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Abstract: Graphics processing units (GPUs) have been in the spotlight in various fields because
they can process a massive amount of computation at a relatively low price. This research proposes
a performance acceleration framework applied to Monte Carlo method-based earthquake source
parameter estimation using multi-threaded compute unified device architecture (CUDA) GPU.
The Monte Carlo method takes an exhaustive computational burden because iterative nonlinear
optimization is performed more than 1000 times. To alleviate this problem, we parallelize the
rectangular dislocation model, i.e., the Okada model, since the model consists of independent
point-wise computations and takes up most of the time in the nonlinear optimization. Adjusting
the degree of common subexpression elimination, thread block size, and constant caching, we
obtained the best CUDA optimization configuration that achieves 134.94×, 14.00×, and 2.99×
speedups over sequential CPU, 16-threads CPU, and baseline CUDA GPU implementation from the
1000× 1000 mesh size, respectively. Then, we evaluated the performance and correctness of four
different line search algorithms for the limited memory Broyden–Fletcher–Goldfarb–Shanno with
boundaries (L-BFGS-B) optimization in the real earthquake dataset. The results demonstrated Armijo
line search to be the most efficient one among the algorithms. The visualization results with the
best-fit parameters finally derived by the proposed framework confirm that our framework also
approximates the earthquake source parameters with an excellent agreement with the geodetic data,
i.e., at most 0.5 cm root-mean-square-error (RMSE) of residual displacement.

Keywords: GPU; CUDA; nonlinear optimization; line search algorithm; remote sensing; Monte Carlo
method; earthquake source parameter estimation

1. Introduction

The Monte Carlo method has widely been used for geophysical source parameter
estimation in remote sensing [1–3]. The method repeats nonlinear optimization from
multiple random starting points to derive the best-fit source parameters that minimize an
objective function indicating the misfit between geodetic measurement and the dislocation
model. Therefore, it enables avoiding local minima and evaluating the uncertainties of
parameters [4].

Interferometric synthetic radar (InSAR) has been one of the most common meth-
ods for surface displacement measurement. It compares the phase offset of two or more
complex-valued SAR images obtained from different times and locations [5]. InSAR can
derive precise geophysical information with centimetric or millimetric accuracy. For this
reason, InSAR data have been widely employed in remote sensing, including earthquakes,
volcanic activities, landslides [6], thaw-derived slope failure [7], or glacial ice movement [8]
investigations.

The dislocation model mathematically calculates the surface deformation of earth-
quakes or volcanic activities. The rectangular dislocation model, also known as the Okada
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model, is a popular model for earthquake source modeling, which assumes finite rectan-
gular source and isotropic half-space [9,10]. Other models include the prolates spheroid
model [11] and the spherical source model [12] for magma source modeling.

Most nonlinear optimization algorithms iteratively search local minima using gradient
or Hessian approximation of the objective function. However, since the dislocation model
computes three-dimensional (3D) surface displacement of points in a two-dimensional
(2D) mesh, computation of the objective function leads to many floating-point operations
proportional to the mesh size. Therefore, gradient or Hessian approximation of the objective
function becomes too expensive. Furthermore, the nonlinear optimization is iterated more
than 1000 times for the Monte Carlo method, and thus the Monte Carlo method takes an
extreme computational burden.

In the recent decade, graphics processing units (GPUs) have been gaining attention as
a powerful solution to overcome the performance limitations of conventional multi-core
CPUs, especially for applications demanding a massive amount of computations. Further-
more, the release of NVIDIA’s computed unified device architecture (CUDA) [13], a new
general-purpose parallel programming interface, also facilitated the use of GPU platforms
for general-purpose computing applications. Since the CUDA architecture can reorganize
the computation around data when the data can be processed independently, we can
execute the independent computation in parallel on a vast number of threads to improve
the overall performance significantly. Therefore, the Okada model, the dislocation model
discussed in this paper, fits well for the GPU implementation because the 3D displacement
computation of each point needs a massive number of floating-point operations and has
no dependencies between these operations.

This paper proposes a performance acceleration framework based on CUDA GPU
for the earthquake source estimation with the Okada dislocation model. For this purpose,
(1) we analyze the effects of various combinations from options of CUDA optimization tech-
niques and, based on the analysis, perform the CUDA kernel optimization for the parallel
implementation of the Okada model; (2) we investigate the performance and correctness of
line search algorithms used for the nonlinear optimization to derive the earthquake source
parameters in an efficient manner; (3) finally, we verify that the earthquake source parame-
ters derived by our proposed approach also fit the geodetic data correctly by visualizing
the residual data between the geodetic data and our modeled data.

Considering the target application characteristics, three techniques, common subex-
pression elimination, thread block size adjustment, and constant caching, are employed for
the CUDA kernel optimization. Then, the combinations generated from the options of these
optimization techniques are evaluated in terms of efficiency and occupancy. As a result,
the configuration with the shortest average computation time is selected as our best CUDA
optimization configuration. As for the comparison of line search algorithms, we employ the
root-mean-square-error (RMSE), computation time, 95% confidence interval, and parameter
distribution on the real earthquake dataset as the evaluation metrics. Finally, the source
parameters with the best consistency between geodetic and modeled displacement are
determined and validated.

The paper is organized as follows; Section 2 introduces the related work and back-
ground of this study. Then, we define the problem addressed and describe our proposed
approach in Section 3. Next, Section 4 presents the experimental results and discussions of
our approach. Finally, we conclude the paper in Section 5.

2. Background and Related Work
2.1. Earthquake Source Parameter Estimation

In remote sensing, the Monte Carlo method has widely been used for earthquake or
volcanic source parameter estimation. To reduce the computation time, many researchers
used techniques that randomly sample only a portion of the entire geodetic measurement,
such as quadtree sampling [14], or defined bound constraints based on previous seismic
studies conducted in the same study area. De Novellis et al. [15] estimated the source pa-
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rameters and its uncertainties for the 2015 Wolf volcano using the Okada and Yang models
and the Levenberg–Marquardt method. Studies by Funning et al. [16] and Qu et al. [17]
used the downhill simplex optimization and the Okada model to estimate the source
parameters of the 2003 Bam earthquake and the 2009 Yao’an earthquake, respectively.
Dicelis et al. [18] estimated the source parameters of the 2008 Quetame earthquake using
the nonlinear interior-point optimization and the Okada model.

Recently, studies estimating the source parameters using a statistical approach or
machine learning have also been proposed. Bagnardi and Hooper [19] and Dutta et al. [20]
used the Bayesian approach based on the Markov Chain Monte Carlo. Šílený [21] and
Picozzi et al. [22] applied a genetic algorithm and artificial neural network for source
parameter estimation. Lee and Kim [23] proposed a parameter search space reduction
method based on the principal component analysis to accelerate nonlinear optimization.

2.2. Nonlinear Optimization

In general, nonlinear optimization algorithms are classified into trust-region methods
or line search methods. Both of them approximate an objective function as a quadratic
model, but the methods proceed in different ways. Trust-region methods define a region
around the current step that the quadratic model is adequate and find the approximate
minimizer in the region. However, line search methods first find the descent direction and
focus on searching appropriate step length [24]. Since most source parameters have their
own upper and lower bound constraints, we should employ an optimization algorithm
handling constrained problems.

The Levenberg–Marquardt algorithm is a popular trust-region method [25]. The
algorithm can be thought of as a combination of the steepest descent and the Gauss–
Newton method. Using the damping parameter µ, it operates like the steepest descent
when the current point is far from the correct solution. On the other hand, when the current
point is close to the correct solution, it behaves like the Gauss–Newton method [24]. We can
generally use the algorithm to solve unconstrained nonlinear optimization problems, but
the algorithm for the constrained problem was also developed in [26]. Other trust-region
methods include trust-region reflective [27] and Dogleg [28] methods.

In line search methods, we typically use the steepest descent, Newton’s method, or
the quasi-Newton methods to derive the descent direction. In the k-th step, let fk and dk be
the objective function and the descent direction, respectively. In the steepest descent, the
computation of the descent direction is very simple, calculated as dk = −∇ fk. However,
it slowly converges to the local solution. Newton’s method finds the descent direction
using the inverse of Hessian matrix as dk = −∇2 f−1

k ∇ fk. It converges to the local solution
faster than the steepest descent, but computing the inverse of ∇2 fk is too expensive. As
an alternative to Newton’s method, the quasi-Newton method approximates the inverse
of the Hessian matrix using only the gradient of the objective function. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method is a representative quasi-Newton method, but
the BFGS method also suffers from high memory usage. To resolve this problem, the limited
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method [29] was developed. The
L-BFGS-B method, which is a variant of L-BFGS, was also proposed to handle simple
bound constraints [30].

In this paper, we used the L-BFGS-B algorithm to handle bound constraints with
a small memory footprint. Another advantage of using L-BFGS-B is that the user can
adjust the computational cost and memory requirement by tuning the parameter m, which
denotes the number of stored previous points and gradients.

In line search methods, computing the step length α is a key factor for the accuracy
and performance of the algorithm. For the k-th iteration, let xk, dk, and αk be the current
point, descent direction, and step length, respectively. The ideal step length would be the
global minimizer of the function φ(·) defined by Equation (1). However, since it is too
expensive to derive the global minimizer, there is a trade-off between the quality of a step
length and the computation time [24].
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φ(αk) = f (xk + αkdk), αk > 0 (1)

Typical line search algorithms perform a sequential search until predefined conditions
of φ(·) are satisfied. A popular condition is the sufficient decrease condition, described in
Equation (2) for some constant 0 < c1 < 1.

f (xk + αkdk) ≤ f (xk) + c1αk∇ f T
k dk (2)

This condition stipulates that αk should give a sufficient decrease in the objective
function. Since the sufficient decrease condition is not enough to rule out unacceptably
short step lengths, we normally can use the curvature condition, defined by Equation (3)
for 0 < c1 < c2 < 1. Both the sufficient decrease condition and curvature condition are
collectively known as the Wolfe conditions or the weak-Wolfe conditions [31]. In addition,
we can modify the curvature condition to find a broad neighborhood of a local minimizer
or stationary point of φ(·), as described in Equation (4). The conditions satisfying both
Equations (2) and (4) are called the strong-Wolfe conditions.

∇ f (xk + αkdk)
Tdk ≥ c2∇ f T

k dk (3)

|∇ f (xk + αkdk)
Tdk| ≥ c2|∇ f T

k dk| (4)

There are various algorithms for line search. Armijo line search (Armijo) [32], bisection
method for weak-Wolfe conditions (BWW), and Móre-Thuente line search (MT) [33] find a
step length that satisfies the sufficient decrease, weak-Wolfe, and strong-Wolfe conditions,
respectively. All three methods use iterative steps to find the appropriate step length. BWW
and MT need to recalculate both the objective function f and its gradient g for every
iteration. However, Armijo requires only a new calculation of the objective function f .

2.3. GPU and CUDA

Unlike CPUs optimized for sequential performance by using sophisticated control
logic and large cache memories, GPUs consist of a massive number of threads with small
cache memories to achieve high throughput [34]. CUDA is a general-purpose parallel
computing platform and programming model for the NVIDIA GPUs. CUDA is designed
to develop scalable parallel applications while maintaining a low learning curve for devel-
opers [35]. The architecture also provides flexibility in the assignment of local resources
to enhance performance, but this flexibility induces developers to perform hand-crafted
optimization [36].

Figure 1 shows the general compilation and execution flow of CUDA C/C++
program [34]. As illustrated in Figure 1a, a single source program is first divided into
the host, i.e., CPU, and device, i.e., GPU, code. The host code is standard C/C++ code, and
the device code is written in data-parallel functions called kernels, specified by CUDA
keywords. A general C/C++ compiler compiles the host code, and the device code is
first converted into parallel thread execution (PTX) intermediate code that is the CUDA’s
instruction set architecture and then compiled to binary [37]. Figure 1b shows the execution
and memory transfer of the CUDA program at runtime. The program starts with the host,
and when the host launches the kernel, it is executed by thousands of threads on a device.

Thread scheduling is essential for enhancing parallel performance. CUDA runtime
system organizes threads in a two-level hierarchy. Threads are grouped into thread blocks,
and thread blocks form a grid. When a kernel function is launched, each thread block
is assigned to a streaming multiprocessor (SM) during its execution, and each block is
divided into warps of 32 threads. The warp is a thread scheduling unit in SMs and executes
in single instruction, multiple data (SIMD) fashion. SMs perform zero-overhead thread
scheduling that can interleave warps or select ready warps with no additional cost or time.
It can also hide the latency of global memory access or long-latency instructions [38].
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Figure 1. (a) Compilation process of CUDA C/C++ sources; (b) CUDA instructions and data flow
at runtime.

Memory bandwidth optimization is also significant to boost the execution efficiency
of CUDA kernels because the data to be processed by GPU should be transferred from
the host memory to the device’s global memory, as shown in Figure 1b. Since the global
memory is implemented with dynamic random access memory (DRAM), applications can
saturate the memory bandwidth easily. CUDA provides several programmable on-chip
memories to reduce the demand for the global memory bandwidth of the applications.
Table 1 summarizes the types of CUDA memory. Shared memory is on-chip memory with
faster access speed than global and local memory, and variables in shared memory space
are shared among threads in the same thread block. Therefore, we can eliminate the global
memory access bottleneck by using shared memory as a software-managed cache. For
read-only data referenced by many threads simultaneously, constant memory can help
reduce the memory access latency via automatic caching.

Table 1. Properties of CUDA memories.

Name Location Scope Speed

Register On-chip Thread Extremely fast
Constant memory Off-chip (not-cached),

on-chip (cached)
GPU Slow (not-cached),

fast (cached)
Shared memory On-chip Thread block Fast
Local memory Off-chip Thread Slow

Global memory Off-chip GPU Slow

GPUs are being actively used in remote sensing. Representatively, several efforts for
the incorporation of GPU to hyperspectral image processing have been directed. Since
the computational cost of hyperspectral image processing is expensive due to the high
dimensionality of the image, GPUs can be a powerful solution for the processing, such as
unmixing or dimensionality reduction [39,40]. In seismic studies, there was an implemen-
tation of double-difference seismic tomography with GPU to improve performance [41].
Venetis et al. [42] showed that GPU could significantly reduce the execution time of the
grid search algorithm used in earthquake source parameter estimation [42].
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3. Our Proposed Approach

This paper aims to accelerate earthquake source parameter estimation based on the
Okada dislocation model by improving the most time-consuming parts in two folds, as
highlighted in Figure 2.

First, we optimized the parallel implementation of the Okada model to enhance the
model performance. We chose the CUDA optimization techniques regarding the computa-
tional characteristics of the Okada model and set 32 combinations from different options
of the techniques. Each configuration was evaluated in terms of efficiency and occupancy
to derive the effects of the optimization techniques on the computation time, and we
selected a configuration with the shortest average computation time as the best CUDA
optimization configuration. Second, in the earthquake source parameter estimation, we
assessed the performance and correctness of line search algorithms, Armijo, MT, and BWW,
for the L-BFGS-B optimization. We employed the misfit, the computation time, and the
distribution of estimated source parameters for the performance assessment. In addition,
the parallel implementation of the L-BFGS-B (cuLBFGSB) [43] was also evaluated. Finally,
we derived the best-fit source parameters and visualized the modeled result to verify our
approach.

Initialization

Sequential CPU 
Okada model

CUDA GPU 
Okada model 
configurations

Multi-threaded OpenMP 
Okada model

Performance Assessment

• Efficiency
• Occupancy
• Computation time

Best GPU 
Configuration

Initialization

CPU-based L-BFGS-B
(Armijo, MT, BWW)

GPU-based L-BFGS-B
(cuLBFGSB)

Performance Assessment

• Misfit
• Computation time
• Uncertainties

Best Line Search 
Algorithm

The Okada Model 
Acceleration

Line Search Algorithm 
Comparison

Geodetic 
Data 𝐝

Best-fit Source 
Modeling Visualization

Integration

Figure 2. Schematic workflow of our approach.

3.1. Dislocation Model and Dataset

For the forward modeling of the earthquake, we chose the Okada model that assumes
a finite rectangular source and isotropic homogeneous half-space. Table 2 describes the
physical source parameters that define a rectangular source, and Figure 3 shows the fault
geometry of the Okada model, respectively. We assumed a Poisson’s ratio ν of 0.23. The
parameter E indicates the horizontal, i.e., E–W direction, distance of the upper-left point of
the satellite image and fault, and N indicates the vertical one. The upper-left point of the
measured deformation map is located at 36◦10′57′′ N, 129◦17′03′′ E.
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Table 2. Source parameters of the Okada model.

Parameter Unit Description

E km Distance from the reference point to the east
N km Distance from the reference point to the north

Depth km Depth of source
Strike degrees Angle of fault relative north
Dip degrees Angle between the fault and a horizontal plane

Length km Length of fault
Width km Width of fault
Rake degrees Angle of slip relative to the width direction
Slip cm Dislocation in rake direction

Open cm Dislocation in tensile component

East

North

U
N (km)
E (km)

Depth
(km)

Strike (deg.)

Dip (deg.)

Figure 3. Fault geometry of the Okada model [23].

Since the source parameter estimation procedure needs a 3D surface displacement
dataset, InSAR techniques for retrieving 3D displacement have been introduced [44]. Many
studies used the differential InSAR technique that combines line-of-sight (LOS) SAR images
from ascending and descending paths [15–17]. However, since this method suffers from
low accuracy of north component displacement, stacking InSAR and multiple aperture
interferometry (MAI) method [45] was proposed to solve this problem.

In this paper, we use the 2017 Pohang earthquake dataset as the three-dimensional
geodetic displacement d for line search algorithm comparison. For accurate measurement,
the stacking InSAR and MAI method [45] was used. Four SAR images were acquired from
CSK and ALOS2. The data size, the pixel size, and the total observation area are 628× 518,
30 m2, and 18.84× 15.54 km, respectively. In the rest of this paper, we use G, x, and d
to denote the dislocation model, the input source parameters, and the measured surface
displacement, respectively.

3.2. GPU Kernel Optimization

Since the Okada model has no dependence between point calculations, it is straight-
forward to implement the model in a CUDA kernel function. We first implemented a
sequential C++ Okada model based on the MATLAB open-source [46] and then wrote the
CUDA kernel function computing the Okada model. Figure 4 shows the difference between
CPU and CUDA implementation. While CPU code sequentially calculates the displacement
of the 2D mesh using a nested loop, in parallel implementation, a host code launches the
kernel with a specific keyword “__global__”, and thousands of threads simultaneously
execute the kernel function.

In the parallel implementation of the Okada model, each thread performs a massive
number of arithmetic operations, but there are no shared variables in thread block scope and
no thread synchronizations. Therefore, maximizing instruction efficiency can be the prime
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optimization goal of the Okada model. However, since efficient instructions generally need
additional resources, there is a trade-off between the instruction efficiency and the number
of active warps that determine thread-level parallelism. We set our optimization goal to
minimize the computation time by striking a balance between instruction efficiency and
thread-level parallelism. For this purpose, we used two performance metrics: efficiency [47]
for instruction efficiency and occupancy [48] for thread-level parallelism. We use the
NVIDIA Nsight compute profiling tool to calculate the performance metrics.

CPU Implementation CUDA Implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

template <typename real>
void cpuOkada(...) {

// Initialization

for (int i = 0; i < n_rows; i++) {
for (int j = 0; j < n_cols; j++) {

// Displacement calculation
}

}

return;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

template <typename real>
__global__ void cuOkadaKernel(...) {

int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;

if (row < n_rows && col < n_cols) {

// Displacement calculation

}

return;
}

template <typename real>
void cuOkada(...) {

// Initialization

// Set grid and thread block size
dim3 dG(ceil(n_cols/ tx), ceil(n_rows/ ty), 1);
dim3 dB(tx, ty, 1);

// Call the Kernel
cuOkadaKernel<real><<<dG, dB>>>(...);

return;
}

Figure 4. Difference between CPU and CUDA implementations.

Efficiency indicates the instruction efficiency of the configuration. It is calculated
as the reciprocal of the total number of PTX instructions of the kernel [47], described as
Equation (5). Thus, high efficiency means that the kernel can perform the same task with
fewer instructions.

Efficiency =
1

The number of instructions
(5)

Occupancy represents the warp scheduling performance, calculated as Equation (6).
Maximizing the number of active warps in SM facilitates hiding the latency caused by the
global memory access, branch divergence, or instruction stall. Since a GPU has limited
resources such as shared memory, registers, or thread blocks per SMs, inefficient resource
usage may decrease the occupancy.

Occupancy =
Active warps per SM

Maximum warps per SM
(6)

This paper attempt to obtain the best CUDA optimization configuration by employing
the following three techniques.

1. Common subexpression elimination (CSE);
2. Constant caching;
3. Thread block size.

There are other CUDA optimization techniques, such as tilling or loop unrolling. How-
ever, we did not employ the tiling technique using shared memory because all operations
are performed independently in each thread, and there are no variables referenced at the
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thread block scope. Furthermore, since our implementation has no inner loop, we do not
use the loop unrolling technique.

CSE removes repeated calculations such as arithmetic or load operation by replac-
ing repeated calculations with the precomputed value from the register, as shown in
Figure 5 [38]. Since the register reference cost is less than the arithmetic operation cost,
CSE can increase the instruction efficiency. However, CSE may degrade warp scheduling
performance since CSE tends to use additional registers. We set four options according to
the degree of CSE: low (L), medium-low (ML), medium-high (MH), and high (H). As the
degree of CSE increases, more repeated expressions are removed by using more registers.
Figure 6 shows a part of the source code of the L and H options. In the source code, the
L option compute repeated expressions with fewer variable usage. However, the H op-
tion precomputes the repeated expressions just once, but it needs 15 more registers than
the L option. Table 3 shows the total number of register variables substituting repeated
expressions for each degree of CSE.

Constant memory is a read-only memory that all threads can access. We can place
the variable in the CUDA constant memory by declaring a variable with the keyword
“__constant__”. The constant memory variables originally reside in global memory, but they
are cached automatically in a per-SM constant cache. Since they are not modified during
kernel execution, the cache coherence issue does not occur. Furthermore, since the constant
cache is optimized for broadcasting a value to massive threads, we can effectively reduce
the register usage and memory bottleneck by the constant caching. Therefore, we set two
options for constant caching: using constant caching (“with CC”) and not using constant
caching (“without CC”). When constant caching is used, we copy an array of 14 variables
globally referenced by all threads to constant memory space, and the kernel uses the array
directly. On the other hand, when constant caching is not used, the kernel accesses those
variables in the global memory space.

Table 3. CSE option description.

CSE Option The Number of Precomputed Subexpressions

L 24
ML 28
MH 40
H 43

Without CSE With CSE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

double A1(double x, double y) {...}
double A2(double x, double y) {...}
double A3(double x, double y) {...}

int main()
{

// Calculate common expressions repeatedly
double B1 = A1(x, y) + A2(x, y) + A3(x, y);
double B2 = A1(x, y) * A2(x, y) * A3(x, y);
// …

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

double A1(double x, double y) {...}
double A2(double x, double y) {...}
double A3(double x, double y) {...}

int main()
{

// Use additional registers
double tmpA1 = A1(x, y);
double tmpA2 = A2(x, y);
double tmpA3 = A3(x, y);

double B1 = tmpA1 + tmpA2 + tmpA3;
double B2 = tmpA1 * tmpA2 * tmpA3;
// …

}

Figure 5. CSE implementation example.
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CSE option L CSE option H

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// Calculate param, x, p, q, ...
double uxss, uyss, uzss, uxds, uyds, uzds, 

uxtf, uytf, uztf;

// Identical subexpressions are repeatedly computed
uxss = cuUxss(param, x, p, q);
uyss = cuUyss(param, x, p, q);
uzss = cuUzss(param, x, p, q);

uxds = cuUxds(param, x, p, q);
uyds = cuUyds(param, x, p, q);
uzds = cuUzds(param, x, p, q);

uxtf = cuUxtf(param, x, p, q);
uytf = cuUytf(param, x, p, q);
uztf = cuUztf(param, x, p, q);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// Calculate param, x, p, q, ...
double uxss, uyss, uzss, uxds, uyds, uzds, 

uxtf, uytf, uztf;
double X, R, yb, db;
double I1, I2, I3, I4, I5, invtan, lnrn, lnrd;
double A0, A1, A2;

// Compute subexpressions
X = GETX(x, q);
R = GETR(x, p, q);
yb = GETYB(param, p, q);
db = GETDB(param, p, q);
invtan = GETINVTAN(x, p, q, R);
lnrn = GETLNRN(R, p);
lnrd = GETLNRD(R, db);
A0 = GETA0(q, R);
A1 = GETA1(p, q, R);
A2 = GETA2(x, q, R);
I5 = cuI5(x, p, q, yb, db, R, X, lnrd, lnrn);
I4 = cuI4(x, p, q, yb, db, R, X, lnrd, lnrn);
I3 = cuI3(x, p, q, I4, yb, db, R, X, lnrd, lnrn);
I2 = cuI2(x, p, q, I3, yb, db, R, X, lnrd, lnrn);
I1 = cuI1(x, p, q, I5, yb, db, R, X, lnrd, lnrn);

// Do not need to repeatedly compute subexpressions
uxss = cuUxss(param, x, p, q, I1, yb, db, R, X,

invtan, A0, A1, A2);
uyss = cuUyss(param, x, p, q, I2, yb, db, R, X,

invtan, A0, A1, A2);
uzss = cuUzss(param, x, p, q, I4, yb, db, R, X,

invtan, A0, A1, A2);
uxds = cuUxds(param, x, p, q, I3, yb, db, R, X,

invtan, A0, A1, A2);
uyds = cuUyds(param, x, p, q, I1, yb, db, R, X,

invtan, A0, A1, A2);
uzds = cuUzds(param, x, p, q, I5, yb, db, R, X,

invtan, A0, A1, A2);
uxtf = cuUxtf(param, x, p, q, I3, yb, db, R, X,

invtan, A0, A1, A2);
uytf = cuUytf(param, x, p, q, I1, yb, db, R, X,

invtan, A0, A1, A2);
uztf = cuUztf(param, x, p, q, I5, yb, db, R, X,

invtan, A0, A1, A2);

Figure 6. Comparison of the L and H options for CSE.

The thread block size is an important factor for determining the number of active
warps per SM because the CUDA restricts the maximum number of resident threads and
thread blocks per SM. Since many active warps hide the latencies of stalled instructions, the
thread block size can affect the performance of the kernel. Therefore, we set four options
of the thread block size, i.e., 64, 128, 256, and 512, based on a rule of thumb that threads
per block should be a multiple of warp size [35] and theoretical occupancy derived by the
CUDA occupancy calculator [49].

All possible combinations from the options of the three optimization techniques are
4 × 2 × 4 = 32. We conducted experiments to evaluate the performance of our optimization
approach. First, we compared 32 combinations using efficiency and occupancy to estimate
the effects of options on the instruction efficiency and thread-level parallelism. Then, based
on the computation time, we evaluated the significance of the instruction efficiency and
thread-level parallelism on the parallel implementation of the Okada model and select the
fastest one as the best CUDA optimization configuration.

3.3. Line Search Algorithm for the L-BFGS-B

After selecting the best CUDA optimization configuration described in Section 3.2, we
integrate our CUDA implementation of the Okada model into the Monte Carlo method
estimating the earthquake source parameters with the L-BFGS-B optimization. Then, we
analyze the computational cost of subroutines in the L-BFGS-B to find the most time-
consuming part and alleviate the bottleneck.

The L-BFGS-B proceeds in the sequence of generalized Cauchy point computation
(algorithm CP), subspace minimization, line search, objective function and gradient up-
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date, and update of a new limited-memory Hessian approximation, as described in
Algorithm 1 [30]. We define the objective function f as the misfit of geodetic measure-
ment d and model displacement G(x) and use the central finite difference equation for
gradient approximation, as formulated by Equations (7) and (8), respectively.

Algorithm 1 L-BFGS-B algorithm.

1: Result: optimized output xout
2: Initialization: random starting point x0, the number of BFGS corrections stored m, bound constraint l, u, termination

condition maxIter, f tol, gtol, k = 0
3: repeat
4: Algorithm CP: compute generalized Cauchy point xc

k
5: Subspace minimization: compute search direction dk
6: Line search: select step length αk
7: Update point: xk+1 = xk + αkdk
8: Compute objective function fk+1 = 1

2‖G(xk+1 − d)‖2
2 and gradient gk+1

9: Update limited memory BFGS matrix Hk+1
10: k = k + 1

11: Compute projected gradient P(xk − gk, l, u)

P(x, l, u)i =


li, if xi < li
xi, if li ≤ xi ≤ ui

ui, if xi > ui


12: until fk−1− fk

max(‖ fk‖,‖ fk−1‖,1)
< f tol and ‖P(xk − gk, l, u)− xk‖∞ < gtol and k > maxIter

13: xout = xk

f =
1
2
‖G(x)− d‖2

2 (7)

g ≈ f (x + h)− f (x− h)
h

(8)

As summarized in Table 4, we analyzed the computational cost of L-BFGS-B subrou-
tines [30,50], where m is the number of BFGS corrections stored, n is the number of variables
to be optimized, t is the number of free variables, nint is the number of segment explorations
of the algorithm CP, liter is the number of iterations of the line search algorithm, w is the
mesh width of the Okada model, and h is the mesh height of the model, respectively. We
optimized nine parameters, all input parameters of the Okada model except Open, in this
paper and usually used small values of m (e.g., 3 ≤ m ≤ 20) [50]. However, the mesh size
of the Okada model varies from hundreds to thousands of squares depending on the scale
of geodetic measurement, and thus the subroutine that includes the most dislocation model
calculations takes the highest computational burden. Therefore, the line search algorithm
can be a bottleneck of the L-BFGS-B because the Okada model is repeatedly calculated.

Table 4. Computational cost of the L-BFGS-B subroutines.

Subroutine Computational Cost

Algorithm CP (2m + 2)n + O(m2) · nint
Subspace minimization (direct primal method) 2m2t + 6mt + 4t + O(m3)
Line search (Armijo) liter ·O(wh)
Line search (MT, BWW) liter · (2 + 2n)O(wh)
Update limited memory BFGS matrix 2n + O(m3)
Compute objective function f O(wh)
Compute gradient g (1 + 2n)O(wh)

To alleviate this bottleneck, we compared four different candidates of the line search
algorithm: Armijo, MT, BWW, and cuLBFGSB. We performed the five thousand iterations
of the Monte Carlo method for each candidate in the real earthquake data mentioned in
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Section 3.1 and evaluated the performance and correctness of the results. As for perfor-
mance metrics, we used the average computation time of Monte Carlo iterations, RMSE,
and parameter distribution for estimation speed, misfit, and uncertainties of parameters,
respectively. Armijo, MT, and BWW were implemented with CPU-based L-BFGS-B, and
cuLBFGSB was fully implemented with CUDA GPU and used simplified algorithm CP
and line search algorithm since they have strong sequential dependence [43]. We used the
open-source of Fei et al. [43] for MT and cuLBFGSB and implemented Armijo and BWW
based on Burke [51]’s research [51].

4. Experimental Result and Discussion

This section investigates the performance effects of different combinations of the
CUDA optimization techniques on the parallel implementation of the Okada model. Then,
we explore the runtime behavior of the line search algorithms for the L-BFGS-B to estimate
the best-fit source parameters. Finally, the correctness of our source parameter estimation
result is verified by the RMSE and the residual displacement.

Table 5 shows the specification of the experiment environment. We used the NVIDIA
GeForce RTX 2080 SUPER GPU with 48 SMs, 64 CUDA cores per SM, and 8GB GDDR6 memory.

Table 5. Hardware and software specification for experiment environment.

Type Specification

OS Ubuntu 18.04
CPU Intel® CoreTM i9-10900K @ 3.70GHz
RAM 128GB
GPU NVIDIA GeForce RTX 2080 SUPER

CUDA version 11.0
CUDA compute capability 7.5

Host compiler g++ 7.5.0

4.1. Kernel Optimization and Evaluation

For the first-order analysis of the optimization techniques, we assessed efficiency and
occupancy of 32 different combinations presented in Section 3.2. For this purpose, we
wrote CUDA kernel functions that calculate the objective function 1

2‖G(x)− d‖2
2 for the

500× 500 mesh size. The results acquired from this experiment are shown in Figure 7. In
Figure 7, both metrics were scaled with a minimum value of 0 and a maximum value of 1.

Figure 7a shows that CSE is the most dominant factor for efficiency. From the experi-
mental results, we observe that efficiency tends to be proportional to the degree of CSE.
We also notice that the thread block size and constant caching options have little effect on
efficiency since the thread block size and constant caching affect only computing resource
allocation and utilization of the GPU. By contrast, a higher degree of CSE decreases occu-
pancy in most cases, as depicted in Figure 7b. In the “without CC” option, there is little
difference in occupancy between the L and ML options and the MH and H options. This is
because the difference in the number of precomputed subexpressions between the L and
ML options and the MH and H options is relatively small, as shown in Table 3. However,
in the “with CC” option, the H option shows higher occupancy than the MH option.

To analyze this cause, we compared the reduced number of reduced register usage
by constant caching for each CSE option. Constant caching decreases register usage per
thread in all CSE options. For example, in the L, ML, and H options, the number of register
usage per thread reduced by constant caching becomes 12, 8, and 6, respectively. However,
in the MH option, only two registers per thread are saved by constant caching, and thus
constant caching has only a trivial effect on occupancy when the MH option is used.
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Figure 7. Performance metrics of configurations. (a) Efficiency; (b) Occupancy.

Since the maximum number of resident threads per SM is limited, the number of
thread blocks in an SM decreases when a thread block size increases. For this reason, the
larger the thread block size, the greater the loss of active warps per reduced thread block
by resource limitation in SM. Therefore, we can conclude that a small thread block size
leads to high occupancy and better thread-level parallelism.

Then, we compared the computation time of each configuration to select the best
CUDA optimization configuration with the shortest average computation time. To this end,
we measured the computation time of 1000 test runs for the 500× 500 mesh size. As shown
in Figure 8, the most remarkable enhancement appears when the degree of CSE changes
from the ML to the MH, and the H option is the best configuration of CSE regardless of
the other options of the two optimization techniques. As for the thread block size option,
the computation time increases as the thread block size is enlarged. Furthermore, thus,
the thread block size of 64 shows the best performance, up to a 5.3% reduction in the
computation time than other thread block size options. Constant caching also slightly
reduces the computation time by up to 3.7%.
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Figure 8. Average objective function computation time of configurations.

Finally, we selected [CSE, constant caching, thread block size]=[H, “with CC”, 64] as
the best CUDA optimization configuration for our application, called CUDA_optimized. We
also set a baseline configuration for the performance comparison, called CUDA_baseline,
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with the configuration [L, “without CC”, 64]. The CUDA_optimized shows a 2.38 ms compu-
tation time, which is 2.93 times faster than the CUDA_baseline. This result indicates that the
instruction efficiency has more effect on computation time than thread-level parallelism
because a configuration with higher efficiency shows shorter computation time regardless
of occupancy.

After the CUDA optimization, we also compared the computation time of our
CUDA_optimized implementation with sequential CPU, multi-threaded CPU using OpenMP,
and the CUDA_baseline for various mesh sizes ranging from 100× 100 to 1000× 1000. We
generated 2D meshes by calculating grid coordinates from the reference point and the pixel
size mentioned in Section 3.1.

Figure 9 shows that the CUDA_optimized has the shortest computation time, followed
by the CUDA_baseline, 16/8/4/2 threads CPU, and sequential CPU implementations. We
also observe that utilizing more threads improves the performance in multi-threaded CPU
implementations. However, the performance gap between 8 and 16 threads is relatively
small due to the limitation of CPU cores. Furthermore, in our experiments, using 32 and 64
threads showed almost the same performance as the 16 threads implementation.

Table 6 summarizes the speedup ratios achieved by the CUDA_optimized over CPU-
based and the CUDA_baseline implementations. According to Table 6, the CUDA_optimized
greatly improves the computation time of target objective functions compared with other
implementations. For instance, it achieves up to 134.94×, 14.01×, and 2.99× speedups over
sequential CPU, 16 threads CPU, and the CUDA_baseline for the 1000× 1000 mesh size.
Significantly, the performance gap between the CUDA_baseline and the CUDA_optimized is
noteworthy. From the result, we can state that it is crucial to use the application-specific,
hand-crafted optimization of CUDA kernel code to improve the performance, not merely
write parallel code.
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Figure 9. Average objective function computation time of sequential CPU, multi-threaded CPU, and
parallel GPU implementations.

We also compared the results with previous work by Venetis et al. [42]. Although they
used a different source parameter estimation algorithm from our study, they also used the
Okada model and evaluated the GPU acceleration effect with the OpenMP implementation.
The GPU implementation by Venetis et al. [42] achieves about 32× and 145× speedups over
OpenMP-8 threads and sequential CPU implementations, respectively. To summarize the
comparison result of performance evaluation, speedups over sequential CPU are similar.
However, the speedup achieved over OpenMP-8 threads in [42] is about twice compared
with our result in Table 6. We consider that this is because our study used the Intel® CoreTM

i9-10900K @ 3.70GHz processor with 10 CPU cores and 20 threads that is roughly two times
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faster than the platform used in [42], i.e., Intel® CoreTM i7-3770K @ 3.50GHz with 4 CPU
cores and 8 threads.

Table 6. Speedup ratio achieved by the CUDA_optimized implementation.

Programming
Model

Mesh Size
100 ×

100
200 ×

200
300 ×

300
400 ×

400
500 ×

500
600 ×

600
700 ×

700
800 ×

800
900 ×

900
1000 ×

1000

Sequential
(CPU) 47.3466 116.4604 122.0598 128.4378 130.2648 132.4892 133.0033 134.3299 134.0760 134.9387

OpenMP-2 threads
(CPU) 24.5715 60.4006 63.0262 66.2300 67.2731 68.5220 68.7152 69.3884 69.3488 69.6882

OpenMP-4 threads
(CPU) 12.3336 30.5240 31.5752 33.2385 33.7230 34.3336 34.4576 34.8817 34.8903 35.0240

OpenMP-8 threads
(CPU) 6.2591 15.3084 15.8690 16.7954 16.9538 17.2413 17.2489 17.4243 17.4365 17.5468

OpenMP-16 threads
(CPU) 4.9698 12.0188 12.5567 13.2865 13.5082 13.7300 13.7568 13.9138 13.9230 14.0098

CUDA_baseline (GPU) 1.3831 2.7500 2.8542 2.9088 2.9322 2.9490 2.9651 2.9782 2.9864 2.9883

On the other hand, for the mesh sizes from 100× 100 to 400× 400, the speedup ratio
increases considerably, but in the mesh sizes from 500× 500 to 1000× 1000, the speedup
ratio no longer increases noticeably. As shown in Figure 10, we can also observe that
the Giga floating-point operations per second (GFLOPS) of the CUDA_optimized code
for different mesh sizes changes in agreement with the results in Table 6. Therefore, it is
considered that the GFLOPS of the target application represents the throughput achievable
on the GPU, which limits the degree of performance improvement.

Mesh Size

0.6

0.65

0.7

0.75

0.8

G
F

L
O

P
S

Figure 10. GFLOPS of CUDA_optimized implementation.

In summary, the CSE technique that enhances the instruction efficiency is the most
effective optimization technique for parallel implementation of the Okada model. Our
CUDA_optimized implementation achieves more than an order of magnitude speedup
compared to traditional multi-threaded CPU-based implementations. Moreover, our opti-
mization approach shows significant performance improvement, almost three times more
speedup than before CUDA optimization.

4.2. Line Search Algorithm Comparison and Correctness Verification

We applied our parallel implementation to the earthquake source parameter estima-
tion procedure using the L-BFGS-B. In doing so, we evaluated four different solutions
introduced in Section 3.3, which are Armijo, MT, BWW, and cuLBFGSB, to derive the best-fit
source parameters. Five thousand iterations of the Monte Carlo method were performed
for each candidate. We defined the lower and upper bound of source parameters based
on the study of Lee [52], as summarized in Table 7. Starting points of the Monte Carlo
iterations were randomly sampled from a uniform distribution in the boundaries, and
termination conditions of the L-BFGS-B were set to maxIter = 1000, f tol = 10−3, m = 8,
and gtol = 10−3.
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Table 7. Bound constraints of source parameters.

Constraints Parameters

E (km) N (km) Depth
(km)

Strike
(deg.) Dip (deg.) Length

(km)
Width
(km)

Rake
(deg.) Slip (cm)

Lower bound 4.8 −12.0 3.0 110.0 33.0 4.0 4.0 80.0 10.0
Upper bound 10.0 −6.0 5.7 235.0 55.0 6.5 6.7 150.0 30.0

We used the RMSE, computation time, and 95% confidence interval obtained from
the Monte Carlo iterations as the indicators to evaluate and compare the performance
and correctness of candidates. Table 8 lists the statistics of the RMSE and the computation
time measured for the candidate implementations. As shown in Table 8, Armijo and
cuLBFGSB outperform MT and BWW in the mean and the standard deviation values of
RMSE. Although Armijo, MT, and cuLBFGSB show a similar mean computation time,
Armijo has the lowest mean and standard deviation values of the computation time. In
addition, the summary of the best-fit parameters minimizing the RMSE and their 95%
confidence interval is given in Table 9. The best-fit parameters derived from candidates
are almost identical, but Armijo has a much smaller confidence interval than the other
candidates, with a 42∼84% interval size reduction. This result remarks that the best-fit
parameters determined by Armijo are the most reasonable.

Table 8. RMSE and the computation time statistics of four candidates.

Algorithm RMSE (cm) Computation Time (s)
Min. Max. Mean. Std. Min. Max. Mean. Std.

Armijo 0.4741 0.5103 0.4784 0.0030 0.2465 1.9259 1.0198 0.2481
MT 0.4745 0.8243 0.5291 0.0589 0.2309 3.6965 1.1638 0.5253

BWW 0.4748 0.8164 0.5273 0.0613 0.1737 11.4612 1.8269 0.9649
cuLBFGSB 0.4739 0.9450 0.4860 0.0258 0.1163 2.5101 1.1922 0.3514

Table 9. The best-fit parameters and a 95% confidence interval of the Monte Carlo results.

Algorithm Parameters

E (km) N (km) Depth
(km)

Strike
(deg.) Dip (deg.) Length

(km)
Width
(km)

Rake
(deg.) Slip (cm)

Armijo 6.7756
± 0.1814

−8.0579
± 0.1563

3.7138
± 0.2603

203.9841
± 6.5069

38.7941
± 2.3886

5.0784
± 0.4434

5.3181
± 0.4994

115.3062
± 4.7805

12.5695
± 2.0428

MT 6.8278
± 0.8900

−7.9336
± 0.9688

3.6811
± 1.0870

201.7411
± 33.9702

38.5657
± 7.9274

4.9229
± 0.8697

5.3982
± 1.0252

112.9773
± 20.5970

12.9347
± 5.2915

BWW 6.7314
± 1.0308

−8.0493
± 1.0263

3.7909
± 0.8933

202.7314
± 31.6251

38.7331
± 8.3463

5.0749
± 0.8959

5.6685
± 0.9614

115.2043
± 18.3948

12.2949
± 5.4515

cuLBFGSB 6.7366
± 0.3813

−7.9948
± 0.4724

3.6931
± 0.7714

204.2539
± 12.2758

38.4440
± 4.1287

5.0455
± 1.4588

5.4938
± 1.8056

114.8131
± 10.1586

12.3322
± 12.0922

To estimate the uncertainties of parameters in detail, we illustrated the histogram of
each parameter in Figure 11. All parameters from Armijo feature a unimodal histogram
with a small standard deviation. However, most source parameters estimated from MT
show multiple peaks, and the Dip derived from BWW peaks around both the lower and
upper bound. Furthermore, cuLBFGSB shows that most results of the Length and the Width
converge on the lower bound, and the Slip does not converge on the unique solution either
with a high standard deviation. It seems that the highly biased results of cuLBFGSB were
caused by its simplified line search algorithm. This result confirms again that Armijo has
the best agreement with the earthquake source parameter estimation.
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Figure 11. Parameter distribution of the Monte Carlo results.

Therefore, as the final step, we verified the correctness of our source parameter esti-
mation framework with the best-fit parameters derived by Armijo. Figure 12 compares
the geodetic displacement and the modeled displacement acquired from the final source
parameters. Each row of the figure represents the surface displacement for the E–W direc-
tion, the N-S direction, and the depth direction. The third column also shows the residual
displacement between the geodetic and the modeled displacements. The residual displace-
ment demonstrates that our proposed framework approximates the geodetic displacement
quite precisely, where the RMSE for each direction is 0.49, 0.31, and 0.33 cm for the E–W,
the N–S, and the depth direction, respectively.
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Figure 12. Final results of source modeling.

5. Conclusions

This paper presented a performance acceleration framework for earthquake source
parameter estimation based on the Okada dislocation model using CUDA GPU. To this
end, we first carefully set the optimization technique candidates considering the character-
istics of the target application and analyzed the effects of various combinations from the
suggested optimization options in terms of efficiency and occupancy. Then, based on the
analysis, we performed the CUDA kernel optimization of the Okada model and evaluated
its performance improvement compared to multi-threaded CPU-based and baseline GPU
implementations. We also explored the performance and correctness of different line search
algorithms for the L-BFGS-B optimization, which is one of the most time-consuming parts
of our target problem. Finally, using the assessment result, we selected the Armijo line
search as the most efficient one.

The performance evaluation results for CUDA kernel optimization showed that the
CUDA_optimized implementation achieved up to 2.99× and 14.00× speedups over the
CUDA_baseline and 16 threads CPU implementations, respectively. We also observed that
Armijo shows a 42∼84% reduction in confidence interval size over other candidates, and
all parameters derived from Armijo feature a unimodal histogram with a small standard
deviation. The best-fit parameters from Armijo had the best consistency between geodetic
and modeled displacement, at most 0.50cm RMSE for each direction. Consequently, the re-
sults demonstrated that our proposed approach successfully accelerates earthquake source
parameter estimation procedure with correctness verification of the best-fit parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

InSAR Interferometric synthetic aperture radar
3D Three-dimensional
2D Two-dimensional
GPU Graphics processing unit
CUDA Compute unified device architecture
RMSE Root-mean-square-error
LOS Line-of-sight
MAI Multiple aperture interferometry
BFGS Broyden–Fletcher–Goldfarb–Shanno
L-BFGS Limited memory Broyden–Fletcher–Goldfarb–Shanno
L-BFGS-B Limited memory Broyden–Fletcher–Goldfarb–Shanno with boundaries
Armijo Armijo line search
BWW Bisection method for weak-Wolfe conditions
MT Móre-Thuente line search
PTX Parallel thread execution
SM Streaming multiprocessor
SIMD single instruction, multiple data
DRAM Dynamic random access memory
cuLBFGSB Parallel implementation of the L-BFGS-B
CSE Common subexpression elimination
GFLOPS Giga floating point operations per second
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