model is less accurate than the proposed one, which validates the merits of the
proposed ROM scheme.

Moreover, the time discretization time for all models is 80,000. For the NTM model of
the prototype IGBT, the CPU times for a transient process are 64,436.92 s, while those for
the proposed model are 8038.95 s. The CPU times for implementing the proposed scheme
are about 35 s; the total used by the proposed model for the same transient simulations
(8073.95 s) is less than 13% of those of the original NTM.
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Figure 5. Time-domain transient response on point 2. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s). Figure 5. Time-domain transient response on point 2. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s).
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Figure 6. Time-domain transient response on point 3. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s). Figure 6. Time-domain transient response on point 3. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s).
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Figure 7. Absolute errors of the computed temperatures observing point 1, using the conventional block Arnoldi algorithm
and the proposed scheme, compared to those of the original NTM model under the tested broad-frequency-excitation signal.
(a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s).
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Figure 8. Absolute errors of the computed temperatures on observing point 2, using the conventional block Arnoldi
algorithm and the proposed scheme, compared to those of the original NTM model under the tested broad-frequency-
excitation signal. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s).
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Figure 9. Absolute errors of the computed temperatures on observing point 3, using the conventional block Arnoldi
algorithm and the proposed scheme, compared to those of the original NTM model under the tested broad-frequency-
excitation signal. (a) Zoom in (0–0.12 s). (b) Whole excitation duration (0–0.2 s).

Table 1. Comparisons of the transient response on different observing points by using the proposed and NTM models.

Analysis Point NTM Model Proposed

max (K) min (K) max (K) min (K)

Point 1 40.9190 −37.1739 40.9114 −37.1928
Point 2 12.3376 −9.8100 12.3112 −9.8353
Point 3 19.9404 −17.9279 19.9244 −17.9785
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Table 2. Comparisons of the absolute errors on different observing points by using the proposed and conventional schemes.

Analysis Point Block Arnoldi (Order = 30) Proposed (Order = 28)

max (K) min (K) Average (K) max (K) min (K) Average (K)

Point 1 3.2275 0 0.1869 0.3603 0 0.0689
Point 2 0.9803 0 0.0543 0.0986 0 0.0246
Point 3 6.3752 0 0.1995 0.1459 0 0.0224

Table 3. Comparisons of relative errors on different observing points by using the proposed and conventional schemes.

Analysis Point Proposed (Order = 28) Block Arnoldi (Order = 20) Block Arnoldi (Order = 30)

Point 1 0.0066 0.0479 0.0246
Point 2 0.0065 0.0298 0.0190
Point 3 0.0088 0.2659 0.1627

4. Conclusions

To increase the computational speed of a high-fidelity model in solving a complex 3-D
transient field problem by a numerical approach, a block Arnoldi-based multipoint-model
order-reduction scheme is presented. The proposed methodology was used to reduce the
size of an NTM high-fidelity model in solving the three-dimensional temperature field of a
case study. The computational results have demonstrated:

(1) The model reduced from the proposed methodology could achieve a higher accuracy
compared to one reduced from conventional block Arnoldi in a wideband frequency.
For point 1, the maximum error of the proposed model was 0.3603, whereas that of
the conventional reduced model can reach 3.2275. For point 2, the maximum error
of the proposed approach is 0.0986, whereas that of the conventional reduced model
can reach 0.9803. For point 3, the maximum error of the proposed model is 0.1459,
whereas that of the conventional reduced model can reach 6.3752.

(2) The ROM obtained using the proposed scheme can accurately replicate the transient
temperature fields of the NTM high-fidelity model through a wide frequency range,
while the computational time of the reduced-order model is less than 13% of the
original one.

It should be noted that an MOR method is generally applicable to a linear system.
However, for a nonlinear system, a linearization technique must first be implemented in the
system before the application of an MOR. Additionally, once the proposed ROM has been
learned in the offline stage, it can be used to simulate a transient response of the system for
any excitation J(t), as long as its frequency spectrum stays in the learned-frequency interval.
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