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Abstract: The spatial decomposition of demographic data at a fine resolution is a classic and crucial
problem in the field of geographical information science. The main objective of this study was to
compare twelve well-known machine learning regression algorithms for the spatial decomposition of
demographic data with multisource geospatial data. Grid search and cross-validation methods were
used to ensure that the optimal model parameters were obtained. The results showed that all the
global regression algorithms used in the study exhibited acceptable results, besides the ordinary least
squares (OLS) algorithm. In addition, the regularization method and the subsetting method were
both useful for alleviating overfitting in the OLS model, and the former was better than the latter.
The more competitive performance of the nonlinear regression algorithms than the linear regression
algorithms implies that the relationship between population density and influence factors is likely
to be non-linear. Among the global regression algorithms used in the study, the best results were
achieved by the k-nearest neighbors (KNN) regression algorithm. In addition, it was found that
multi-sources geospatial data can improve the accuracy of spatial decomposition results significantly,
and thus the proposed method in our study can be applied to the study of spatial decomposition in
other areas.

Keywords: spatial decomposition; demographic data; machine learning; regression; geospatial data;
comparison; fine-scale

1. Introduction

Information about fine-scale population distribution is essential in many areas, includ-
ing urban planning and management [1], natural disaster response [2], infectious disease
prevention and control [3], resource allocation, and environment protection [4]. Accurate
population distribution data are fundamental for the achievement of urban sustainable
development goals (SDGs) [5,6]. The census method is the main way to collect population
data in varying countries. However, the spatial resolution and update frequency of census
data are too low to meet the requirements of modern urban governance. Due to the fact
that demographic data is usually collected in subdistrict units, the spatial decomposition of
demographic data into gridded population data can show population distribution patterns
more accurately [7–11]. Therefore, fine-scale and accurate population information is essen-
tial for exploring the relationship between urban residents and the built environment [1].
Guangzhou, the capital city of Guangdong Province, is facing several challenges, such
as a large population and huge pressure on its resources and environment. Therefore,
fine-scale gridded population distribution information is particularly critical for improving
the quality of urban governance.

There have been many achievements in the field of spatial decomposition of demo-
graphic data. The spatial decomposition methods of demographic data are mainly divided
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into spatial interpolation [12–15] and dasymetric mapping [14,16,17]. The gridded pop-
ulation data is usually produced by integrating several auxiliary data and using several
interpolation methods, such as inverse distance weighted (IDW), kriging, et. al. Dasymetric
mapping is a geographic information technique for disaggregating demographic data into
more homogenous units by incorporating additional data [18]. The typical global gridded
population datasets mainly include the Gridded Population of the World (GPW) [19], the
Global Rural-Urban Mapping Project (GRUMP) [2], LandScan Global [20], Global Human
Settlement Population Grid datasets (GHS-POP) [21], and Worldpop [22]. However, most
of these datasets are designed for extensive coverage and free accessibility for the undevel-
oped regions in the world; their accuracy on a local scale, such as that of a city or subdistrict,
still need to be analyzed [23,24].

In fact, the spatial decomposition of demographic data from coarser units into finer
unit is a regression process according to the weight layer. Several regression models
have been proposed to produce decomposition results, such as ordinary least squares
(OLS) regression, random forest (RF) regression [25,26], and so on. In general, regression
models are usually divided into linear and nonlinear models. The OLS model is a classic
linear regression algorithm, but it easily causes overfitting problems. Subsetting and
regularization are common methods used to correct this. The best subset regression
(BSR) is a widely used method for the selection and estimation of the parameters in a
linear model, dating back at least as far as Beale, Hocking and Leslie [27–29], that tries
all possible combinations of variables and chooses one that minimizes certain criteria.
Least angle regression (LARS) is a method of variable selection proposed by Bradley
Efron et al., in 2004, which is similar to the form of forward stepwise regression [30]. The
commonly used regularization functions include L1 and L2 regularization. The regression
methods that use L1 regularization and L2 regularization are called Lasso Regression [31,32]
and Ridge Regression [33,34], respectively. Elastic Net is a linear regression model that
uses both the L1 norm and the L2 norm of the coefficient vector [35–37]. It is especially
suitable for occasions when multiple features are related to each other. As we know,
the collinearity of the independent variables is also the main reason for the over-fitting
problem of linear regression. Principal component regression (PCR), derived from the
principal component, is a useful method for dealing with collinearity [38,39]. However,
the regression model obtained with principal components is not as easy to explain as the
regression model established with the original independent variables. Partial least squares
(PLS) regression [40] is a variant of PCR regression in which the projection is applied to
both the independent variable and the dependent variables. Therefore, the PLS method is
also considered as a bilinear factor model. Random sample consensus (RANSAC) [41,42] is
a method that can estimate the parameters of the mathematical model in an iterative way
from a set of observation data sets containing “outliers”.

Beside linear regression algorithms, non-linear regression algorithms have received in-
creasing attention in the spatial decomposition of demographic data, especially the random
forest model. Yao et al. [10] downscaled demographic data into a building-scale gridded
population map based on the random forest algorithm by using various geospatial data
sets, such as POI data, Tencent online user densities data, and so on. Yao’s study achieved
the best accuracy at the community scale through comparison with six other decomposition
methods, including areal weighting, binary dasymetric mapping, interpolation with cok-
riging, and so on. Wang et al. [43] integrated Luojia 1-01 night light remote sensing images,
POI data, and Sina Weibo check-in data, and converted the Zhejiang province’s demo-
graphic data into a fine grid scale by using the random forest model. The effectiveness and
superiority of the random forest model was proven again by Wang’s research, which found
that its accuracy was higher than that of the WorldPop dataset and previous density-based
studies. Zhou et al. decomposed Chongqing’s demographic data into gridded population
data by using the random forest regression model and multi-source geospatial data. The
model evaluation results of Zhou’s study once again confirmed the superiority of the
random forest model over other regression models. However, the application of non-linear
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regression models other than random forest in the spatial decomposition of demographic
data still needs to be strengthened.

In addition, most existing studies only use one or two regression algorithms, and
comparative studies of different regression algorithms in the spatial decomposition of de-
mographic data are still relatively rare. To solve the problem, we applied twelve commonly
used regression algorithms to generate the gridded population data of Guangzhou city,
China, with a resolution of 150 m, and compared their performance using several evalua-
tion metrics. The findings of our study can be used for fine-scale population mapping in
Guangzhou or another city.

2. Materials and Methods
2.1. Study Area and Data Sources

Guangzhou city is located in the middle of Guangdong Province, China, with an east
longitude of 112◦57′–114◦3′, and a north latitude of 22◦26′–23◦56′. The study area is com-
posed of six districts in Guangzhou city (including YueXiu district, LiWan district, TianHe
district, HaiZhu district, HuangPu district, and BaiYun district), encompassing the city’s
main urban area. The population density of the study area is highest in Guangzhou city.
According to demographic data from 2013, the study area contains a population of about
4.77 million, in an area of more than 1057 km2. A subdistrict is a basic administrative
division of Chinese cities that is generally smaller than a district. According to statistics
on the population density of subdistricts, more than 60% of the subdistricts in the study
area feature a population density of less than 17,000 people per square kilometer. The
subdistricts with a population density between 17,000 and 60,000 people per square kilo-
meter occupy nearly 28.2%. Less than 9% of the subdistricts feature a population density
of more than 60,000 people per square kilometer. In general, the study area is dominated
by subdistricts with a medium population concentration. The study area map is shown in
Figure 1.
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The demographic data of each subdistrict in 2013 were collected from Guangzhou
municipal public security bureau. The administrative boundary data and road line data
were digitized in 2014 from Amap, one of China’s popular web mapping services, which
is also known as Gaode in Chinese. The website of Amap is https://ditu.amap.com/
(accessed on 9 September 2014). The digital elevation model (DEM) data from 2014 were
provided by the Chinese geospatial data cloud, which is a popular geospatial data portal
in China (http://www.gscloud.cn/search (accessed on 13 January 2019)), with a spatial
resolution of 30 m. The 30 m land use dataset from 2015 was collected from the resource
and environment science and data center of China (http://www.resdc.cn/ (accessed
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on 20 November 2018)). There are six major types of land use: cultivated land, forest
land, grassland, water area, urban and rural, industrial and mining, residential land, and
unused land. Fourteen types of point of interest (POI) data were collected from Amap in
2015, including catering facilities, public service facilities, companies, shopping facilities,
transportation facilities, finance facilities, educational, scientific and cultural facilities,
commercial residential facilities, living service facilities, sports and leisure facilities, medical
service facilities, government agencies, and accommodation service facilities. The building
polygon data were produced according to the national geographic survey data of China.
The NPP/VIRRS night light data from 2016 were provided by the national oceanic and
atmospheric administration of America (https://ngdc.noaa.gov/eog/viirs/download_
dnb_composites.html (accessed on 6 December 2018)), with a spatial resolution of 500 m.

2.2. Methods

The diagram of the technology roadmap for the gridded population mapping is shown
in Figure 2. The research process is explained in detail below.
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2.2.1. Calculation of Initial Influence Factors in the Grid Scale

As we know, the accuracy of the spatial decomposition results of the demographic
data is not only related to the decomposition model, the resolution, and the quality of the
data source, but also to the cell size. Therefore, determining the appropriate cell size is
the first step in the spatial decomposition of demographic data. According to a previous
study [23], the cell’s area should be close to 10% of the smallest subdistrict are in the overall
study area. Hence, the cell size of 150 m was chosen for our study. Based on previous
research experience, 24 initial influence factors were selected from two groups: natural
factors and socio-economic factors. The 24 initial influence factors are shown in Table 1.
The calculation methods for the factors in the unit of each cell were as follows. Road index
is equal to the quotient of road length and cell’s area. Land use index is equal to the ratio
of each type of land use to total area of land use polygon. Night light intensity index is
calculated as the average night light intensity in the cell. Elevation index is calculated as
the average elevation of cell. Building area index denotes the ratio of the building area and

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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cell’s area. Fourteen types of POI index were calculated as the average density of each type
of POI in the unit of each cell.

Table 1. Initial influence factors.

Type Factors

Natural factors

(1) POI density: X1 (Government agencies), X2 (Public service facilities),
X3 (Commercial residential facilities), X4 (Medical service facilities), X5
(Financial facilities), X6 (Transportation facilities), X7 (Educational,
scientific, and cultural facilities), X8 (Sports and leisure facilities), X9
(Living service facilities), X10 (Catering facilities), X11 (Companies), X12
(Accommodation service facilities), X13 (Shopping facilities)
(2) Night light intensity: X14 (Night light intensity index)
(3) Building area: X17 (Building area index)
(4) Road intensity: X20 (Road density index)

Socio-economic factors

(5) Land use: X15 (Index of urban land use), X18 (Index of arable land),
X19 (Index of wood land), X21 (Index of rural land), X22 (Index of other
construction land), X23 (Index of waters), X24 (Index of grass land)
(6) Altitude: X16 (Elevation index)

2.2.2. Selection of Independent Variables Based on Geographical Detector Model

The geographical detector model proposed by Wang Jinfeng et al. [44] is a widely
used geospatial model for spatial stratified heterogeneity analysis, since this method with
no linear hypothesis has an elegant form and a definite physical meaning [45]. A factor
detector, one of the sub-detectors in used in geographical detector models, was used in
our study. First, 3000 sample points were randomly selected in the study area. Second, the
population density of sample points was chosen as the dependent variable of the factor
detector, while the 24 influence factors’ values of sample points were chosen as independent
variables. Next, the q-statistic values of the 24 influence factors, which denoted the power
of determinant, were calculated using the factor detector tool in GeoDetector. Finally, all the
influencing factors with q-statistical values greater than 0.1 and p values significant at the
level of 0.05 were selected as independent variables for the subsequent regression analysis.

2.2.3. Spatial Decomposition of Demographic Data Using Different Regression Algorithms
Machine Learning Training Method

The values of nineteen independent variables for each subdistrict were obtained by
using the zonal statistics function of ArcGIS 10.8 software. The independent variables
values were rescaled to the range of [0,1] using the formula of min.-max. normalization.
The population density of each subdistrict, which was calculated using demographic data,
was taken as a dependent variable for the regression analysis. The open-source framework
for the implementation of the regression model used in our study was scikit-learn 0.24.0,
which is a well-known free machine learning software library for the Python programming
language [46]. In terms of machine learning, the data from all the subdistricts were used
as a training set and a grid-scale of the data from all the grid units was used as a test
set during the process of spatial decomposition. The amount of training sets was 106
and the amount of test sets was 46,569. First, twelve regression models were trained to
search the best model parameters by using the GridSearchCV method of regression. The
neg_mean_squared_error, which denotes the negative value of the mean square error, was
chosen as the cost function of the GridSearchCV method. Ten-fold cross validation (CV)
was used to improve the model accuracy and avoid overfitting [47,48].

Machine Learning Test Method

Subsequently, the population densities of each cell unit were predicted using the
best estimator. Next, the predicted population of each cell was obtained by multiplying
the population density and the cell’s area. Finally, the predicted population of each
subdistrict was obtained by merging the cell’s population with the scope of the subdistrict.
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The accuracy of the prediction results was evaluated using five commonly-used metrics,
including mean absolute biased error (MABE), mean absolute percentage error (MAPE),
root mean square error (RMSE), relative error (RE), and coefficient of determination (R2),
taking the demographic data as the basis for evaluation.

All the algorithms used in this paper were implemented in the scikit-learn 0.24.0
software, except for the BSR method. A brief introduction to these regression algorithms is
presented below.

1. Ordinary Least Squares (OLS) Regression Model

The OLS regression model is one of most classic methods used for the spatial decom-
position of demographic data. The principle of the OLS method is to find the best model
by minimizing the sum of the squares of the residuals. For example, the demographic data
can be fitted by using land use index, night light intensity, altitude, POI density, and road
density. The regression model is built as follows:

Ppred
i = ∑n

j=1ajLij + bNavg + cEavg + dRavg + ∑n
k=1ekPik + g, (1)

where Ppred
i denotes the predicted population of the i-th (i is from 1 to m) subdistrict; aj

denotes the coefficient of the population distribution for the j-th land use type; Lij denotes
the j-th land use type index of the i-th subdistrict; n is the total number of land use types; b
is the coefficient of night light intensity; c denotes the coefficient of altitude; d represents
the coefficient of roads density; Navg represents the average night light intensity of each
subdistrict; Eavg represents the average altitude of each subdistrict; Ravg represents the
average road density of each subdistrict; ek represents the coefficient for the k-th POI
density index; Pik represents the k-th POI type index of the i-th subdistrict; k represents
the types of POI; and g is the constant term. The goal of the OLS regression model is to
find the optimal parameter values approximating the minimized cost function R, which is
described as follows:

R =
1

2m ∑m
i=1ri

2, (2)

where ri denotes the residual, which is defined as the difference between the true value
and the predicted value:

ri = Ppred
i − Ptrue

i , (3)

where Ptrue
i denotes the true value of the population in the i-th subdistrict.

2. Best Subset Linear Regression (BSR) Model

The best subset method finds the optimal feature combination according to the cross-
validation error by traversing all possible feature combinations. Since all possible feature
combinations are traversed, the selected feature combinations should be optimal in theory.
However, due to the method’s need to fit 2p models (it is assumed that the model has p
initial features), the computational cost is usually too large. From a computational point of
view, the optimal subset method is only suitable for a maximum of 30–40 features. As the
BSR algorithm is not implemented in scikit-learn 0.24.0 software, we had to loop all the
subsets manually to find the best subset. The python code block of the BSR algorithm is
shown in Table 2.



Appl. Sci. 2021, 11, 9424 7 of 21

Table 2. The python code block of the BSR model.

The Implementation of the BSR Algorithm

# Loop over all possible numbers of features to be included
for k in range (1, X_train.shape [1] + 1):

# Loop over all possible subsets of size k
for subset in itertools.combinations(range(X_train.shape[1]), k):

subset = list(subset)
# Traning the subset model

linreg_model = LinearRegression().fit(X_train[:, subset], y_train)
#Predict the dependent variable using the fitted subset model

linreg_prediction = linreg_model.predict(X_test[:, subset])
#Accuracy evaluation on the results of the subset model

linreg_mabe = np.mean(np.abs(y_test − linreg_prediction))
results = results.append(pd.DataFrame([{‘num_features’: k, ‘features’: subset,

‘MABE’: linreg_mabe}]))
# Inspect the best combinations

results = results.sort_values(‘MABE’).reset_index()
# Fit the best subset model

best_subset_model = LinearRegression(normalize=False).fit(X_train[:, results
[‘features’][0]], y_train)

3. Principal Component Regression (PCR) Model and Partial least squares (PLS) Regres-
sion Model

Principal component analysis is a useful method for dealing with collinearity, which
is one of the main causes of overfitting. First, the principal component analysis method
eliminates the collinearity in the model through orthogonal transformation. Second, the
principal component variables are used as independent variables for regression analysis.
Finally, according to the score coefficient matrix, the original variables are substituted
back into the new model. However, the regression model obtained with the principal
components is not as easy to explain as the regression model established with the original
independent variables. PLS regression is a combination of principal component analysis,
canonical correlation, and multiple linear regression.

4. Lasso Regression Model, Ridge Regression Model, and Elastic Net Regression Model

Regularization is also a method that is commonly used to prevent overfitting. The
general principle is to add a constraint on the parameters after the cost function (R) to
compress the regression coefficients of certain variables to zero, in order to achieve feature
selection. The constraints are usually called regularized items. The regularized items
usually include an L1 regularized item and an L2 regularized item. The L1 regularized
item is the sum of the absolute values of all the parameters (excluding the intercept). The
L2 regularized item is the sum of squares of all the parameters (excluding intercept). Lasso
regression and Ridge regression are the L1 regularization and L2 regularization of least
squares regression, respectively. The elastic net is the linear combination of the L1 norm
and the L2 norm. The Grid Search functions of these models are provided by scikit-learn
0.24.0 software; they are named LassoCV, RidgeCV and ElasticCV, respectively. The cost
function formulas of lasso regression, ridge regression, and elastic net regression are as
follows, respectively:

Rlasso =
1

2m

[
∑m

i=1ri
2 + λ∑k

j=1
∣∣ωj
∣∣], (4)

Rridge =
1

2m

[
∑m

i=1ri
2 + λ∑k

j=1ωj
2
]
, (5)

Relastic =
1

2m

[
m

∑
i=1

ri
2 + λ1

k

∑
j=1

ωj
2 + λ2

k

∑
j=1

ωj
2

]
, (6)
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where ri denotes the residual, which is defined as the difference between the true value
and the predicted value, m denotes the number of samples, λ denotes the regularization
coefficients, and ωj denotes a vector which has a length of k.

5. Least Angle Regression (LARS) Model, and Random Sample Consensus (RANSAC)
Regression Model

The LARS solution consists of a curve denoting the solution for each value of the L1
norm of the parameter vector. The RANSAC algorithm uses an iterative method to estimate
the parameters of the mathematical model from a set of observed data containing outliers.
The implementations of the LARS model and the RANSAC are provided by scikit-learn
0.24.0 software. The details of these methods are not described here; they can be found in
the Scikit learning documentation.

6. Support Vector Machine Regression (SVR) Model, K-Nearest Neighbors (KNN) Re-
gression Model, and Random Forest (RF) Regression Model

Support vector machine (SVM) is a machine learning algorithm based on statistical
learning theory [49,50], which was proposed by Vladimir Vapnik et al. in 1995, and
originally used for classification [51–53]. The two separate classes of SVM algorithm rely
on kernel functions, which are shown as a parallel line or hyperplane. Kernel, gamma,
and C are the core parameters for measuring the best SVR model. The KNN regression
model is a simple and classic non-parametric algorithm [54–56] that predicts values based
on feature similarity. The core parameters of the KNN algorithm include the number of
neighbors (k) and the distance metric. The RF regression model is also a popular machine
learning method, which was developed by Leo Breiman et al. in 2001 [57]. As in the
decision tree algorithm, the number of estimators and the maximum depth are the core
hyper-parameters for measuring the best RF regression model. These models are already
implemented in the scikit-learn 0.24.0 software. Due to space limitations, the details of the
method are not explained here.

2.2.4. Model Accuracy Evaluation Metrics

Undoubtedly, accuracy is the most significant criterion in the evaluation of a statistical
model. Therefore, five commonly used error metrics were used for the model evalua-
tion and comparison, including RE, R2, MABE, MAPE, and RMSE. The equations and
descriptions of the five metrics used in our study are presented in Table 3.

Table 3. Descriptions of error metrics used to evaluate the prediction accuracy of machine learn-
ing models.

Metric Equation Description

MABE 1
n ∑n

i=1| fi − yi|
MABE is the absolute value of the bias error that is as low as
possible. MABE provides knowledge about the long-term
performance of prediction models [58,59].

MAPE 1
n ∑n

i=1

∣∣∣ fi−yi
yi

∣∣∣× 100
As with MABE, MAPE is calculated in the form of a
percentage. The smaller the MAPE value, the better the model
performance [60,61].

RE fi−yi
yi
× 100%

The relative error (RE) is the ratio of the absolute error of a
measurement to the measurement being taken [23].

RMSE
√

1
n ∑n

i=1(yi − fi)
2

RMSE is the square root of the ratio of the square of the
deviation between the predicted value and the true value to
the number of observations. A smaller RMSE value always
represents a better performance [60].

R2 1− ∑( fi−yi)
2

∑( fi−yi)
2

R2 is an important metric reflecting the goodness of fit of the
model, which is the ratio of the regression sum of squares to
the total sum of squares. The value of R2 is between 0 and 1.
The larger the value, the better the performance [62].
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In Table 3, fi and yi are the predicted populations and the census populations of streets,
respectively; yi is the mean of the census population; n is the quantity of subdistricts.

3. Results
3.1. Independent Variables Selection Results Based on Geodetector Model

The q-statistical results implied that these influence factors both have a great impact
on the distribution of population density, as their q-statistical value was greater than 0.1
and their p values were significant at the level of 0.05. Therefore, nineteen influence factors
were chosen as ultimate independent variables for spatial decomposition research (the
indexes of urban land use, rural land use, other construction land use, waters area, and
grass land use, were excluded from original twenty-four influence factors). The ultimate
independent variables for regression are shown in Table 4.

Table 4. The final independent variables for regression.

Type Factors

Natural factors

(1) POI density: X1 (Government agencies), X2 (Public service facilities),
X3 (Commercial residential facilities), X4 (Medical service facilities), X5
(Financial facilities), X6 (Transportation facilities), X7 (Educational,
scientific and cultural facilities), X8 (Sports and leisure facilities), X9
(Living service facilities), X10 (Catering facilities), X11 (Companies),
X12 (Accommodation service facilities), X13 (Shopping facilities)
(2) Night light intensity: X14 (Night light intensity index)
(3) Building area: X17 (Building area index)
(4) Roads intensity: X20 (Road density index)

Socio-economic factors (5) Land use: X18 (Index of arable land), X19 (Index of wood land)
(6) Altitude: X16 (Elevation index)

3.2. Spatial Decomposition Results Based on Different Regression Models
3.2.1. Model Training Results for Population Density Regression on Subdistrict Scale

As mentioned above, the population densities of all the subdistricts were taken as the
dependent variables (Y), while the values of nineteen influence factors were selected as
the independent variables (X). The twelve models were trained using the GridSearchCV
function and ten-fold cross-validation. The model training results and fitted models are
shown in Tables 5 and 6, respectively.

Table 5. Model training results through 10-fold cross-validation.

Algorithm R2 RMSE MAPE (%) MABE

OLS 0.924 6471.913 48.063 4733.677
BSR 0.977 3547.13 34.667 2282.022

RANSAC 0.899 7421.336 59.307 5125.861
LARS 0.888 7838.545 69.02 5759.284
PCR 0.914 6868.028 102.96 6133.461
PLS 0.922 6535.272 89.433 5666.922

Lasso 0.924 6459.609 51.043 4819.67
Ridge 0.907 7128.09 76.27 5874.865

Elastic Net 0.915 6828.741 81.983 5814.385
SVR 0.876 8157.352 71.263 5924.128
KNN 0.925 6424.436 50.105 4711.419

RF 0.977 3606.155 21.562 2429.656
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Table 6. Fitted models for population density regression in the subdistrict scale.

Algorithm Regression Coefficients

OLS

Intercept: 1901.1, X18: −2701.682, X19: 3361.864, X14: −18,485.94, X16:
−2380.934, X10: −64,862.639, X2: 41,694.214, X11: −4371.515, X13:
−1373.629, X6: −11,883.214, X5: −5818.896, X7: 350.947, X3: 62,982.759, X9:
38,206.661, X8: 1205.293, X4: −5115.524, X1: 4267.389, X12: 8741.203, X17:
23,840.905, X20: 326.614

BSR Intercept: −3403.922, X18: 5337.635, X19: −93,394.656, X14: 53,891.134, X16:
7504.77, X10: −25,863.081, X2: 86,852.708, X11: 20,344.519, X13: 21,736.836

LARS
Intercept: −2900.887, X18: 0.0, X19: 0.0, X14: 0.0, X16: 0.0, X10: 0.0, X2:
30,624.587, X11: 0.0, X13: 0.0, X6: 0.0, X5: 0.0, X7: 0.0, X3: 7234.966, X9: 0.0,
X8: 0.0, X4: 0.0, X1: 42,087.766, X12: 0.0, X17: 8925.469, X20: 0.0

RANSAC

Intercept: 3153.065, X18: −2329.204, X19: −2244.842, X14: −15,134.735,
X16: −680.564, X10: −68,444.646, X2: 62,309.348, X11: 8446.039, X13:
−32,618.475, X6: −1115.962, X5: −70,222.187, X7: 1347.96, X3: 14,151.086,
X9: 67,667.638, X8: 32,527.374, X4: 3245.049, X1: −9210.031, X12: 39,307.589,
X17: 4264.226, X20: 6561.059

PCR
Intercept: 21,141.643, PCA_comp_1: 22,453.882, PCA_comp_2: 13,210.932,
PCA_comp_3: 34,922.859, PCA_comp_4: 4447.51, PCA_comp_5:
−18,119.79, PCA_comp_6: 21368.82

PLS

Intercept: 21,141.643, X18: 2373.471, X19: −2654.313, X14: −9015.102, X16:
−448.029, X10: −8446.882, X2: 32,589.97, X11: −12,449.821, X13: −2399.885,
X6: 3084.427, X5: −7366.366, X7: 10,634.243, X3: 21,308.299, X9: 48,67.91, X8:
6529.518, X4: 16,855.52, X1: 22,241.48, X12: −5143.745, X17: 18,142.841,
X20: −7780.463

Lasso

Intercept: 1964.62, X19: −1589.42, X14: 192.919, X16: −17,277.211, X10: 0.0,
X2: −42,274.926, X11: 39,859.867, X13: −6965.692, X6: 0.0, X5: 0.0, X7:
−3148.53, X3: 0.0, X9: 53,982.023, X8: 18,387.694, X4: 0.0, X1: −1408.461,
X12: 10,624.522, X17: 551.24

Ridge

Intercept: −564.43, X18: −463.238, X19: 6.035, X14: −11,254.556, X16:
294.123, X10: −12,849.21, X2: 27,474.343, X11: −10,941.451, X13: −971.068,
X6: 3010.897, X5: −5240.741, X7: 8376.518, X3: 18,889.473, X9: 5893.067, X8:
9164.593, X4: 6572.182, X1: 29,686.551, X12: 1171.75, X17: 18,537.403,
X20: −3996.295

Elastic Net

Intercept: −2646.624, X18: 75.337, X19: −523.813, X14: −6518.326, X16:
1903.378, X10: −3420.06, X2: 18,940.878, X11: −6626.514, X13: 1211.34, X6:
3634.379, X5: −2755.817, X7: 8352.229, X3: 13,091.079, X9: 5572.288, X8:
7356.989, X4: 11,183.943, X1: 23,092.917, X12: 655.476, X17: 14,025.249,
X20: −2551.125

SVR Non-parametric

KNN Non-parametric

RF Non-parametric

From Tables 4 and 5, it can be seen that the models trained by the various algorithms
presented obvious differences. When the RMSE metric is used as the only indicator to
measure model accuracy, the BSR model is the best model, while the SVR model is the
worst model. The results demonstrate that the BSR model can find the optimal estimator
through loop traversal in theory. When the MAPE metric is used as the only indicator to
measure model accuracy, the KNN model is the best model and the PCR model is the worst
model. The models trained by the twelve algorithms are effective when the R2 indicator is
applied as the only metric for measuring the model’s performance. Generally speaking,
when the accuracies of several models are relatively close, simple models should be given
priority over complex models. Among the nine linear regression models, the LARS model
is the simplest one, with only four independent variables. The PCR model is the second
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simplest model, with six independent variables. However, the interpretability of the PCR
model is too weak.

3.2.2. Spatial Decomposition Results of Demographic Data with Different Regression Models

The twelve trained models were applied to the test set to predict the population
density in the grid scale. The spatial decomposition results of the demographic data
generated by the twelve regression models are shown in Figure 3.
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As can be observed in Figure 3, the distribution patterns of predicted populations
derived from these twelve models were clearly different from each other. In general, all
the spatial decomposition results reflected the pattern of population concentration in the
central area. The most concentrated pattern was shown in the results from the BSR model.
By contrast, the sparsest pattern was shown in the results of the SVR model. The highest
predicted population of a cell was 5262, which appeared in the results from the Lasso
model. The lowest predicted population of a cell was zero, which appeared in the results
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from the Elastic Net model. It is worth noting that, except for the Elastic Net model, there
were no zero-valued grid cells in the decomposition results of the remain eleven algorithms.
Among the results generated by the three nonlinear regression algorithms, the distribution
of cells with high predicted populations were wider than those of the linear algorithms,
especially the SVR model. According to the demographic data in the subdistrict scale,
it seems that the nonlinear regression algorithms revealed the spatial heterogeneity of
population distributions more clearly.

3.3. Accuracy Assessment of Spatial Decomposition Results Using Twelve Regression Models

The accuracy of the decomposition results derived from the various algorithms was
evaluated using metrics such as RMSE, MAPE, and so on. The accuracy assessment of the
spatial decomposition results derived from the twelve algorithms is shown in Table 7.

Table 7. Evaluation of decomposition results.

Algorithms R2 RMSE MABE MAPE (%)

OLS 0.924 6471.913 48.063 4733.677
BSR 0.977 3547.13 34.667 2282.022

RANSAC 0.899 7421.336 59.307 5125.861
LARS 0.888 7838.545 69.02 5759.284
PCR 0.914 6868.028 102.96 6133.461
PLS 0.922 6535.272 89.433 5666.922

Lasso 0.924 6459.609 51.043 4819.67
Ridge 0.907 7128.09 76.27 5874.865

Elastic Net 0.915 6828.741 81.983 5814.385
SVR 0.876 8157.352 71.263 5924.128
KNN 0.925 6424.436 50.105 4711.419

RF 0.977 3606.155 21.562 2429.656

We can see immediately from Table 7 that the decomposition accuracy of the OLS
model was the worst as the RMSE value of the OLS model exceeded 200 and the R2 value
was only 0.19. Hence, an obvious inference is that the OLS model has an overfitting
problem in our study case. Compared with the OLS model, the decomposition accuracies
of the BSR model, the RANSAC model and the LARS model were significantly improved.
The comparison results demonstrated that subsetting is an effective method to correct the
overfitting problem. However, among the three subsetting regression models, the accuracy
of the LARS model was the best, followed by the RANSAC model and the BSR model. This
ranking implies that the solution to searching for the optimal subset combination through
loop traversal may not necessarily lead to a better model. The decomposition results of four
regularization models, Lasso, Ridge, Elastic Net, and B-Ridge, showed that regularization
is also one of the general solutions to alleviate overfitting. In both the OLS model and the
four regularization models, the decomposition accuracy was significantly improved.

Among the three regularized regression models, the ridge regression model demon-
strated the best prediction accuracy. Therefore, we can speculate that L2 regularization
was the optimal regularization scheme in our study. Compared with the OLS model, the
decomposition accuracies of the PCR model and the PLS model were also significantly im-
proved, indicating that the feature reduction method is also useful in alleviating overfitting.
The prediction accuracies of the PCR model and the PLS model were very close; they can
be considered as almost equivalent models in this case. Based on the accuracy evaluation
results of the above nine linear regression models, it can be considered that in addition to
the OLS regression model, the remaining linear regression models are also suitable for our
study. Among the linear regression models, the ridge regression model was preferred as it
demonstrated the best decomposition accuracy.

It is obvious that the prediction accuracies of three nonlinear regression models
presented in Table 4 were significantly better than in the OLS model. The decomposition
accuracies of the three nonlinear regression models, in ascending order, were the SVR
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model, the RF model, and the KNN model. Among them, the R2 values of the RF model
and the KNN model both exceeded 0.7, indicating that they both offer good decomposition
effects. Therefore, the KNN model and the RF model were both suitable for this study.
Because the decomposition accuracy of the RF model was slightly worse than that of
the KNN model, the KNN model was the preferred nonlinear model in this study. The
experiment demonstrated again that there is no universal model for machine learning
regression. The statistics for the proportion of cell numbers in the twelve model outputs
are shown in Figure 4.
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Among the decomposition results generated by the twelve regression models, the
proportion of cells with a population density of less than 17,000 people/km2 exceeded
90% (see Figure 4). In the decomposition results from the BSR model, the proportion of
cells with a population density of less than 17,000 people/km2 was the highest, about
96.76%. In contrast, in the decomposition results from the RF model, the proportion of cells
with a population density of less than 17,000 people/km2 was close to 91.6%, which was
the lowest.

The proportion of subdistricts with different relative errors in the twelve model results
is shown in Figure 5. As can be seen in Figure 5, the proportions of subdistricts with
different relative errors derived from the twelve models varied. Generally speaking, when
the RE value of the model was in the range of −30% and 30%, it can be considered that the
model prediction was sufficiently accurate. When the RE value of the model output was
higher than 30%, it can be considered that the predicted population was overestimated.
When the RE value of the model output was less than −30%, it can be considered that the
predicted population was underestimated.

The proportion of subdistricts with RE between −30% and 30% in the model output
can be used to evaluate how many subdistricts present reasonable accuracy. The number of
subdistricts with RE between−30% and 30% in the RF model output was the highest (there
were 53 subdistricts within the range) while that of the BSR model was the lowest (only
25 subdistricts fell within the range). When the relative error value of the model output
was higher than 30%, it can be considered that the predicted value was overestimated. In
the decomposition results from the OLS model, 68 subdistricts demonstrated a relative
error value higher than 30%, which accounted for 64.1% of the total number of subdistricts.
In addition, there were 61 subdistricts with a relative error higher than 30% in the decom-
position results from the Lasso model, which accounted for 57.5% of the total number of
subdistricts. This result implied that the OLS model and the Lasso model both displayed a
serious tendency to overestimate the population density. It is worth mentioning that in the
spatial decomposition results from the OLS model, the number of subdistricts with an RE
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greater than 30% accounted for more than 64%, which may be the main manifestation of the
poor accuracy of the OLS model. In the decomposition results from the BSR model and the
RANSAC model, the number of subdistricts with an RE higher than 30% were 28 and 29,
respectively. Therefore, it can be considered that the BSR model and the RANSAC model
were regression models with a lower tendency towards overestimation. The quantity of
subdistricts with an RE of less than−30% in the decomposition results from the OLS model
was 7, which was the lowest of all the models. In contrast, the number of subdistricts
with an RE of less than −30% in the decomposition results from the BSR model was 53,
which was the highest of all the models. These results may imply that the BSR model had a
serious tendency towards underestimation. In summary, compared with that of the linear
regression models, the accuracy of the non-linear regression models, RF, KNN, and SVR,
was superior. Because the best performance was observed in the KNN model, the spatial
decomposition results of the demographic data from the KNN algorithm are discussed in
the following text. The gridded population map derived from the KNN model is shown in
Figure 6 (overlayed by the boundary of subdistricts rendered with a light gray dotted line).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22 
 

 
Figure 5. Grouping statistics for the proportion of subdistricts with different relative errors. 

The proportion of subdistricts with RE between −30% and 30% in the model output 
can be used to evaluate how many subdistricts present reasonable accuracy. The number 
of subdistricts with RE between −30% and 30% in the RF model output was the highest 
(there were 53 subdistricts within the range) while that of the BSR model was the lowest 
(only 25 subdistricts fell within the range). When the relative error value of the model 
output was higher than 30%, it can be considered that the predicted value was overesti-
mated. In the decomposition results from the OLS model, 68 subdistricts demonstrated a 
relative error value higher than 30%, which accounted for 64.1% of the total number of 
subdistricts. In addition, there were 61 subdistricts with a relative error higher than 30% 
in the decomposition results from the Lasso model, which accounted for 57.5% of the total 
number of subdistricts. This result implied that the OLS model and the Lasso model both 
displayed a serious tendency to overestimate the population density. It is worth mention-
ing that in the spatial decomposition results from the OLS model, the number of subdis-
tricts with an RE greater than 30% accounted for more than 64%, which may be the main 
manifestation of the poor accuracy of the OLS model. In the decomposition results from 
the BSR model and the RANSAC model, the number of subdistricts with an RE higher 
than 30% were 28 and 29, respectively. Therefore, it can be considered that the BSR model 
and the RANSAC model were regression models with a lower tendency towards overes-
timation. The quantity of subdistricts with an RE of less than −30% in the decomposition 
results from the OLS model was 7, which was the lowest of all the models. In contrast, the 
number of subdistricts with an RE of less than −30% in the decomposition results from the 
BSR model was 53, which was the highest of all the models. These results may imply that 
the BSR model had a serious tendency towards underestimation. In summary, compared 
with that of the linear regression models, the accuracy of the non-linear regression models, 
RF, KNN, and SVR, was superior. Because the best performance was observed in the KNN 
model, the spatial decomposition results of the demographic data from the KNN 
algorithm are discussed in the following text. The gridded population map derived from 
the KNN model is shown in Figure 6 (overlayed by the boundary of subdistricts rendered 
with a light gray dotted line). 

Figure 5. Grouping statistics for the proportion of subdistricts with different relative errors.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 22 
 

 
Figure 6. Gridded population map derived from the KNN model. 

The population distribution in the study area presented an obvious spatial pattern: 
high in the center and low in the periphery (as seen in Figure 6). Specifically, the popula-
tion density was highest in the northeast part of YueXiu district, LiWan district, and 
TianHe district. The cells with high population density were mainly distributed in the 
range of 5 km to the north of the Pearl River channel and 3 km to the south of the channel. 
The population in the northern part of the Pearl River channel was higher than that in the 
southern part of the Pearl River channel. It was demonstrated that the spatial pattern il-
lustrated by the gridded population data was clearer than the demographic data. The rel-
ative error map of each subdistrict is illustrated in Figure 7 in order to evaluate the KNN 
model results at the subdistrict scale. 

 
Figure 7. The relative error map of the KNN model. 

Figure 6. Gridded population map derived from the KNN model.



Appl. Sci. 2021, 11, 9424 16 of 21

The population distribution in the study area presented an obvious spatial pattern:
high in the center and low in the periphery (as seen in Figure 6). Specifically, the population
density was highest in the northeast part of YueXiu district, LiWan district, and TianHe
district. The cells with high population density were mainly distributed in the range of
5 km to the north of the Pearl River channel and 3 km to the south of the channel. The
population in the northern part of the Pearl River channel was higher than that in the
southern part of the Pearl River channel. It was demonstrated that the spatial pattern
illustrated by the gridded population data was clearer than the demographic data. The
relative error map of each subdistrict is illustrated in Figure 7 in order to evaluate the KNN
model results at the subdistrict scale.
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As can be seen from Figure 7, most of the populations of the subdistricts in LiWan
district, YueXiu district, and the western part of HaiZhu district were underestimated.
Meanwhile, most of the populations of the subdistricts in TianHe district, the northern
part of HuangPu district, and the eastern part of HaiZhu District were overestimated.
Specifically, the subdistricts with an RE greater than 50% included Taihe, Zhongluotan,
Yongping, Junhe, Shijing, Songzhou, Jinsha, Tongde, Tangjing, Xinshi, Sanyuanli, Tonghe,
Liuhua, Fenghuang, Yuangang, Changxing, Xintang, Huangcun, Zhuji, Qianjin, Dasha,
Suidong, Huazhou, Nanzhou, Pazhou, Liede, Xiancun, and Linhe. The subdistricts with
an RE lower than −32% included Changzhou, HuangPu, Shayuan, Nanshitou, Ruibao,
Meihucun, Jianshe, Dadong, Nanhuaxi, Renmin, Zhanqian, Xicun, Nanyuan, Caihong,
Changhua, Fengyuan, Duobao, Lingnan, ShiweiTang, Huadi, Dongjiao, Baihedong, and
Dongsha. Based on the demographic data, it was found that the KNN algorithm generally
underestimated populations in the subdistricts with higher population density, and overes-
timated them in the subdistricts with lower population density. Combined with the spatial
pattern of the ancillary data, such as POI, night lights data, and so on, we found that in
the areas where various modeling data were densely distributed, the prediction results of
the KNN algorithm were mostly underestimations. On the contrary, in the area where the
ancillary data were sparsely distributed, the prediction results of the KNN algorithm were
mostly overestimations. A reasonable inference is that due to the fact that the differences
in the socio-economic environment within the region were ignored, a single or global
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KNN model may have led to unreasonable estimations in the model output. According to
previous studies, the zonal strategy can effectively solve the shortcomings of the global
model by using secondary partition modeling [23,63]. Therefore, the zonal strategy should
be given priority when dealing with the shortcomings of the global model.

4. Discussion and Conclusions
4.1. Discussion

In this study, we used twelve machine learning regression algorithms to spatially
decompose demographic data into a grid scale by integrating geospatial data from various
sources such as POI, night lights, land use, and so on. The following issues should be
discussed further, based on the above experimental analysis.

4.1.1. Principal Findings and Meaningful Implication

(1) The methodology framework proposed in this paper provides an effective and rapid
approach to the fine spatial decomposition of demographic data. The auxiliary data
from various sources can be combined for gridded population mapping via machine
learning regression. It was demonstrated that location-based services (LBS) data,
derived from mobile phones, Baidu map, Tencent LBS, Sina Weibo, and so on, offer
the possibility of illustrating gridded population maps more accurately and finely
in urban areas [11,22,64–71]. In particular, the accuracy of gridded population maps
can be improved significantly through the integration of remote sensing data and
LBS data [72]. The geographical detector model can quickly and effectively identify
the factors influencing population density distributions. Three non-linear machine
learning regression algorithms, including the SVR model, the RF model and the KNN
model, were employed in the spatial decomposition of demographic data, which
was demonstrated to be useful for mining implicit non-linear relationships. The
proposed approach can provide very useful information to support future research on
the spatial decomposition of demographic data with growing multi-source geospatial
data [22,73].

(2) The results of this study indicate that the OLS model is prone to overfitting in the
spatial decomposition of demographic data. As we know, bias and variance are two
key characteristics of estimators that must be considered in regression analysis; the
former measures the accuracy of the model, while the latter measures the stability of
the model. Clearly, ordinary least square linear regression is more affected by variance
due to the excess of independent variables or collinearity. Both regularization and
subsetting methods can effectively improve overfitting in the OLS model. Because
all possible feature combinations are traversed, the features selected by the BSR
model should, theoretically, offer an optimal combination. However, in this case, the
improvement effect of the regularization methods on overfitting was better than in the
BSR model, whether in the L1 regularization or the L2 regularization. These results
again reflected the shortcomings of the BSR model. The reason why the BSR model
is not the best in practical applications is still unclear; the unreasonable selection of
independent variables, collinearity, and so on, are worth considering in this regard. In
addition, another drawback of the BSR model is that it needs to fit 2p models, which
is very computationally expensive (assuming the model includes p features). For
this reason, we believe that for the spatial decomposition of demographic data, the
regularization method is better than the subsetting method in improving overfitting.

(3) The results of our case study demonstrate that for the spatial decomposition of
demographic data, nonlinear regression models offer greater accuracy than linear
regression models. The results may imply that the relationship between population
density distribution and impact factors is complicated and non-linear. Since the
nonlinear regression model can deal better with the collinearity of independent
variables and other problems that easily lead to overfitting, we suggest that when
conducting research on the spatial decomposition of demographic data, priority
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should be given to using nonlinear regression models to improve the accuracy of
results. However, the results of regression models such as the KNN model, the SVR
model and the RF model are non-parametric, and the interpretability of these models
is very poor. Therefore, when the interpretability of the model needs to be taken
into account, linear regression models based on the regularization method should be
given priority.

4.1.2. Explanations for Further Research

There are some limitations in this study. The first disadvantage of this paper is that
whether the results of our study are valid in other regions is still in doubt. As the study area
was the main developed area of Guangzhou city, the POI data were sufficient to support the
implementation of the proposed method. However, the applicability of the multi-source
geospatial data-driven method in other regions still needs to be studied, especially in
non-urban areas, where auxiliary data are relatively sparse. Hence, the proposed method
may be more suitable for developed areas with abundant geospatial data.

Second, the data sources for prompting the fine-scale spatial decomposition research
need to be enriched. Dynamic geo-data, such as mobile phone communication data [74],
social media check-in data [64,67,68], GPS trajectory data [66], and so on, can effectively im-
prove the accuracy of the proposed approach and provide the spatial-temporal information
on population distribution on the fine scale, which is very important for issues in urban
governance, such as emergency management, public service facility configuration, and
so on. In future research, we could focus on revealing the spatial-temporal dynamics of
population distribution with more individual-scale trajectory data, such as mobile phone
signaling data, non-floating bicycle trajectory data, online car trip hailing data, and so on.

Finally, although this article discusses twelve commonly used linear regression models
and non-linear regression models that were used to perform the experiments, the popular
neural network model was not involved. However, studies of the spatial decomposition of
demographic data based on neural networks are relatively rare. These issues are worthy of
further exploration.

4.2. Conclusions

This paper compares the use of twelve machine learning regression algorithms in
gridded population mapping of Guangzhou city, China. Various spatial data (such as night
light images, land use, POI, roads, and so on) from different sources are considered in the
study. To evaluate the performance of the twelve regression algorithms, several metrics
were involved in this study. The results indicate that the proposed method has great
potential in fine-scale gridded population mapping. The conclusions can be summarized
as follows.

(1) The R2 values of the twelve regression algorithms discussed in this paper varied be-
tween 0.193 and 0.758. It can be said that besides the OLS algorithm, all the algorithms
produced acceptable decomposition results by taking the R2 as the only evaluation
metric. When all the algorithms were evaluated with the metric of MAPE, it was
observed that the MAPE values of these models varied between 78.58% and 174.37%.
That is, it can be concluded that all the decomposition results can be considered
“reasonable”, apart from those of the OLS algorithm. Both the regularization method
and the subsetting method can effectively alleviate overfitting in the OLS model. For
the spatial decomposition of demographic data, the regularization method is better
than the subsetting method in alleviating overfitting.

(2) According to the model evaluation results, it can be seen that nonlinear regression
algorithms offer greater accuracy than linear regression algorithms. Among the three
nonlinear regression algorithms discussed in this study, the RF algorithm and the
KNN algorithm both produced better results than the SVR algorithm, especially the
KNN algorithm. Therefore, the KNN algorithm was recognized as a more suitable
algorithm for this study. However, the accuracy of the KNN algorithm in other areas
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still needs to be evaluated. In addition, because the KNN algorithm does not provide
a parameterized regression model, the interpretability of the decomposition model is
very poor.
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