

Article Mesh-Free Surrogate Models for Structural Mechanic FEM Simulation: A Comparative Study of Approaches

Johannes G. Hoffer ^{1,*}, Bernhard C. Geiger ¹, Patrick Ofner ¹, and Roman Kern ^{2,*}

- ¹ Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Inffeldgasse 13, 8010 Graz, Austria; bgeiger@know-center.at (B.C.G.); patrick@ofner.science (P.O.)
- ² Institute of Interactive Systems and Data Science, Graz University of Technology, Inffeldgasse 16c, 8010 Graz, Austria
- * Correspondence: jhoffer@know-center.at (J.G.H.); rkern@tugraz.at (R.K.)

Abstract: The technical world of today fundamentally relies on structural analysis in the form of design and structural mechanic simulations. A traditional and robust simulation method is the physics-based finite element method (FEM) simulation. FEM simulations in structural mechanics are known to be very accurate; however, the higher the desired resolution, the more computational effort is required. Surrogate modeling provides a robust approach to address this drawback. Nonetheless, finding the right surrogate model and its hyperparameters for a specific use case is not a straightforward process. In this paper, we discuss and compare several classes of mesh-free surrogate models based on traditional and thriving machine learning (ML) and deep learning (DL) methods. We show that relatively simple algorithms (such as *k*-nearest neighbor regression) can be competitive in applications with low geometrical complexity and extrapolation requirements. With respect to tasks exhibiting higher geometric complexity, our results show that recent DL methods at the forefront of literature (such as physics-informed neural networks) are complicated to train and to parameterize and thus, require further research before they can be put to practical use. In contrast, we show that already well-researched DL methods, such as the multi-layer perceptron, are superior with respect to interpolation use cases and can be easily trained with available tools. With our work, we thus present a basis for the selection and practical implementation of surrogate models.

Keywords: FEM; surrogate modeling; mesh-free; machine learning; deep learning

1. Introduction

Assessing the properties of mechanical structures with real physical experiments is expensive, as it costs both time and resources. To reduce these costs of knowledge enrichment in the field of structural analysis, computer simulations of structural mechanics have become crucial. An essential simulation method is the finite element method (FEM) in which the simulation domain space is represented by a finite number of connected elements. Space- and time-dependent behavior between connected elements and within the elements themselves is governed by physical equations. Observation of real physical experiments provides the coefficients for these governing equations. Since most geometries and use cases cannot be solved analytically, an approximation of the proposed physical equations is obtained by numerical methods [1]. However, solving complex problems with FEM is time-consuming and computationally expensive. In order to reduce the computational effort, surrogate modeling offers a promising solution [2].

Surrogate models are trained in a supervised manner and are designed to learn the function mapping between inputs and outputs from a given FEM simulation use case. With a sufficient amount of training data with respect to the use case, an according model is able to substitute for the FEM simulation use case up to a certain accuracy.

There is already a considerable number of related work concerning surrogate modeling of structural mechanics simulations with machine learning (ML) or deep learning (DL)

Citation: Hoffer, J.G.; Geiger, B.C.; Ofner, P.; Kern, R. Mesh-Free Surrogate Models for Structural Mechanic FEM Simulation: A Comparative Study of Approaches. *Appl. Sci.* 2021, *11*, 9411. https://doi.org/10.3390/app11209411

Academic Editors: Jin-Gyun Kim, Jae-Hyuk Lim and Peter Persson

Received: 15 September 2021 Accepted: 3 October 2021 Published: 11 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). approaches. In the following, we want to present the most important works for this paper. Artificial neural networks (ANN) are used in the work of Roberts et al. [3] to predict damage development in forged brake discs reinforced with Al-SiC particles, using damage maps. The ANN is a multilayer perceptron (MLP), and training data are obtained from FEM simulations using the commercial DEFORM simulation software. For rapid estimation of forming and cutting forces for given process parameters, Hans Raj et al. [4] investigate a method using MLP models. The researchers focus on two processes: hot upsetting and extrusion. Each process, represented by a MLP, is trained with FEM simulation results from the FORGE2 commercial FEM simulation software. García-Crespo et al. [5] predict the projectile response after impact with steel armor using a MLP; their surrogate model studied is trained with data from FEM simulations of the use case. Nourbakhsh et al. [6] explore generalizable surrogate models for 3D trusses, using MLP and FEM training data. Chan et al. [7] estimate the performance of hot-forged product designs, using a MLP trained on FEM results obtained with the commercial software DEFORM. D'Addona and Antonelli [8] use single-layer feedforward ANNs instead of FEM as a metamodel in a sequential approximate optimization (SAO) algorithm. In a case study on hot forging of a steel disk, they compare their results with an ANN trained on FEM simulation results and the FEM simulation software QForm3D. Gudur and Dixit [9] predict the velocity field and location of neutral point of cold flat rolling with a MLP trained with rigid-plastic FEM simulation results. Pellicer-Valero et al. [10] predict the mechanical behavior of different livers with MLPs trained from FEM simulations.

Abueidda et al. [11] estimate the mechanical properties of a two-dimensional checkerboard composite using a convolutional neural network (CNN) trained with FEM results. Regarding mesh-based approaches, Pfaff et al. [12] present a framework to train graph neural networks (GNN) on mesh-based simulations and show the applicability in aerodynamics, structural mechanics, and fabric.

Surrogate models were also obtained using classical, i.e., non-neural ML, approaches. For example, the authors of [3] apply Gaussian process regression (GPR) besides ANN in their approach. Loghin and Ismonov [13] predict the stress intensity factors, using GPR trained with FEM results of a classical bolt-nut assembly. Ming et al. [14] model the electrical discharge machining process with GPR trained from data generated with numerical FEM simulation.

Using support vector regression (SVR), Pan et al. [15] construct a metamodel in an optimization approach for lightweight vehicle design. Training data are generated, using design of experiment approaches with FEM simulations. To predict the stress at the implantbone interface, Li et al. [16] utilize SVR in order to replace FEM simulation. Hu and Li [17] estimate cutting coefficients in a mechanistic milling force model with SVR trained with FEM simulation data.

Employing tree-based models, Martínez-Martínez et al. [18] estimate the biomechanical behavior of breast tissue under compression, using three different tree-based models trained from FEM simulations. The models are trained with FEM data in terms of nodal coordinates and nodal tissue membership. Zhang et al. [19] estimate the base failure stability for braced excavations in anisotropic clay using extreme gradient boosting, random forest regression (RFR) and data obtained from FEM simulation results. Qi et al. [20] utilize a decision tree regressor to predict the mechanical properties of carbon fiber reinforced plastics with data obtained from FEM simulations. Besides MLPs Pellicer-Valero et al. [10] utilize RFRs to predict the biomechanics of livers.

A recent neural network-based approach are physics informed neural networks (PINNs). PINNs are trained simultaneously on data and governing differential equations and can be used for the solution and inversion of equations governing physical systems. Utilizing PINNs, Haghighat and Juanes [21] substitute a particular FEM simulation of a perforated strip under uniaxial extension. In [22], Haghighat et al. present a surrogate modeling approach with PINNs and a specific use case. Focusing on consistency, Shin [23] evaluates findings regarding PINNs with Poisson's equation and the heat

equation. Yin et al. [24] use PINNs to predict permeability and viscoelastic modulus from thrombus deformation data, described by the fourth-order Cahn–Hilliard and Navier–Stokes equations. In addition to the application of PINNs in structural mechanics problems, there is also a considerable number of papers, especially in computational fluid dynamics [25–29].

Related work shows capabilities of surrogate modeling, thus demonstrating the feasibility of supervised learning models trained with FEM simulations. From our analysis of the existing literature, we identify the following drawbacks:

- In most cases, the surrogate model only substitutes for a subset of the considered computational domain. Thus, such an approach focuses only on a region of interest and cannot be used to evaluate the entire computational domain (notable exceptions are [12,22]).
- Surrogate models representing the complete discretized computational domain (mesh) are solely fitted and evaluated on one use case—generalization to unseen data is only achieved with respect to the discretization of the computational domain, but not with respect to other use case specific parameters (notable exception concerning material parameters [22]).
- Due to differences in FEM use cases and data, the comparison of related work is useful only in some cases.
- Replication of published experiments is often not achievable because important parameters are not reported, e.g., number of finite elements, type of finite elements (bilinear, biquadratic, reduced integration etc.), method of discretization (meshing), as well as hyperparameters of the ML models, such as learning or activation functions.

To address these drawbacks, we present the following contributions of our paper:

- 1. We present the main DL and ML methods together with a compact description and mathematical notation to equip practitioners with a reference to surrogate FEM simulation mesh-free and assess the feasibility and maturity of the novel PINNs method.
- 2. We utilize three classic use cases in structural mechanics and evaluate these models in terms of performance on unseen configurations (inter- and extrapolation) in order to assess their ability to generalize across different use case specific parameters.
- 3. We discuss the characteristics of all DL and ML models, and their practical implications, in the context of the use cases.

With our work, we pave the way of mesh-free surrogate modeling for practical use: we provide a basis for efficient model and hyperparameters selection regarding use case and performance metrics. These insights shall not only assist the domain expert during model selection, but will also help in consolidating the current research in mesh-free surrogate modeling for structural mechanics applications.

We report all information to make our experiments reproducible. If certain model settings are not mentioned, they are left at default values. Moreover, our FEM simulations are performed with Abaqus Student Edition 2019 (Dassault Systèmes, Velizy-Villacoublay, France), and thus, the process of data generation is not limited to commercial software, which makes it possible for everyone to connect to our research.

The remainder of this paper is organized as follows. In Section 2, we present the materials and methods of our experiments, first providing insights into the process of data generation, using the FEM simulations in Section 2.1, then describing the datasets obtained from the FEM simulations in Section 2.2, followed by the ML and DL models used in Section 2.3. Section 3 shows the results, which are discussed in Section 4. In Section 5, we present the conclusion of our work and an outlook for the future.

2. Materials and Methods

In this section, we present all relevant information about the methodology of our experiments. First, Section 2.1 provides an overview of the data generation process, using

three classic FEM simulation use cases. Then, Section 2.2 describes the datasets used from the FEM simulations, and Section 2.3 presents the ML and DL models used. A more detailed overview of the mathematical background and assumptions of the ML and DL models can be found in the Appendix. When predicting a particular use case with a surrogate model, the individual nodes discretizing the particular geometry of the use case (i.e., mesh) are sequentially input into the surrogate model with the appropriate generalization variable. The surrogate model then predicts the output of each node in sequence; see Figure 1.

Figure 1. Principle of our surrogate model approach: all *N* nodes (i.e., their coordinates), together with the respective generalization variable, are sequentially entered into a surrogate model, which then sequentially predicts the outcome of the respective coordinates (i.e., the displacements, strains, and stresses of the respective node).

It should be noted that there are no constraints on the discretization (mesh), i.e., the node coordinates can be freely chosen within the simulation domain and nodes are not connected to each other. Therefore, we refer to our approach as mesh-free, but we want to clearly distinguish ourselves from other mesh-free methods, such as smoothed particle hydrodynamics, the diffuse element method, the moving particle finite element method, etc. The predictions of the individual nodes together constitute the prediction for the simulation domain of the particular use case. By adding the nodal displacement outputs of the surrogate model to the initial node coordinates, we obtain the new deformed geometry. Further surrogate model outputs (e.g., stresses, strains) describe the queried nodes and thus the complete simulation domain in more detail.

2.1. FEM Use Cases

For illustration, we base our evaluation on three classic use cases from structural mechanics. We consider the (1) tensile load, (2) bending load and (3) compressive load:

- 1. Elongation of a plate with a perforation;
- 2. Bending of a beam;
- 3. Compression of a block with four perforations.

See Table 1 and Figure 2. We utilize an isotropic elasto-plastic rate-independent material model (i.e., a perfectly plastic material). The kinematic relations for our 2D plane strain use cases are defined by the total strain components $\varepsilon_{xx} = \frac{\partial u_x}{\partial x}$, $\varepsilon_{yy} = \frac{\partial u_y}{\partial y}$, $\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$, $\varepsilon_{zz} = 0$ with displacements u_x and u_y and deviatoric strain components $e_{xx} = \varepsilon_{xx} - \frac{\varepsilon_{vol}}{3}$, $e_{yy} = \varepsilon_{yy} - \frac{\varepsilon_{vol}}{3}$, $e_{xy} = \varepsilon_{xy}$ and $e_{zz} = -\frac{\varepsilon_{vol}}{3}$. Since there is no volumetric plastic strain in the von Mises yield function, the volumetric strain can be expressed as

 $\varepsilon_{vol} = \operatorname{trace}(\varepsilon)$ s.t. $\varepsilon_{vol} = \varepsilon_{xx} + \varepsilon_{yy}$. The deviatoric stress components are defined by $s_{xx} = \sigma_{xx} - (\frac{\sigma_{xx} + \sigma_{yy} + \sigma_{zz}}{3})$, $s_{yy} = \sigma_{yy} - (\frac{\sigma_{xx} + \sigma_{yy} + \sigma_{zz}}{3})$, $s_{xy} = \sigma_{xy}$ and $s_{zz} = \sigma_{zz} - (\frac{\sigma_{xx} + \sigma_{yy} + \sigma_{zz}}{3})$, where σ_{ij} ($i, j \in \{x, y\}$) are the components of the Cauchy stress tensor. The plastic strain components are defined by $\varepsilon_{xx}^{pl} = \overline{\varepsilon}^{pl} \frac{3}{2} \frac{s_{xx}}{q}$, $\varepsilon_{yy}^{pl} = \overline{\varepsilon}^{pl} \frac{3}{2} \frac{s_{yy}}{q}$, $\varepsilon_{xy}^{pl} = \overline{\varepsilon}^{pl} \frac{3}{2} \frac{s_{xy}}{q}$ and $\varepsilon_{zz}^{pl} = \overline{\varepsilon}^{pl} \frac{3}{2} \frac{s_{zz}}{q}$ with equivalent plastic strain of the von Mises model as $\overline{\varepsilon}^{pl} = \overline{\varepsilon} - \frac{\sigma_{yy}}{3\mu} \ge 0$, where σ_{Y} is the yield stress and μ the second Lamé parameter. The total equivalent strain is defined by $\overline{\varepsilon} = \sqrt{\frac{2}{3} \sum_{i,j \in \{x,y\}} e_{ij} e_{ij}}$ with deviatoric strain components e_{ij} . The decomposition of the strain is $\varepsilon_{ij} = \varepsilon_{ij}^{el} + \varepsilon_{ij}^{pl}$ with elastic component ε_{ij}^{el} and plastic component ε_{ij}^{pl} of the respective strain matrices. The equivalent stress is defined by $q = \sqrt{\frac{3}{2} s_{ij} s_{ij}}$. In our PINN approach, we utilize the definitions of the total strain components, deviatoric strain and stress components and plastic strain components in the respective regularization term.

We use quarter symmetry in use cases 1 and 3 to make efficient use of computational resources. Additional information regarding the variation of parameters in the simulations is presented in Table 2, where simulations marked in bold are used for the test and evaluation of the surrogate models and are not in the training dataset. Conversely, simulations not marked in bold represent the training dataset and are not in the test dataset. In use cases exhibiting varied geometry parameters (i.e., elongation of a plate and compression of a block use cases), the mesh is also different in each simulation. Thus, we train and evaluate the surrogate models on use cases with different meshes (i.e., in each simulation, the node coordinates differ).

Table 1. Classic FEM use cases. Overview of the three use cases and their main change and types of deformations. In the first two use cases, only a single change is conduced, while in the last use case, a combination of changes is studied.

Use Case	Change	Deformation
Plate	Geometry	Elongation
Beam	Material Properties	Bending
Block	Geometry, Material Properties	Compression

The first use case, a perforated steel strip under tensile load, is similar to the nonlinear solid mechanics use case of [21,22]. However, in our approach, we evaluate the generalization over the perforation diameter and use material properties for steel and a top edge displacement of 5 mm in positive *y*-axis to consider a more challenging use case.

We execute different simulation settings, where the generalization variable (diameter of perforation) is changed in each simulation; see Figure 2a and Table 2. In our second use case, we simulate a bending beam that end is displaced about 5 mm in the positive x-direction; see Figure 2b. We vary the yield stress generalization variable in each simulation setting; see Table 2. In our third use case, we simulate a quarter-symmetric block with four perforations under compressive load, which is compressed about 5 mm in the negative y-axis; see Figure 2c. In this use case, we vary two generalization variables (yield stress and width of the block) in each simulation; see Table 2.

We evaluate our models on interpolation (i.e., that the generalization variables for testing are within the range of the generalization variables observed during training) and extrapolation (i.e., that the generalization variables for testing are outside the range of the generalization variables observed during training) tasks. In Table 2, we mark interpolation tasks with superscript (i) and extrapolation tasks with superscript (e).

In Figure 3, we present the perfect nonlinear elastoplastic material behavior of our use cases. The Young's modulus is 210 GPa, Poisson's ratio 0.3 and the yield stress 900 MPa. In our first use case, the perforated plate, we use this setting in each simulation. In the other two use cases, the yield stress varies, while the remaining material parameters stay the same.

(c) Dimensions of the block with four perforations

Figure 2. The three use cases: (**a**) elongation of a plate (diameter = 100 mm) about 5 mm at the top end in positive y-direction, (**b**) bending of a beam by a displacement at the top end about 5 mm in positive x-direction, (**c**) compression of a block with four perforations in the center of the quarter-symmetric parts (width = 220 mm) about 5 mm in negative y-direction and (**d**) the considered coordinate system.

Coordinate

system

All parts are meshed, using plane strain 4-node bilinear quadrilateral elements with reduced integration and hourglass control. Please note that although [22] recommends the use of larger order elements for the approximation of body forces, we use bilinear elements since we do not use body forces in our surrogate modeling approaches. We create a finer mesh near additional geometric details (i.e., perforations in the plate and block use cases) and seed the perforation edge of the plate with an approximate size of 3.8 mm and the remaining edges with an approximate size of 5 mm. The perforation edges of the block are seeded with an approximate size of 3 mm and the remaining edges with an approximate size of 4 mm. The beam exhibits no comparable geometric details; thus, we seed all edges with an approximate size of 1.5 mm.

Table 2. Dataset generation by executing several different simulations with varying generalization variables (Plate
perforation Diameter, Beam: Yield Stress and Block: Yield Stress and Width), bold marked simulations are not in the training
dataset and only used for test and evaluation. Interpolation tasks are marked with superscript (i) and extrapolation tasks
with superscript (<i>e</i>).

						Plate							
Simulation ID	$1^{(e)}$	2	3	4 ⁽ⁱ⁾	5 100	6 ⁽ⁱ⁾	7	8	9 (e) 140				
	00	70	00	90	100	Beam	120	150	140				
Simulation ID Yield Stress [MPa]	1 ^(e) 850	2 900	3 950	4 ⁽ⁱ⁾ 1000	5 1050	6 ⁽ⁱ⁾ 1100	7 1150	8 1200	9 ^(e) 1250				
						Block							
Simulation ID Yield Stress [MPa] Width [mm]	1 ^(e) 750 180	2 ^(e) 750 260	3 900 200	4 900 220	5 900 240	6 1050 200	7 ⁽ⁱ⁾ 1050 220	8 1050 240	9 1200 200	10 1200 220	11 1200 240	12 ^(e) 1350 180	13 ^(e) 1350 260

Figure 3. Perfect nonlinear elastoplastic material properties for a Young's modulus of 210 GPa, Poisson's ratio of 0.3 and yield stress of 900 MPa. The yield stress varies in simulations regarding the beam and block use cases.

We obtain our FEM simulation results in the context of general static simulations. Details of the simulation steps are shown in Table 3. Simulation control parameters that are not listed are left at default values.

 Table 3. Abaqus FEM simulation control parameters.

Abaqus FEM Simulation Settings				
Simulation type	Static, General			
Time period	1			
Nlgeom	On			
Max number of increments	100			
Initial increment size	1			
Min increment size	$1 imes 10^{-5}$			
Max increment size	1			
Equation solver method	Direct			
Solution technique	Full Newton			

2.2. Dataset

The nodal data from our Abaqus FEM simulations constitute the datasets. For each use case, the nodal data are split into training and test dataset, respectively. The training dataset $D = \{X_1, ..., X_n\}$ with number of training instances n and the test dataset $T = \{X_{n+1}, ..., X_{n+m}\}$ with number of test instances m are generated from several FEM simulations; see Tables 2 and 6, where bold marked simulations belong to T and the remaining to D. Thus, we split our data due to different generalization variables and not randomly. We denote each instance with index $i, i \in \{1, 2, ..., n+m\}$. An instance $X_i = (x_i, y_i)$ is generated of an input vector $x_i \in \mathbb{R}^p$ and output vector $y_i \in \mathbb{R}^q$. Each input vector x_i is composed of the initial x- and y-coordinates of a FEM node and the respective generalization variable (i.e., perforated plate: *Diameter*, beam: *Yield Stress*, block with four perforations: *Width* and *Yield Stress*) of the FEM simulation; see Table 4. Thus, we have p = 3 in the plate and beam use case, and p = 4 in the block use case.

Table 4. Surrogate model input variables. Data obtained from FEM simulations are transformed so that each FEM node (represented by its x- and y-coordinates) with the respective generalization variable is an instance.

Simulation	Plate	Beam	Block
Input variables	x-coordinate y-coordinate Diameter	x-coordinate y-coordinate Yield Stress	x-coordinate y-coordinate Yield Stress Width

In our setting, each output vector y_i contains 13 (q = 13) output variables obtained from FEM simulation with input x_i , namely the ε_{xx}^t , ε_{xy}^t and ε_{yy}^t total strain components, the ε_{xx}^p , ε_{yy}^p , ε_{yy}^p and ε_{zz}^p plastic strain components, the σ_{xx} , σ_{xy} , σ_{yy} and σ_{zz} principal and shear stress components and the displacement in x- and y-directions *u* and *v* of each node; see Table 5 and Figure 4. We split the data in a training and test dataset (see Table 6) and standardized the data by removing the mean and scaling to unit variance.

Table 5. Surrogate model output variables. For each input FEM node, a surrogate model predicts its respective strains, stresses and displacements.

Output Variables					
$\overline{\varepsilon_{xx}^t}$	ε^p_{xx}	σ_{xx}	и		
ε_{xy}^t	ε^p_{xy}	σ_{xy}	υ		
ε_{yy}^t	$arepsilon_{yy}^p arepsilon_{zz}^p$	$\sigma_{yy} \ \sigma_{zz}$			

In Figure 4, we present graphical results with visible mesh obtained from Abaqus FEM simulation of the output variables used for a block use case.

Table 6. Dataset splits: number of training instances *n* and test instances *m* due to the data generation from Table 2.

	Plate	Beam	Block
Training dataset D	4447	2720	6722
Test dataset T	3534	2176	4107

Figure 4. Block use case: Abaqus FEM results that our surrogate models should predict.

2.3. Surrogate Models

In this section, we give an overview of the surrogate models used and their general assumptions; to highlight the differences as well as the advantages and disadvantages between them, we present a detailed mathematical background in Appendix A. We have selected models from different learning paradigms:

- 1. Gradient boosting decision tree regressor (GBDTR): piecewise constant model.
- 2. K-nearest neighbor regressor (KNNR): distance-based model.
- 3. Gaussian process regressor (GPR): Bayesian model.
- 4. Support vector regressor (SVR): hyperplane-based model.
- 5. Multi layer perceptron (MLP): classic feedforward neural network model.
- 6. Physics informed neural network (PINN): neural network model with physicsbased regularization.

3. Results

For evaluation, we split the data into a training and test dataset to fit and test our surrogate models; see Table 6 for the dataset sizes and Table 2 for more details regarding the data split.

As a next step, we need to define hyperparameters for each model and each use case. We performed hyperparameter optimization using only training data; no test data were used. In our PINN approaches, the adaptation of hyperparameters was based on the work of [21,22]. Our MLPs were designed to be similar to our PINNs to allow for fair comparisons. We varied hyperparameters in our neural network approaches (MLP and PINN) following best practices and guidelines, where we optimized the number of hidden layers, number of neurons per hidden layer, activation function, validation split, earlystopping patience and the size of the batch per training epoch. Regarding the rest of our models, we applied a grid-search with a five fold cross-validation, utilizing the training data to obtain the best hyperparameters. The hyperparameters for each use case are in Appendix B and Tables A1–A6.

Our evaluation is based on R2-scores with respect to the FEM results and inference time. For models that contain inherent randomness, such as MLPs, GBDTR and PINNs, a five-fold cross-validation was conducted. For these models, we report the mean values and standard deviation of the R2-score. For the sake of brevity, we report only the average R2-scores across all 13 targets in this section; see Tables 7–9. The R2-scores for individual targets are provided in Appendix C. The inference times are based on the mean value of three measurements. Inferences were run on a machine with 16 GB RAM, 8 CPUs and Intel(R) i7-8565 2.0GHz processor. To compare the inference time of our surrogate models with the computation time required to run FEM simulations, we have included the latter also in Tables 7–9.

Model	MLP	PINN	SVR	GBDTR	KNNR	GPR	FEM
			Simu	lation 1			
R2	0.9900 (6.155 × 10 ⁻⁹)	0.7797 (8.709 × 10 ⁻²)	0.6188	$0.6606 \ (3.959 imes 10^{-8}$)	0.8164	0.6131	-
Inference time [s]	0.0523	0.0746	1.15	0.311	0.00722	0.151	9.01
			Simu	lation 4			
R2	0.9978 (1.970 × 10 ⁻⁴)	$\begin{array}{c} 0.9089 \\ (2.598 \times 10^{-2}) \end{array}$	0.7174	$\begin{array}{c} 0.9014 \\ (6.310 \times 10^{-2}) \end{array}$	0.9298	0.8761	-
Inference time [s]	0.0781	0.0638	1.20	0.271	0.00734	0.139	9.08
			Simu	lation 6			
R2	0.9920 (1.889 × 10 ⁻³)	0.8470 (6.309 $ imes$ 10 ⁻²)	0.7251	$0.8503 \ (1.005 imes 10^{-1}$)	0.9219	0.8676	-
Inference time [s]	0.0595	0.0641	1.10	0.251	0.00797	0.131	9.88
			Simu	lation 9			
R2	0.9786 (2.970 × 10 ⁻⁵)	$0.7562 \ (1.046 imes 10^{-1}$)	0.6568	0.7263 (9.780 $ imes$ 10 ⁻⁹)	0.8045	0.5651	-
Inference time [s]	0.0665	0.0715	1.02	0.251	0.00734	0.139	10.03

Table 7. Plate: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the corresponding standard deviations of the average R2-scores due to repeated experiments of stochastic process models. For further information concerning simulations, see Table 2.

For graphical results, we chose simulations that cover the error situation quite well in order to make statements about the performance of each model. In addition to the absolute errors (Figures 5a–f–10a–f), the corresponding FEM simulations of the basis are shown in Figures 5g–10g.

(g) PEW result

Figure 5. Elongation of a perforated plate, Simulation 1 (extrapolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of σ_{xy} .

GBDTR, KNNR, GPR and SVR algorithms were implemented with the scikit-learn library version 0.24.0 in Python. The SVR and GBDTR algorithms were constructed with MultiOutputRegressor scikit-learn API to fit one regressor per target. Regarding our DL algorithms, the utilized MLPs were implemented with the keras API version 2.4.3 and our PINNs were implemented with the sciann API version 0.5.5.0 in Python 3.8.5. We used the PDEs from [21,22], but instead of the inversion part, we trained our PINNs additionally with plastic strain data, same as for the rest of the surrogate models.

-150 -300

Figure 6. Elongation of a perforated plate, Simulation 4 (interpolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of σ_{zz} .

In the elongation of a perforated plate use case, our approach is based on a total of nine FEM simulations. We used five simulations for training and four simulations to evaluate the fitted models; see Table 2. We report the average of R2-scores across all outputs in Table 7 with the corresponding inference times.

Regarding extrapolation, the absolute errors of each surrogate model with respect to σ_{xy} of Simulation 1 are shown in Figure 5. We plot the absolute errors of each surrogate model of σ_{zz} of Simulation 4 in Figure 6 as an example of interpolation. In addition, we show in both figures the ground truth of the corresponding output variable obtained from the FEM simulation. For both interpolation and extrapolation, the errors are large near the shear band. As far as extrapolation is concerned, in addition to the errors near the shear band, most models have significant errors near the maximum negative xy shear stresses; see blue areas in Figure 5g. GBDTR performs well overall, though the error increases in

various locations; while PINNs have a similar average performance, they perform better outside the shear band regarding absolute errors. MLP overall shows the best results followed by KNNR.

In the bending beam use case, similar to the perforated plate use case, we trained our models on five simulations and tested them using the remaining four, see Table 2. We present the average R2-scores across all outputs and inference times in Table 8 for the test simulations 1, 4, 6 and 9.

Table 8. Beam: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the corresponding standard deviations of the average R2-scores due to repeated experiments of stochastic process models. For further information concerning simulations, see Table 2.

Model	MLP	PINN	SVR	GBDTR	KNNR	GPR	FEM	
	Simulation 1							
R2	$0.6682 \ (7.345 imes 10^{-6}$)	$0.6165 \ (1.648 imes 10^{-2}$)	0.5122	$egin{array}{c} {f 0.7120} \ (1.088 imes 10^{-8} \) \end{array}$	0.6288	0.5377	-	
Inference time [s]	0.0781	0.0638	1.20	0.271	0.00734	0.139	9.08	
			Sim	ulation 4				
R2	0.9979 (1.319 × 10 ⁻³)	0.9379 $(1.042 imes 10^{-3})$	0.7558	$0.9640 \ (6.751 imes 10^{-4}$)	0.9621	0.8243	-	
Inference time [s]	0.0457	0.110	0.418	0.0541	0.0790	0.221	6.81	
			Sim	ulation 6				
R2	0.9981 (8.315×10^{-4})	0.9314 (8.396 $ imes$ 10 ⁻⁴)	0.7406	$0.9516 \ (1.368 imes 10^{-4}$)	0.9617	0.8059	-	
Inference time [s]	0.0442	0.0668	0.402	0.0569	0.0705	0.212	6.61	
	Simulation 9							
R2	-1196.2920 (6.166 $ imes$ 10 ³)	-1305.9226 (3.269 $ imes$ 10 ¹)	-107.7646	-830.8926 (4.2984)	-322.4940	-420.9029	-	
Inference time [s]	0.0781	0.0638	1.20	0.271	0.00734	0.139	9.08	

We provide a graphical representation of the absolute error of the surrogate models regarding ε_{yy}^t in Figure 7a–f with the FEM simulation result in (g) as one instance of interpolation. Absolute errors of the surrogate models regarding ε_{xx}^p and extrapolation are shown in Figure 8. Overall higher errors can be observed near the encastred boundary condition of the beam for some models for that output. While the PINN shows a competitive average R2-score regarding interpolation, on this single target, its performance shows significant weaknesses.

 ϵ_{yy}^t

 ϵ_{yy}^t

0.001200

0.001067

0.000933

0.000800

0.000667

0.000533

0.000400

0.000267

-0.002 -0.004 -0.006 -0.008

Figure 7. Bending of a beam, Simulation 6 (interpolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of ε_{yy}^t .

(g) FEM result

Figure 8. Bending of a beam, Simulation 9 (extrapolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of ε_{xx}^p .

The compression of a block with four perforations use case presents a more complex setting because we generalize by two generalization variables (yield stress and block width). Therefore, we utilize more training data for this use case; see Table 2. We report the average results of R2-scores with corresponding standard deviations, if applicable, in Table 9.

Model	MLP	PINN	SVR	GBDTR	KNNR	GPR	FEM
	Simulation 1						
R2	$0.5562 \\ (1.952 \times 10^{-1})$	-0.4441 (6.066 $ imes$ 10 ⁻¹)	-0.2463	$0.5695 \ (1.665 imes 10^{-3}$)	0.7808	0.1059	-
Inference time [s]	0.0781	0.0638	1.20	0.271	0.00734	0.139	9.08
			Simula	ation 2			
R2	$0.3768 \ (3.803 imes 10^{-1}$)	$0.1850 \ (5.531 imes 10^{-2}$)	-0.1800	$0.5149 \ (3.320 imes 10^{-4}$)	0.7366	0.1409	-
Inference time [s]	0.0457	0.110	0.418	0.0541	0.0790	0.221	6.81
			Simula	ation 7			
R2	0.9976 (8.258 × 10 ⁻⁵)	$0.9410 \ (4.310 imes 10^{-3}$)	0.6415	$0.9702 \ (1.884 imes 10^{-2}$)	0.9767	0.5200	-
Inference time [s]	0.0442	0.0668	0.402	0.0569	0.0705	0.212	6.61
			Simula	tion 12			
R2	$\frac{0.6303}{(3.204\times10^{-1})}$	-0.4480 (6.652 $ imes$ 10 $^{-1}$)	-0.2230	0.5702 (6.266 $ imes$ 10 ⁻⁴)	0.7797	0.1553	-
Inference time [s]	0.0442	0.0668	0.402	0.0569	0.0705	0.212	6.61
			Simula	tion 13			
R2	$0.6475 \ (3.326 imes 10^{-1}$)	-0.1122 (3.265 $ imes$ 10 $^{-1}$)	-0.0745	$0.5894 \ (1.579 imes 10^{-4}$)	0.7687	0.1771	-
Inference time [s]	0.0781	0.0638	1.20	0.271	0.00734	0.139	9.08

Table 9. Block: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the corresponding standard deviations of the average R2-scores, due to repeated experiments of stochastic process models. For further information concerning simulations, see Table 2.

As an instance for interpolation, the absolute errors regarding ε_{xx}^p can be seen in Figure 9a–f with Abaqus FEM simulation result (g). Respectively, an instance for extrapolation is shown in Figure 10 with absolute errors (a–f) and FEM ground truth (g). Some models show higher prediction errors near shear bands (high ε_{xx}^p regions) regarding the interpolation task. However, SVR and GPR cannot extract meaningful information from the training data, especially in the space free of plastic deformation. This is indicated by the low average R2-scores, compared to the other models. Considering absolute errors of σ_{xy} and extrapolation the MLP, which is otherwise performing well, shows weaknesses and is in general outperformed by the KNNR.

-0.30 -0.24 -0.18 -0.12 -0.06

Figure 9. Compression of a block, Simulation 7 (interpolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of ε_{xx}^p .

Figure 10. Compression of a block, Simulation 13 (extrapolation): absolute errors of different surrogate models (**a**–**f**) and ground truth Abaqus FEM simulation (**g**) of σ_{xy} .

4. Discussion

All classes of surrogate models that we considered in this work share several key characteristics: (1) they are mesh-free and thus, can deliver results with infinite resolution; (2) the computation time required to obtain the target values at predefined positions is orders of magnitude lower than for FEM simulations; (3) since for each simulation setup,

where the geometry changes, a different mesh is created during FEM simulations, our results indicate that all classes of surrogate models generalize (interpolate) reasonably well across training data positions; (4) furthermore, all surrogate model classes generalize at least to some extent across use case parameters, such as changes in geometry or material parameters. Finally, all surrogate model classes must be used with care, as they do not extrapolate well to data positions and/or use case parameters unseen during training. Our findings show this in the extrapolation result of the beam use case, Simulation 9: due to the greater yield stress, almost no plastic deformation occurs; thus, the surrogate models are not able to learn such material behavior. Similar findings can be seen from the extrapolation results of the block use case, Simulation 1, 2, 12 and 13: approaches utilizing PINNs and SVRs are not able to predict acceptable strain components, leading to overall worse averaged R2-scores. In general, it can be stated that the surrogate models used show similar behavior with respect to inter- and extrapolation, but differ with respect to individual components, i.e., some models are better at predicting individual components (e.g., strains) for unknown generalization variables (e.g., yield strength) than others. Another example would be the symmetric nature of the use case, making it redundant to evaluate, e.g., stresses at negative x-positions, the proposed surrogate models will certainly respond with such stress values, which consequently, cannot be considered meaningful. Similarly, while the surrogate models may well be evaluated at physically meaningless use case parameters, e.g., negative radii, the thus obtained results must be considered meaningless as well. Therefore, all surrogate models must be treated with this in mind, which is a fundamental difference to FEM simulations that do not offer such modes of failure. With these considerations in mind, we now turn to discuss specific characteristics of each surrogate model class.

Our KNNR approach, which can be considered simple compared to the other algorithms, gave competitive results; moreover, this approach showed the best results regarding extrapolation (i.e., Simulations 1, 2, 12 and 13) in the block use case.

Algorithms we constructed with MultiOutputRegressor (SVR and GBDTR) could give better results if the hyperparameters are tuned to each target separately. However, we did not do this for fairness reasons since our other algorithms are also fitted to the overall use case and not to each target individually. We intend to monitor this in the future.

In our setting, the GPR algorithm did not deliver good results. Tuning the kernel function could deliver better results; however, we do not believe that it would be practical to modify for each new simulation use case. Thus, we not intend to head in this direction. However, we plan to investigate whether other Bayesian methods (e.g., Bayesian neural network [30] or neural processes [31]) could be beneficial.

Our MLPs approaches delivered the overall best results in our comparison, especially regarding interpolation (i.e., in the plate and beam use cases Simulations 4 and 6 and in the block use case, Simulation 7). They achieved high accuracies (R2-score > 0.992), while reducing the inference time by a factor of over 100 in comparison to FEM simulations. As mentioned before, designing the architecture is not a straightforward process; however, if the network is deep enough and suitable optimization methods are available (e.g., Adam optimizer) the network can be also efficiently trained utilizing early stopping.

As already reported in literature [32–35], we experienced in our setting that PINNs are not straightforward to design and train. Due to several plateaus in the loss function, early stopping did not prove to be effective. Therefore, we set a fixed number of training epochs. One reason for our observation could be the existence of a non-convex Pareto frontier [36]. In the multi-objective optimization problem, the optimizer might attempt to adjust the model parameters while situated between the different losses, leading it to favor one loss at the expense of the other [37]. Possible approaches to overcome this problem are adaptive optimizers [38], adaptive loss [39], and adaptive activation functions [40]. Moreover, PINNs are objects of current research and will gain more and more attention in the future. Besides other fundamental methods, we additionally plan to aim in that direction for improved surrogate modeling.

5. Conclusions

In this work, we deliver a comprehensive evaluation of generalizable and mesh-free ML and DL surrogate models based on FEM simulation and show that surrogate modeling leads to fast predictions with infinite resolution for practical use. In the context of our evaluation, we show which ML and DL models are target oriented at which level of complexity with respect to prediction accuracy and inference time, which can serve as a basis for the practical implementation of surrogate models (in, for example, production for real-time prediction, cyber–physical systems, and process design).

In future work, we plan to conduct more complex experiments, e.g., generalizing across more input variables regarding geometry (e.g., consideration of all component dimensions) and material parameters (e.g., non-perfect nonlinear material behavior, time-dependent material properties, grain growth, and phase transformation). We will moreover explore extended surrogate models with more complex output variables (e.g., grain size, grain structure, and phase transformation).

Author Contributions: Conceptualization, J.G.H. and P.O.; methodology, J.G.H. and B.C.G.; software, J.G.H.; validation, J.G.H., B.C.G. and P.O.; formal analysis, J.G.H.; investigation, J.G.H.; resources, J.G.H., B.C.G., P.O. and R.K.; data curation, J.G.H.; writing—original draft preparation, J.G.H.; writing—review and editing, J.G.H., B.C.G., P.O. and R.K.; visualization, J.G.H.; supervision, R.K.; project administration, J.G.H. and P.O.; funding acquisition, J.G.H., P.O. and R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Österreichische Forschungsförderungsgesellschaft (FFG) Grant No. 881039.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The project BrAIN—Brownfield Artificial Intelligence Network for Forging of High Quality Aerospace Components (FFG Grant No. 881039) is funded in the framework of the program 'TAKE OFF', which is a research and technology program of the Austrian Federal Ministry of Transport, Innovation and Technology. The Know-Center is funded within the Austrian COMET Program—Competence Centers for Excellent Technologies—under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry of Economy, Family and Youth and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG. The authors would also like to thank the developers of the sciann API for making their work available and for responding promptly to our questions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Surrogate Models

We follow the notation introduced in Section 2.2 with data instance $X_i = (x_i, y_i)$ containing input vector x_i and output vector y_i , the number of training instances is n and the number of test instances is m. Notations regarding individual models are introduced when needed.

Appendix A.1. GBDTR

Boosting methods are powerful techniques in which the final "strong" regressor model is based on an iteratively formed ensemble of "weak" base regressor models [41]. The main idea behind boosting is to sequentially add new models to the ensemble, iteratively refining the output. In GBDTR models, boosting is applied to arbitrary differentiable loss functions. In general, GBDTR models are additive models, where the samples are modified so that the labels are set to the negative gradient, while the distribution is held constant [42]. The additive method of GBDTR is the following:

$$\hat{y}_i = F_G(x_i) = \sum_{g=1}^G h_g(x_i)$$
 (A1)

where \hat{y}_i is the prediction for a given input x_i , and h_g are the fitted base tree regressors. The constant *G* is the number of base tree regressors. The GBDTR algorithm is greedy, where a newly added tree regressor h_g is fitted to minimize the loss L_g of the resulting ensemble $F_g = F_{g-1} + h_g$, i.e.,

$$h_g = \arg\min_h L_g = \arg\min_h \sum_{i=1}^n l(y_i, F_{g-1}(x_i) + h(x_i))$$
(A2)

Here, $l(y_i, F(x_i))$ is defined by the loss parameters, and $h(x_i)$ is the candidate base regressor. With the utilization of a first-order Taylor approximation:

$$l(z) \approx l(a) + (z-a)\frac{\partial l(a)}{\partial a}$$
 (A3)

where *z* corresponds to $F_{g-1}(x_i) + h_g(x_i)$ and *a* corresponds to $F_{g-1}(x_i)$, we can approximate the value of *l* with the following:

$$l(y_i, F_{g-1}(x_i) + h_g(x_i)) \approx l(y_i, F_{g-1}(x_i)) + h_g(x_i) \left[\frac{\partial l(y_i, F(x_i))}{\partial F(x_i)}\right]_{F = F_{g-1}}$$
(A4)

We denote the derivative of the loss with g_i and remove constant terms:

$$h_m \approx \arg\min_h \sum_{i=1}^n h(x_i) g_i \tag{A5}$$

 h_m is minimized if $h(x_i)$ is fitted to predict a value proportional to the negative gradient.

Appendix A.2. KNNR

The KNNR algorithm is a relatively simple method mathematically, compared to other algorithms presented here. Here, the model stores all available use cases from the training dataset *D* and predicts the numerical target \hat{y}_j of a test query instance x_j with $n < j \le (n + m)$ based on a similarity measure (e.g., distance functions). The algorithm computes the distance-weighted average of the numerical targets of the *K* nearest neighbors of x_j in *D* [43].

Specifically, we introduce a distance metric *d* that measures the distance between all training instances x_i with $i \le n$ and a test instance x_j . Next, the training instances are sorted w.r.t. their respective distance in ascending order to the test instance, i.e., there is a permutation π_j of the training indices *i* such that $d(x_{\pi_j(1)}, x_j) \le d(x_{\pi_j(2)}, x_j) \le \cdots \le d(x_{\pi_i(n)}, x_j)$. Then, the estimate $\hat{y}_j(x_j)$ is given as the following:

$$\hat{y}_j(x_j) = \frac{1}{K} \sum_{i=1}^K y_{\pi_j(i)}$$
(A6)

where *K* must be specified as a hyperparameter.

Appendix A.3. GPR

Gaussian process regression modeling is a non-parametric Bayesian approach [44]. In general, a Gaussian process is a generalization of the Gaussian distribution. The Gaussian distribution describes random variables or random vectors, while a Gaussian process describes a function f(x) [45].

In general, a Gaussian process is completely specified by its mean function $\mu(x)$ and covariance function K(x, x') (also called kernel).

If the function f(x) under consideration is modeled by a Gaussian process, i.e., if $f(x) \sim \mathcal{GP}(\mu(x), K(x, x'))$, then we have the following

$$\mathbb{E}[f(x)] = \mu(x) \tag{A7}$$

$$\mathbb{E}[(f(x) - \mu(x))(f(x') - \mu(x'))] = K(x, x')$$
(A8)

for all x and x'. Thus, we can define the Gaussian process as the following:

$$f(x) \sim \mathcal{N}(\mu(x), K(x, x)) \tag{A9}$$

We use the notation that matrix $D = (X_D, Y_D)$ contains the training data with input data matrix $X_D = (x_1, ..., x_n)$ and output data matrix $Y_D = (y_1, ..., y_n)$, and test data matrix $T = (X_T, Y_T)$ contains the test data with $X_T = (x_{n+1}, ..., x_{n+m})$ as input and $Y_T = (y_{n+1}, ..., y_{n+m})$ as output. We can define that they are jointly Gaussian and zero mean with consideration of the prior distribution:

$$\begin{bmatrix} Y_D \\ Y_T \end{bmatrix} \sim \mathcal{N}(0, \begin{bmatrix} K(X_D, X_D)) & K(X_D, X_T) \\ K(X_T, X_D) & K(X_T, X_T) \end{bmatrix})$$
(A10)

The Gaussian process makes a prediction Y_T for X_T in a probabilistic way, where, as stated before, the posterior distribution can be fully described by the mean and the covariance.

$$Y_T | X_T, X_D, Y_D \sim \mathcal{N}(K(X_T, X_D)K(X_D, X_D)^{-1}Y_D, K(X_T, X_T) - K(X_T, X_D)K(X_D, X_D)^{-1}K(X_D, X_T))$$
(A11)

Appendix A.4. SVR

The SVR approach is a generalization of the SVM classification problem by introducing an ϵ -sensitive region around the approximated function, also called an ϵ -tube. The optimization task in SVR contains two steps: first, finding a convex ϵ -insensitive loss function that need to be minimized, and second, finding the smallest ϵ -tube that contains the most training instances.

The convex optimization has a unique solution and is solved using numerical optimization algorithms. One of the main advantages of SVR is that the computational complexity does not depend on the dimensionality of the input space [46]. To deal with otherwise intractable constraints of the optimization problem, we introduce slack variables ξ_i and ξ_i^* [47]. The positive constant *C* determines the trade-off between the flatness of the function and the magnitude up to which deviations greater than ϵ are allowed. The primal quadratic optimization problem of SVR is defined as the following:

minimize
$$\frac{1}{2} ||\omega||^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*)$$
 (A12)

subject to the following:
$$\begin{cases} y_i - \omega^T x_i - b \leq \epsilon + \xi_i \\ \omega^T x_i + b - y_i \leq \epsilon + \xi_i^* \\ \xi_i, \xi_i^* \geq 0 \end{cases}$$
(A13)

Here, ω is the weight and b the bias to be adjusted. The constrained quadratic optimization problem can be solved by minimizing the Lagrangian with non-negative Lagrange multipliers $\lambda_i, \lambda_i^*, \alpha_i, \alpha_i^*, i \in \{1, ..., n\}$:

$$\mathcal{L}(\omega,\xi^*,\xi,\lambda,\lambda^*,\alpha,\alpha^*) = \frac{1}{2} ||\omega||^2 + C \sum_{i=1}^n \xi_i + \xi_i^* + \sum_{i=1}^n \alpha_i^* (y_i - \omega^T x_i - \varepsilon - \xi_i^*)$$

$$+ \sum_{i=1}^n \alpha_i (-y_i + \omega^T x_i - \varepsilon - \xi_i) - \sum_{i=1}^n \lambda_i \xi_i + \lambda_i^* \xi_i^*$$
(A14)

The minimum of \mathcal{L} can be found by taking the partial derivatives with respect to the variables and making them equal to zero (*Karush-Kuhn-Tucker* (KKT) conditions). With the final KKT condition, we can state the following:

$$\alpha_{i}(-y_{i} + \omega^{T} x_{i} - \varepsilon - \xi_{i}) = 0$$

$$\alpha_{i}^{*}(-y_{i} + \omega^{T} x_{i} - \varepsilon - \xi_{i}^{*}) = 0$$

$$\lambda_{i}\xi_{i} = 0$$

$$\lambda_{i}^{*}\xi_{i}^{*} = 0$$
(A15)

The Lagrange multipliers that are zero correspond to the inside of the ε -tube, while the support vectors have non-zero Lagrange multipliers. The function estimate depends only on the support vectors, hence this representation is sparse. More specifically, we can derive the following function approximation to predict $\hat{y}_i(x_i)$:

$$\hat{y}_{j}(x_{j}) = \sum_{i=1}^{n_{SV}} (\alpha_{i}^{*} - \alpha_{i}) x_{i}^{T} x_{j}$$
(A16)

with $\alpha_i, \alpha_i^* \in [0, C]$ and the number of support vectors n_{SV} . For nonlinear SVR we replace $\omega^T x_i$ in (12)–(15) by $\omega^T \phi(x_i)$ and the inner product in (16) by the kernel $K(x_i, x_i)$.

Appendix A.5. MLP

A neural network is a network of simple processing elements, also called neurons. The neurons are arranged in layers. In a fully-connected multi-layer network, a neuron in one layer is connected to every neuron in the layer before and after it. The number of neurons in the input layer is the number of input features p and the number of neurons in the output layer is the number of targets q [48]. MLPs have several theoretical advantages, compared to other ML algorithms. Due to the universal approximation theorem, an MLP can approximate any function if the activation functions of the network are appropriate [49–51]. The MLP makes no prior assumptions about the data distribution, and in many cases, can be trained to generalize to new data not yet seen [52]. However, finding the right architecture and finding the setting of training parameters is not straightforward and usually done by trial and error influenced by the literature and guidelines.

A neural network output \hat{y} corresponding to an input x can be represented as a composition of functions, where the output of layer L - 1 acts as input to the following layer L. For example, for non-linear activation function σ_L , weight matrix W_L , and bias vector b_L of the respective layer L, we obtain the following:

$$\hat{y}(x) = t_L(x) = \sigma_L(W_L^T t_{L-1}(x) + b_L)$$
 (A17)

With the neural network estimate $\hat{y}(x)$ and the respective target y of an input x, we can denote a loss function \mathcal{L} . A very common loss function for MLPs for regression tasks is the mean-squared error:

$$\mathcal{L}(W,b) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}(x_i) - y_i)^2$$
(A18)

where *W* and *b* are the collections of all weight matrices and bias terms, respectively. Optimal weight W^* and bias b^* terms for each layer are identified with minimizing the loss function \mathcal{L} via back-propagation [53].

$$W^*/b^* = \operatorname*{argmin}_{W,b} \mathcal{L}(W,b)$$
 (A19)

Appendix A.6. PINN

In PINNs, the network is trained simultaneously on data and governing differential equations. PINNs are regularized such that their function approximation $\hat{y}(x)$ obeys known laws of physics that apply to the observed data. This type of network is well suited for solving and inverting equations that control physical systems and find application in fluid and solid mechanics as well as in dynamical systems [21,35].

PINNs share similarities with common ANNs, but the loss function has an additional part that describes the physics behind the use case setting. More specifically, the loss \mathcal{L} is composed of the data-driven loss \mathcal{L}_{data} and the physics-informed loss $\mathcal{L}_{physics}$:

$$\mathcal{L} = \mathcal{L}_{data} + \mathcal{L}_{physics} \tag{A20}$$

While the data-driven loss is often a standard mean-squared error, the physicsinformed loss accounts for the degree to which the function approximation solves a given system of governing differential equations. For further details, we refer the reader to [23,35,54] in general and to the Python package of [21,22] in particular for simple implementation of structural mechanics use cases.

Appendix B. Hyperparameters

Table A1. Best performing hyperparameters GBDTR.

	Plate	Beam	Block
loss	ls	ls	ls
criterion	friedman_mse	mse	friedman_mse
max_features	auto	log2	auto
n_estimators	400	1000	2000

 Table A2. Best performing hyperparameters KNNR.

	Plate	Beam	Block
n_neighbors (K)	7	5	10
weights	distance	distance	distance
algorithm	brute	ball_tree	auto
leaf_size	1	5	1
p_value	1	2	5

Table A3. Best performing hyperparameters GPR.

	Plate	Beam	Block
kernel alpha	Matern()**2 10 ⁻¹³	RationalQuadratic()**2 10^{-13}	RationalQuadratic()**2 10^{-14}

Table A4. Best performing hyperparameters SVR.

	Plate	Beam	Block
kernel	rbf	rbf	rbf
gamma	scale	scale	scale
epsilon	0.005	0.005	0.4
Ĉ	95	5	105

	Plate	Beam	Block
hidden layers	3	2	4
neurons	100-100-100	100-100	100-100-100-100
activation function	relu	relu	relu
batch size	32	32	64
validation split	0.1	0.1	0.1
early stopping patience	5000	5000	7500
max epochs	100,000	100,000	100,000
stopped at	27,693	26,383	43,272

Table A5. Best performing hyperparameters MLP.

 Table A6. Best hyperparameters PINN.

	Plate	Beam	Block
hidden layers	4	4	4
neurons	100-100-100-100	100-100-100-100	100-100-100-100
activation function	tanh	tanh	tanh
batch size	64	64	64
epochs	50,000	50,000	50,000

Appendix C. Detailed Results

 Table A7. Detailed results for the plate elongation use case Simulation 1.

	SIMULATION 1									
		Μ	ILP	PI	NN	SVR	GB	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.9923	$3.121 imes 10^{-6}$	0.8331	$5.206 imes 10^{-2}$	$4.117 imes10^{-1}$	$5.296 imes10^{-1}$	$1.788 imes 10^{-6}$	$7.973 imes10^{-1}$	$5.936 imes10^{-1}$
	ε_{xy}^t	0.9900	$3.681 imes10^{-7}$	0.4748	$1.814 imes10^{-1}$	$5.390 imes10^{-2}$	$3.846 imes 10^{-1}$	$2.065 imes 10^{-5}$	$5.121 imes 10^{-1}$	$5.039 imes 10^{-1}$
	ε_{yy}^{t}	0.9924	$3.055 imes 10^{-6}$	0.8749	$9.156 imes10^{-2}$	$4.169 imes10^{-1}$	$5.281 imes10^{-1}$	$1.243 imes10^{-7}$	$7.992 imes10^{-1}$	$5.950 imes10^{-1}$
	ε_{xx}^{p}	0.9923	$3.269 imes 10^{-6}$	0.7385	$3.795 imes 10^{-2}$	$4.079 imes10^{-1}$	$5.120 imes10^{-1}$	$2.215 imes 10^{-7}$	$7.964 imes10^{-1}$	$5.933 imes10^{-1}$
	ϵ_{xy}^p	0.9901	$2.085 imes 10^{-6}$	0.6195	$3.218 imes10^{-1}$	$4.889 imes10^{-2}$	$3.509 imes10^{-1}$	$1.003 imes 10^{-5}$	$5.014 imes10^{-1}$	$5.011 imes 10^{-1}$
P 2	ϵ_{yy}^{p}	0.9923	$3.243 imes10^{-6}$	0.7463	$3.195 imes 10^{-2}$	$4.127 imes10^{-1}$	$5.069 imes10^{-1}$	$5.126 imes 10^{-8}$	$7.976 imes10^{-1}$	$5.941 imes10^{-1}$
112	ϵ_{zz}^{p}	0.9865	$5.307 imes10^{-6}$	0.3235	$4.347 imes10^{-1}$	$8.349 imes10^{-1}$	$7.773 imes10^{-1}$	$7.044 imes10^{-10}$	$9.194 imes10^{-1}$	$6.734 imes10^{-1}$
	σ_{xx}	0.9798	9.128×10^{-6}	0.9496	1.676×10^{-2}	$8.886 imes 10^{-1}$	$7.682 imes 10^{-1}$	1.685×10^{-10}	8.854×10^{-1}	7.017×10^{-1}
	σ_{xy}	0.9760	2.915×10^{-7}	0.8405	9.858×10^{-2}	8.373×10^{-1}	$6.984 imes 10^{-1}$	3.676×10^{-9}	8.605×10^{-1}	6.706×10^{-1}
	σ_{yy}	0.9908	2.639×10^{-6}	0.8574	6.011×10^{-2}	9.822×10^{-1}	$8.925 imes 10^{-1}$	2.420×10^{-9}	9.120×10^{-1}	5.432×10^{-1}
	σ_{zz}	0.9914	2.684×10^{-6}	0.9484	1.407×10^{-2}	9.208×10^{-1}	8.774×10^{-1}	2.448×10^{-8}	9.326×10^{-1}	6.558×10^{-1}
	и	0.9981	3.358×10^{-8}	0.9690	1.919×10^{-2}	9.095×10^{-1}	8.721×10^{-1}	2.230×10^{-7}	9.443×10^{-1}	6.629×10^{-1}
	υ	0.9976	5.954×10^{-9}	0.9610	3.203×10^{-2}	$9.195 imes 10^{-1}$	$8.903 imes 10^{-1}$	1.258×10^{-11}	9.549×10^{-1}	$6.810 imes 10^{-1}$
mean		0.9900	6.155×10^{-9}	0.7797	8.709×10^{-2}	0.6188	0.6606	$3.959 imes 10^{-8}$	0.8164	0.6131
	ε_{xx}^t	2.916×10^{-5}	4.483×10^{-11}	$6.325 imes 10^{-4}$	$1.973 imes 10^{-4}$	$2.230 imes 10^{-3}$	$1.783 imes 10^{-3}$	2.569×10^{-11}	$7.683 imes10^{-4}$	$1.540 imes 10^{-3}$
	ε_{xy}^t	$3.237 imes10^{-5}$	$3.865 imes 10^{-12}$	$1.702 imes 10^{-3}$	$5.879 imes10^{-4}$	$3.066 imes10^{-3}$	$1.994 imes10^{-3}$	$2.168 imes10^{-10}$	$1.581 imes10^{-3}$	$1.608 imes10^{-3}$
	ε_{vv}^{t}	$2.927 imes10^{-5}$	$4.523 imes10^{-11}$	$4.815 imes10^{-4}$	$3.523 imes10^{-4}$	$2.244 imes10^{-3}$	$1.816 imes10^{-3}$	$1.841 imes10^{-12}$	$7.727 imes10^{-4}$	$1.558 imes10^{-3}$
	ϵ_{xx}^{p}	$2.945 imes10^{-5}$	4.752×10^{-11}	$9.969 imes10^{-4}$	$1.447 imes 10^{-4}$	$2.257 imes10^{-3}$	$1.861 imes 10^{-3}$	3.220×10^{-12}	$7.764 imes10^{-4}$	$1.551 imes 10^{-3}$
	ϵ^p_{xy}	$2.974 imes10^{-5}$	$1.886 imes 10^{-11}$	$1.144 imes10^{-3}$	$9.679 imes10^{-4}$	$2.861 imes 10^{-3}$	$1.952 imes 10^{-3}$	$9.069 imes 10^{-11}$	$1.499 imes10^{-3}$	$1.500 imes10^{-3}$
MCE	ϵ_{yy}^{p}	$2.954 imes10^{-5}$	$4.803 imes10^{-11}$	$9.764 imes10^{-4}$	$1.230 imes10^{-4}$	$2.260 imes10^{-3}$	$1.898 imes10^{-3}$	$7.593 imes 10^{-13}$	$7.789 imes10^{-4}$	$1.562 imes 10^{-3}$
MSE	ϵ_{zz}^{p}	$1.921 imes 10^{-9}$	1.071×10^{-19}	$2.604 imes 10^{-3}$	$1.673 imes 10^{-3}$	$2.345 imes10^{-8}$	$3.163 imes 10^{-8}$	1.421×10^{-23}	$1.145 imes 10^{-8}$	$4.638 imes 10^{-8}$
	σ_{xx}	$1.599 imes 10^2$	5.736×10^2	$3.997 imes 10^2$	$1.329 imes 10^2$	$8.831 imes 10^2$	$1.837 imes 10^3$	$1.059 imes10^{-2}$	$9.082 imes 10^2$	2.364×10^3
	σ_{xy}	$1.196 imes 10^2$	7.221	$7.941 imes 10^2$	$4.906 imes 10^2$	$8.099 imes 10^2$	$1.501 imes 10^3$	$9.107 imes10^{-2}$	$6.941 imes 10^2$	$1.640 imes 10^3$
	σ_{yy}	$5.013 imes 10^2$	$7.911 imes 10^3$	$7.809 imes 10^3$	$3.291 imes 10^3$	$9.766 imes 10^2$	$5.883 imes 10^3$	7.253	$4.818 imes 10^3$	$2.501 imes 10^4$
	σ_{zz}	1.896×10^2	$1.297 imes 10^3$	$1.135 imes 10^3$	3.094×10^2	1.741×10^3	2.696×10^3	$1.183 imes 10^1$	$1.481 imes 10^3$	7.567×10^3
	и	$4.736 imes10^{-3}$	$2.001 imes10^{-7}$	$7.558 imes10^{-2}$	$4.684 imes10^{-2}$	$2.210 imes10^{-1}$	$3.123 imes10^{-1}$	$1.329 imes10^{-6}$	$1.361 imes10^{-1}$	$8.230 imes10^{-1}$
	υ	0.0055	$3.012 imes 10^{-8}$	0.0877	$7.203 imes 10^{-2}$	$1.810 imes10^{-1}$	$2.467 imes10^{-1}$	$6.361 imes 10^{-11}$	$1.015 imes 10^{-1}$	$7.174 imes10^{-1}$

	SIMULATION 4										
		Μ	LP	PI	NN	SVR	GBI	DTR	KNNR	GPR	
		mean	std	mean	std		mean	std			
	ε_{xx}^t	0.9994	$1.890 imes 10^{-5}$	0.9615	1.029×10^{-2}	0.6110	0.9061	$8.599 imes 10^{-2}$	0.9354	0.8478	
	ε_{xy}^{t}	0.9984	$1.387 imes 10^{-4}$	0.6064	$2.507 imes10^{-1}$	0.1553	0.8252	$1.696 imes 10^{-1}$	0.7558	0.6991	
	$\varepsilon_{\mu\nu}^{t}$	0.9994	$1.450 imes10^{-5}$	0.9817	$8.052 imes 10^{-3}$	0.6169	0.9067	$9.160 imes10^{-2}$	0.9361	0.8495	
	$\epsilon_{rr}^{p^{y}}$	0.9994	$1.634 imes10^{-5}$	0.8183	$5.486 imes10^{-2}$	0.6087	0.8379	$3.180 imes 10^{-2}$	0.9346	0.8457	
	ε_{xy}^{p}	0.9984	$1.217 imes10^{-5}$	0.9410	$7.109 imes10^{-3}$	0.1468	0.7309	$1.302 imes 10^{-1}$	0.7502	0.6967	
DO	$\varepsilon_{\mu\nu}^{p}$	0.9994	$1.572 imes 10^{-5}$	0.8881	$8.563 imes10^{-4}$	0.6117	0.8487	$3.739 imes 10^{-2}$	0.9351	0.8467	
K2	$\varepsilon_{zz}^{p^{y}}$	0.9934	$1.400 imes 10^{-3}$	0.7888	$2.487 imes10^{-3}$	0.9349	0.9317	$1.525 imes 10^{-2}$	0.9790	0.9440	
	σ_{xx}	0.9957	$1.192 imes 10^{-4}$	0.9903	$3.579 imes10^{-4}$	0.9326	0.9572	$4.072 imes 10^{-2}$	0.9742	0.9404	
	σ_{xy}	0.9930	$6.390 imes10^{-4}$	0.9753	$1.977 imes10^{-4}$	0.8643	0.8846	$1.103 imes10^{-1}$	0.9417	0.8974	
	σ_{yy}	0.9985	$9.487 imes10^{-5}$	0.8972	$3.716 imes10^{-3}$	0.9932	0.9660	$3.214 imes10^{-2}$	0.9909	0.9736	
	σ_{zz}	0.9972	$1.784 imes10^{-4}$	0.9813	$2.062 imes10^{-4}$	0.9813	0.9726	$2.625 imes 10^{-2}$	0.9901	0.9667	
	и	0.9995	$4.181 imes10^{-5}$	0.9934	$3.368 imes10^{-4}$	0.9297	0.9710	$2.879 imes 10^{-2}$	0.9792	0.9370	
	υ	0.9997	$6.148 imes 10^{-5}$	0.9927	$1.157 imes 10^{-3}$	0.9392	0.9792	$2.026 imes 10^{-2}$	0.9857	0.9454	
mean		0.9978	$1.970 imes 10^{-4}$	0.9089	2.598×10^{-2}	0.7174	0.9014	$6.310 imes10^{-2}$	0.9298	0.8761	
	ε_{xx}^t	$2.150 imes 10^{-6}$	$6.723 imes 10^{-8}$	$1.370 imes 10^{-4}$	3.662×10^{-5}	$1.384 imes 10^{-3}$	$3.200 imes 10^{-4}$	$3.200 imes 10^{-4}$	$2.298 imes 10^{-4}$	$5.412 imes 10^{-4}$	
	ε_{xy}^t	$4.496 imes10^{-6}$	$3.991 imes10^{-7}$	$1.132 imes 10^{-3}$	$7.213 imes10^{-4}$	$2.430 imes10^{-3}$	$4.955 imes10^{-4}$	$4.955 imes10^{-4}$	$7.027 imes10^{-4}$	8.656×10^{-4}	
	$\varepsilon_{\mu\nu}^{t}$	$2.186 imes10^{-6}$	$5.247 imes10^{-8}$	$6.610 imes10^{-5}$	$2.914 imes10^{-5}$	$1.386 imes10^{-3}$	$3.345 imes10^{-4}$	$3.345 imes10^{-4}$	$2.312 imes10^{-4}$	$5.447 imes10^{-4}$	
	ϵ_{rr}^{p}	$2.173 imes 10^{-6}$	$5.875 imes10^{-8}$	$6.531 imes 10^{-4}$	$1.972 imes 10^{-4}$	$1.407 imes 10^{-3}$	$3.485 imes 10^{-4}$	$3.484 imes 10^{-4}$	$2.352 imes 10^{-4}$	$5.547 imes 10^{-4}$	
	ε_{xy}^p	$4.228 imes 10^{-6}$	$3.139 imes10^{-8}$	$1.522 imes 10^{-4}$	$1.834 imes10^{-5}$	$2.202 imes 10^{-3}$	$5.152 imes 10^{-4}$	$5.152 imes 10^{-4}$	$6.446 imes10^{-4}$	$7.827 imes 10^{-4}$	
) (OF	$\epsilon_{\mu\nu}^{p}$	$2.194 imes10^{-6}$	$5.701 imes 10^{-8}$	$4.060 imes 10^{-4}$	$3.106 imes 10^{-6}$	$1.409 imes10^{-3}$	$3.422 imes 10^{-4}$	$3.422 imes 10^{-4}$	$2.356 imes 10^{-4}$	5.562×10^{-4}	
MSE	ϵ_{77}^{p}	$7.663 imes 10^{-10}$	$1.627 imes10^{-10}$	$7.659 imes10^{-4}$	9.020×10^{-6}	$7.573 imes 10^{-9}$	$4.990 imes10^{-9}$	$4.726 imes 10^{-9}$	$2.438 imes 10^{-9}$	6.512×10^{-9}	
	σ_{xx}	$5.480 imes 10^1$	1.515	1.226×10^2	4.547	8.561×10^2	5.339×10^2	5.272×10^2	3.283×10^2	7.575×10^2	
	σ_{xy}	$3.438 imes 10^1$	3.155	$1.218 imes 10^2$	$9.760 imes10^{-1}$	$6.699 imes 10^2$	$5.597 imes 10^2$	$5.547 imes 10^2$	$2.880 imes 10^2$	$5.066 imes 10^2$	
	σ_{yy}	$1.267 imes 10^2$	8.027	$8.700 imes 10^3$	$3.144 imes 10^2$	$5.743 imes 10^2$	$3.081 imes 10^3$	$2.514 imes 10^3$	$7.740 imes 10^2$	$2.236 imes 10^3$	
	σ_{zz}	$6.863 imes 10^1$	4.437	$4.654 imes 10^2$	5.129	$4.640 imes 10^2$	6.858×10^2	$6.491 imes 10^2$	2.456×10^2	$8.285 imes 10^2$	
	и	$8.003 imes10^{-4}$	$6.664 imes10^{-5}$	$1.046 imes 10^{-2}$	$5.368 imes10^{-4}$	$1.120 imes 10^{-1}$	$4.637 imes10^{-2}$	$4.578 imes10^{-2}$	$3.320 imes 10^{-2}$	$1.005 imes 10^{-1}$	
	υ	$4.276 imes10^{-4}$	$8.849 imes 10^{-5}$	1.057×10^{-2}	1.666×10^{-3}	8.756×10^{-2}	2.954×10^{-2}	2.952×10^{-2}	2.062×10^{-2}	7.857×10^{-2}	

 Table A8. Detailed results for the plate elongation use case Simulation 4.

Table A9. Detailed results for the plate elongation use case Simulation 6.

	SIMULATION 6									
		Μ	ILP	PI	NN	SVR	GBI	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.9958	$2.566 imes 10^{-3}$	0.9336	$1.934 imes10^{-2}$	0.6182	0.8405	$1.562 imes 10^{-1}$	0.9228	0.8366
	ε_{xy}^t	0.9930	$4.453 imes 10^{-3}$	0.2877	$3.328 imes10^{-1}$	0.1915	0.6924	$3.030 imes10^{-1}$	0.7280	0.6696
	ε_{yy}^{t}	0.9959	2.522×10^{-3}	0.9211	$5.104 imes 10^{-2}$	0.6238	0.8344	$1.648 imes10^{-1}$	0.9238	0.8385
	ε_{xx}^{p}	0.9958	$2.606 imes 10^{-3}$	0.5414	$3.173 imes10^{-1}$	0.6149	0.7529	$8.924 imes10^{-2}$	0.9221	0.8352
	ϵ_{xy}^p	0.9932	$4.276 imes10^{-3}$	0.9131	$2.635 imes10^{-2}$	0.1831	0.5966	$1.726 imes10^{-1}$	0.7218	0.6668
DO	ϵ_{yy}^{p}	0.9958	$2.590 imes 10^{-3}$	0.7744	$8.943 imes10^{-2}$	0.6178	0.7799	$9.094 imes10^{-2}$	0.9228	0.8362
KZ	ϵ_{zz}^{p}	0.9901	$2.688 imes10^{-3}$	0.8264	$2.288 imes 10^{-2}$	0.9590	0.8938	$2.641 imes10^{-3}$	0.9860	0.9487
	σ_{xx}	0.9837	1.326×10^{-2}	0.9839	$3.098 imes10^{-4}$	0.9527	0.9600	$3.838 imes 10^{-2}$	0.9799	0.9407
	σ_{xy}	0.9768	$8.968 imes 10^{-3}$	0.9655	$2.023 imes 10^{-3}$	0.8687	0.8571	$1.381 imes10^{-1}$	0.9431	0.9030
	σ_{yy}	0.9890	1.196×10^{-2}	0.9103	1.363×10^{-3}	0.9908	0.9729	2.571×10^{-2}	0.9938	0.9709
	σ_{zz}	0.9900	8.749×10^{-3}	0.9851	1.518×10^{-3}	0.9818	0.9682	3.102×10^{-2}	0.9923	0.9636
	и	0.9980	1.261×10^{-3}	0.9835	1.344×10^{-3}	0.9077	0.9366	6.320×10^{-2}	0.9717	0.9336
	υ	0.9988	6.926×10^{-4}	0.9849	6.032×10^{-3}	0.9161	0.9685	3.118×10^{-2}	0.9760	0.9359
mean		0.9920	$1.889 imes 10^{-3}$	0.8470	$6.309 imes10^{-2}$	0.7251	0.8503	$1.005 imes 10^{-1}$	0.9219	0.8676
	ε_{xx}^t	1.563×10^{-5}	$9.386 imes10^{-6}$	2.475×10^{-4}	$7.210 imes 10^{-5}$	$1.423 imes 10^{-3}$	$5.884 imes 10^{-4}$	$5.884 imes 10^{-4}$	$2.878 imes10^{-4}$	$6.090 imes 10^{-4}$
	ε_{xy}^t	$2.402 imes 10^{-5}$	$1.372 imes 10^{-5}$	$2.360 imes10^{-3}$	$1.103 imes10^{-3}$	$2.680 imes10^{-3}$	$1.012 imes 10^{-3}$	$1.012 imes 10^{-3}$	$9.014 imes10^{-4}$	$1.095 imes 10^{-3}$
	ε_{yy}^{t}	$1.579 imes10^{-5}$	$9.392 imes10^{-6}$	$2.994 imes10^{-4}$	$1.936 imes10^{-4}$	$1.427 imes10^{-3}$	$6.268 imes10^{-4}$	$6.268 imes10^{-4}$	$2.890 imes10^{-4}$	$6.128 imes10^{-4}$
	ε_{xx}^{p}	$1.596 imes10^{-5}$	$9.635 imes10^{-6}$	$1.725 imes 10^{-3}$	$1.194 imes10^{-3}$	$1.449 imes10^{-3}$	$6.327 imes10^{-4}$	$6.327 imes10^{-4}$	$2.929 imes10^{-4}$	$6.201 imes10^{-4}$
	ϵ^p_{xy}	$2.135 imes 10^{-5}$	$1.199 imes10^{-5}$	$2.627 imes 10^{-4}$	$7.965 imes10^{-5}$	$2.469 imes10^{-3}$	$8.705 imes 10^{-4}$	$8.705 imes10^{-4}$	$8.407 imes10^{-4}$	$1.007 imes 10^{-3}$
MCE	ϵ_{yy}^{p}	$1.599 imes10^{-5}$	$9.654 imes10^{-6}$	$8.559 imes10^{-4}$	$3.392 imes10^{-4}$	$1.450 imes10^{-3}$	$5.899 imes10^{-4}$	$5.899 imes10^{-4}$	$2.930 imes10^{-4}$	$6.214 imes10^{-4}$
MSE	ϵ_{zz}^{p}	$1.341 imes 10^{-9}$	$6.361 imes 10^{-10}$	$6.584 imes10^{-4}$	$8.677 imes10^{-5}$	$4.377 imes10^{-9}$	$5.918 imes10^{-9}$	$5.708 imes10^{-9}$	$1.492 imes 10^{-9}$	$5.484 imes10^{-9}$
	σ_{xx}	$4.784 imes 10^2$	5.454×10^2	2.162×10^2	4.170	6.368×10^2	5.300×10^2	5.246×10^2	2.709×10^2	$7.981 imes 10^2$
	σ_{xy}	2.621×10^2	$2.590 imes 10^2$	$1.620 imes 10^2$	9.491	$6.161 imes 10^2$	$6.614 imes10^2$	$6.566 imes 10^2$	$2.669 imes 10^2$	4.552×10^2
	σ_{yy}	2.230×10^3	$2.811 imes 10^3$	$8.488 imes 10^3$	1.291×10^2	8.701×10^2	2.741×10^3	2.264×10^3	5.900×10^2	2.755×10^3
	σ_{zz}	$4.078 imes 10^2$	$4.385 imes 10^2$	$3.842 imes 10^2$	$3.926 imes 10^1$	$4.705 imes 10^2$	$8.263 imes 10^2$	7.996×10^2	$1.981 imes 10^2$	$9.411 imes 10^2$
	и	$2.471 imes10^{-3}$	$1.295 imes10^{-3}$	$1.953 imes10^{-2}$	$1.591 imes10^{-3}$	$1.093 imes10^{-1}$	$7.515 imes10^{-2}$	$7.473 imes10^{-2}$	$3.349 imes10^{-2}$	$7.862 imes 10^{-2}$
	v	$1.594 imes 10^{-3}$	$3.341 imes 10^{-4}$	$1.621 imes 10^{-2}$	$6.487 imes 10^{-3}$	$9.022 imes 10^{-2}$	$3.373 imes 10^{-2}$	$3.371 imes 10^{-2}$	$2.578 imes 10^{-2}$	$6.895 imes 10^{-2}$

					SIMUL	ATION 9				
		Μ	ILP	PI	NN	SVR	GB	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{rr}^{t}	0.9902	$4.611 imes 10^{-7}$	0.8149	$1.175 imes 10^{-1}$	$5.305 imes 10^{-1}$	$7.066 imes 10^{-1}$	$4.844 imes 10^{-7}$	$8.255 imes 10^{-1}$	5.599×10^{-1}
	ε_{xy}^{t}	0.9699	$1.932 imes 10^{-5}$	0.3356	$9.434 imes10^{-2}$	$5.673 imes 10^{-2}$	$3.932 imes 10^{-1}$	$1.518 imes 10^{-8}$	$4.667 imes10^{-1}$	$3.628 imes 10^{-1}$
	ε_{yy}^{t}	0.9903	$4.339 imes10^{-7}$	0.8484	$1.445 imes10^{-1}$	$5.344 imes10^{-1}$	$7.197 imes10^{-1}$	$3.018 imes 10^{-8}$	$8.272 imes 10^{-1}$	$5.611 imes10^{-1}$
	ϵ_{xx}^{p}	0.9904	$3.884 imes 10^{-7}$	0.6097	$7.907 imes 10^{-2}$	$5.180 imes 10^{-1}$	$7.195 imes 10^{-1}$	4.415×10^{-11}	$8.235 imes 10^{-1}$	5.571×10^{-1}
DO	ϵ_{xy}^p	0.9704	$1.921 imes 10^{-5}$	0.5937	$3.410 imes 10^{-1}$	$4.617 imes10^{-2}$	$4.245 imes 10^{-1}$	$3.808 imes 10^{-8}$	$4.609 imes 10^{-1}$	$3.586 imes 10^{-1}$
	ϵ_{yy}^{p}	0.9904	$3.972 imes 10^{-7}$	0.7357	$4.504 imes10^{-2}$	$5.204 imes10^{-1}$	$7.128 imes10^{-1}$	$7.477 imes10^{-7}$	$8.242 imes 10^{-1}$	$5.579 imes10^{-1}$
K2	ϵ_{zz}^{p}	0.9628	$7.728 imes 10^{-6}$	0.3747	$4.181 imes10^{-1}$	$9.292 imes10^{-1}$	$8.309 imes10^{-1}$	$6.767 imes 10^{-9}$	$9.016 imes10^{-1}$	$6.839 imes10^{-1}$
	σ_{xx}	0.9633	$3.899 imes10^{-4}$	0.9577	$1.764 imes10^{-2}$	$9.258 imes10^{-1}$	$9.264 imes10^{-1}$	$1.662 imes 10^{-9}$	$9.516 imes10^{-1}$	$6.847 imes10^{-1}$
	σ_{xy}	0.9438	1.369×10^{-3}	0.8168	$1.079 imes10^{-1}$	$8.161 imes10^{-1}$	$6.292 imes 10^{-1}$	$1.792 imes 10^{-7}$	$7.731 imes 10^{-1}$	$5.730 imes 10^{-1}$
	σ_{yy}	0.9876	$5.783 imes10^{-5}$	0.9443	$4.324 imes10^{-3}$	$9.779 imes10^{-1}$	$9.280 imes10^{-1}$	$1.478 imes10^{-11}$	$9.367 imes10^{-1}$	$5.502 imes10^{-1}$
	σ_{zz}	0.9865	$1.062 imes 10^{-5}$	0.9526	$2.420 imes10^{-2}$	$9.704 imes10^{-1}$	$9.328 imes10^{-1}$	$3.200 imes 10^{-10}$	$9.407 imes10^{-1}$	$6.108 imes10^{-1}$
	и	0.9898	$3.302 imes 10^{-6}$	0.9168	$6.792 imes 10^{-2}$	$8.492 imes10^{-1}$	$6.756 imes 10^{-1}$	$2.928 imes10^{-7}$	$8.302 imes 10^{-1}$	$6.322 imes 10^{-1}$
	υ	0.9859	$2.747 imes 10^{-6}$	0.9300	$6.483 imes10^{-2}$	$8.630 imes10^{-1}$	$8.433 imes10^{-1}$	$2.501 imes 10^{-8}$	$8.963 imes10^{-1}$	$6.544 imes10^{-1}$
mean		0.9786	$2.970 imes10^{-5}$	0.7562	$1.046 imes 10^{-1}$	0.6568	0.7263	$9.780 imes 10^{-9}$	0.8045	0.5651
	ε_{rr}^{t}	$3.323 imes 10^{-5}$	5.335×10^{-12}	$6.296 imes10^{-4}$	$3.996 imes 10^{-4}$	$1.597 imes 10^{-3}$	$9.979 imes10^{-4}$	5.605×10^{-12}	$5.937 imes10^{-4}$	$1.497 imes 10^{-3}$
	ε_{xy}^{t}	$1.069 imes10^{-4}$	2.439×10^{-10}	$2.360 imes10^{-3}$	$3.352 imes 10^{-4}$	$3.351 imes10^{-3}$	$2.156 imes10^{-3}$	1.916×10^{-13}	$1.895 imes10^{-3}$	$2.264 imes10^{-3}$
	$\varepsilon_{\mu\nu}^{t}$	$3.349 imes10^{-5}$	$5.193 imes10^{-12}$	$5.245 imes10^{-4}$	$5.000 imes 10^{-4}$	$1.611 imes 10^{-3}$	$9.698 imes10^{-4}$	$3.612 imes 10^{-13}$	$5.977 imes10^{-4}$	$1.518 imes10^{-3}$
	ε_{xx}^{p}	$3.322 imes 10^{-5}$	4.646×10^{-12}	$1.350 imes 10^{-3}$	$2.735 imes 10^{-4}$	$1.667 imes10^{-3}$	$9.703 imes10^{-4}$	$5.282 imes 10^{-16}$	$6.106 imes10^{-4}$	$1.532 imes 10^{-3}$
	ϵ_{ry}^p	$9.449 imes10^{-5}$	$1.962 imes 10^{-10}$	$1.298 imes 10^{-3}$	$1.090 imes10^{-3}$	$3.048 imes 10^{-3}$	$1.839 imes10^{-3}$	$3.889 imes 10^{-13}$	$1.723 imes 10^{-3}$	$2.050 imes 10^{-3}$
1.00	$\varepsilon_{\mu\nu}^{p}$	$3.332 imes 10^{-5}$	$4.818 imes10^{-12}$	$9.206 imes10^{-4}$	$1.569 imes10^{-4}$	$1.670 imes10^{-3}$	$1.000 imes 10^{-3}$	$9.069 imes 10^{-12}$	$6.123 imes10^{-4}$	$1.540 imes10^{-3}$
MSE	$\varepsilon_{77}^{p^{y}}$	2.279×10^{-9}	2.901×10^{-20}	$2.178 imes 10^{-3}$	$1.456 imes 10^{-3}$	$4.339 imes 10^{-9}$	$1.036 imes 10^{-8}$	$2.540 imes 10^{-23}$	6.026×10^{-9}	$1.937 imes 10^{-8}$
	σ_{xx}	3.733×10^2	$4.030 imes 10^4$	4.303×10^2	1.794×10^2	$7.548 imes 10^2$	$7.480 imes 10^2$	$1.718 imes 10^{-1}$	4.916×10^2	3.206×10^{3}
	σ_{xy}	1.946×10^{2}	$1.639 imes 10^4$	6.338×10^{2}	3.734×10^2	6.364×10^{2}	1.283×10^3	2.146	7.852×10^{2}	1.478×10^3
	σ_{yy}	1.092×10^3	4.456×10^5	4.890×10^3	3.796×10^{2}	$1.943 imes 10^3$	6.320×10^3	$1.139 imes 10^{-1}$	5.556×10^{3}	$3.948 imes 10^4$
	σ_{zz}	$2.613 imes 10^2$	3.972×10^3	9.161×10^2	$4.681 imes 10^2$	$5.727 imes 10^2$	$1.300 imes 10^3$	$1.197 imes 10^{-1}$	$1.147 imes 10^3$	7.528×10^3
	и	$5.525 imes 10^{-3}$	$9.688 imes 10^{-7}$	$4.508 imes10^{-2}$	$3.679 imes10^{-2}$	$8.165 imes10^{-2}$	$1.757 imes10^{-1}$	$8.590 imes 10^{-8}$	$9.196 imes10^{-2}$	$1.992 imes10^{-1}$
	v	0.0072	7.221×10^{-7}	0.0359	$3.324 imes 10^{-2}$	7.021×10^{-2}	$8.034 imes10^{-2}$	$6.573 imes 10^{-9}$	$5.317 imes 10^{-2}$	1.772×10^{-1}

 Table A10. Detailed results for the plate elongation use case Simulation 9.

 Table A11. Detailed results for the bending beam use case Simulation 1.

SIMULATION 1										
		Μ	ILP	PI	NN	SVR	GB	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.8367	$8.066 imes 10^{-5}$	0.7682	$1.742 imes 10^{-2}$	0.8036	0.8566	$2.006 imes 10^{-6}$	0.8377	0.6790
	ε_{xy}^t	0.8570	$6.906 imes 10^{-5}$	0.6632	$1.499 imes10^{-1}$	0.4932	0.9030	$2.784 imes10^{-7}$	0.6409	0.5727
	ε_{yy}^{t}	0.9594	$1.142 imes 10^{-5}$	0.8487	$3.318 imes10^{-4}$	0.9520	0.9651	2.776×10^{-9}	0.9607	0.8805
	ε_{xx}^{p}	0.0647	$7.879 imes10^{-6}$	0.0304	$1.866 imes10^{-4}$	0.0083	0.1599	$1.015 imes 10^{-5}$	0.1426	0.0633
	ε_{xy}^p	-0.0091	$4.606 imes 10^{-4}$	-0.0106	$3.336 imes10^{-4}$	-0.0051	0.0906	$3.080 imes 10^{-6}$	0.0098	0.0652
D2	ϵ_{yy}^{p}	0.0723	$2.093 imes 10^{-5}$	0.0335	$4.720 imes 10^{-4}$	0.0051	0.1746	$9.704 imes10^{-7}$	0.1568	0.0720
K2	ϵ_{zz}^{p}	0.1157	$3.506 imes 10^{-4}$	-0.0078	$8.842 imes 10^{-4}$	0.0152	0.2458	$1.254 imes10^{-6}$	0.2373	0.1278
	σ_{xx}	0.9643	3.732×10^{-4}	0.9822	2.748×10^{-3}	0.0291	0.9837	$3.203 imes 10^{-7}$	0.6293	0.1681
	σ_{xy}	0.9157	1.814×10^{-4}	0.8902	1.515×10^{-2}	0.4227	0.9451	4.972×10^{-6}	0.6324	0.5024
	σ_{yy}	0.9482	8.435×10^{-5}	0.9546	1.249×10^{-3}	0.9618	0.9547	1.283×10^{-7}	0.9540	0.9815
	σ_{zz}	0.9789	1.711×10^{-5}	0.9742	1.819×10^{-3}	0.9766	0.9818	2.750×10^{-7}	0.9781	0.9521
	и	0.9948	6.208×10^{-6}	0.9974	5.933×10^{-4}	0.9978	0.9974	1.963×10^{-10}	0.9972	0.9678
	υ	0.9875	2.782×10^{-5}	0.8897	6.238×10^{-2}	0.9976	0.9973	6.646×10^{-8}	0.9976	0.9580
mean		0.6682	$7.345 imes 10^{-6}$	0.6165	1.648×10^{-2}	0.5122	0.7120	1.088×10^{-8}	0.6288	0.5377
	ε_{xx}^t	$3.452 imes 10^{-7}$	3.602×10^{-16}	$4.899 imes10^{-7}$	$3.682 imes 10^{-8}$	$4.151 imes 10^{-7}$	$3.077 imes 10^{-7}$	9.363×10^{-17}	$3.430 imes 10^{-7}$	$6.783 imes10^{-7}$
	ε_{xy}^t	$3.723 imes 10^{-8}$	$4.679 imes 10^{-18}$	$8.765 imes10^{-8}$	$3.903 imes10^{-8}$	$1.319 imes10^{-7}$	$2.554 imes10^{-8}$	7.242×10^{-20}	$9.346 imes10^{-8}$	$1.112 imes 10^{-7}$
	ε_{yy}^{t}	$2.876 imes10^{-7}$	$5.739 imes 10^{-16}$	$1.073 imes10^{-6}$	2.352×10^{-9}	$3.402 imes 10^{-7}$	$2.484 imes10^{-7}$	$3.517 imes10^{-18}$	$2.785 imes10^{-7}$	$8.473 imes10^{-7}$
	ε_{xx}^{p}	$4.778 imes10^{-7}$	$2.056 imes10^{-18}$	$4.953 imes10^{-7}$	$9.531 imes10^{-11}$	$5.066 imes10^{-7}$	$4.288 imes10^{-7}$	$4.320 imes10^{-18}$	$4.380 imes10^{-7}$	$4.785 imes10^{-7}$
	ϵ^{p}_{xy}	$1.779 imes 10^{-8}$	$1.431 imes10^{-19}$	$1.781 imes 10^{-8}$	$5.879 imes 10^{-12}$	$1.772 imes 10^{-8}$	$1.604 imes 10^{-8}$	$2.456 imes 10^{-21}$	$1.745 imes 10^{-8}$	$1.648 imes 10^{-8}$
MCE	ϵ_{yy}^{p}	$6.251 imes10^{-7}$	$9.503 imes10^{-18}$	$6.512 imes10^{-7}$	$3.180 imes10^{-10}$	$6.704 imes10^{-7}$	$5.577 imes10^{-7}$	$2.451 imes10^{-18}$	$5.681 imes10^{-7}$	$6.253 imes10^{-7}$
MBE	ϵ_{zz}^{p}	$1.029 imes 10^{-8}$	4.752×10^{-20}	$6.790 imes10^{-7}$	$5.958 imes 10^{-10}$	$1.146 imes 10^{-8}$	$8.783 imes10^{-9}$	$8.663 imes 10^{-23}$	$8.878 imes 10^{-9}$	$1.015 imes 10^{-8}$
	σ_{xx}	$9.974 imes10^1$	$2.906 imes 10^3$	$4.964 imes10^1$	7.668	2.709×10^3	$4.422 imes 10^1$	$5.128 imes10^{-2}$	$1.035 imes 10^3$	2.322×10^3
	σ_{xy}	$7.615 imes 10^1$	$1.479 imes 10^2$	$9.920 imes10^1$	$1.368 imes10^1$	5.214×10^2	$5.007 imes 10^1$	7.083	3.320×10^2	$4.494 imes 10^2$
	σ_{yy}	$1.295 imes 10^4$	$5.275 imes 10^6$	$1.135 imes 10^4$	3.123×10^2	$9.543 imes 10^3$	$1.141 imes 10^4$	$4.827 imes 10^4$	$1.150 imes 10^4$	4.631×10^3
	σ_{zz}	5.921×10^{2}	1.342×10^4	7.215×10^{2}	$5.094 imes 10^1$	6.548×10^2	5.054×10^2	$6.585 imes 10^1$	6.130×10^{2}	1.342×10^3
	и	1.251×10^{-2}	$3.633 imes 10^{-5}$	$6.323 imes 10^{-3}$	$1.435 imes 10^{-3}$	5.220×10^{-3}	$6.289 imes 10^{-3}$	$1.284 imes 10^{-8}$	$6.723 imes 10^{-3}$	7.797×10^{-2}
	υ	$4.059 imes 10^{-4}$	$2.945 imes10^{-8}$	3.589×10^{-3}	2.030×10^{-3}	7.902×10^{-5}	$8.486 imes 10^{-5}$	$2.337 imes 10^{-11}$	$7.796 imes 10^{-5}$	1.367×10^{-3}

	SIMULATION 4									
		М	LP	PI	NN	SVR	GBI	OTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.9992	$4.882 imes 10^{-4}$	0.9839	$6.920 imes 10^{-4}$	0.9601	0.9928	$1.008 imes 10^{-3}$	0.9940	0.9590
	ε_{xy}^t	0.9977	$1.512 imes 10^{-3}$	0.9643	$8.745 imes10^{-3}$	0.5794	0.9941	$1.496 imes10^{-4}$	0.9321	0.7219
	ε_{vv}^{t}	0.9996	$2.146 imes10^{-4}$	0.9793	$1.865 imes10^{-4}$	0.9970	0.9981	$4.564 imes10^{-4}$	0.9995	0.9922
	ε_{xx}^{p}	0.9965	$1.939 imes10^{-3}$	0.8471	$6.012 imes 10^{-3}$	0.8796	0.8709	$2.564 imes10^{-3}$	0.9819	0.8397
	ε_{xy}^p	0.9894	$8.291 imes10^{-3}$	0.9911	$4.488 imes10^{-4}$	0.0827	0.8513	$3.840 imes10^{-3}$	0.7997	0.3642
DO	ϵ_{yy}^{p}	0.9972	$1.521 imes10^{-3}$	0.8546	$9.650 imes10^{-4}$	0.8968	0.8881	$2.980 imes10^{-3}$	0.9855	0.8495
K2	ϵ_{zz}^{p}	0.9985	$6.214 imes10^{-4}$	0.7411	$1.351 imes10^{-2}$	0.9352	0.9479	$2.379 imes10^{-3}$	0.9944	0.8838
	σ_{xx}	0.9981	$8.971 imes10^{-4}$	0.9987	$5.263 imes10^{-4}$	0.0418	0.9979	7.556×10^{-5}	0.9046	0.4887
	σ_{xy}	0.9974	1.516×10^{-3}	0.9799	1.242×10^{-2}	0.4600	0.9946	$4.227 imes 10^{-4}$	0.9167	0.6331
	σ_{yy}	0.9997	$1.157 imes10^{-4}$	0.9169	$2.384 imes10^{-4}$	0.9992	0.9983	$1.213 imes 10^{-5}$	0.9998	0.9965
	σ_{zz}	0.9997	$1.080 imes10^{-4}$	0.9852	$2.265 imes 10^{-4}$	0.9939	0.9990	$1.026 imes10^{-4}$	0.9989	0.9916
	и	0.9998	$2.885 imes 10^{-5}$	0.9989	$3.940 imes10^{-4}$	1.0000	0.9996	$7.767 imes 10^{-5}$	0.9998	0.9989
	υ	0.9997	4.696×10^{-5}	0.9517	$1.110 imes 10^{-3}$	1.0000	0.9995	4.749×10^{-5}	0.9999	0.9974
mean		0.9979	$1.319 imes 10^{-3}$	0.9379	$1.042 imes 10^{-3}$	0.7558	0.9640	6.751×10^{-4}	0.9621	0.8243
	ε_{rr}^{t}	1.158×10^{-9}	7.461×10^{-10}	$2.467 imes 10^{-8}$	$1.057 imes 10^{-9}$	$6.097 imes10^{-8}$	$1.099 imes 10^{-8}$	$1.541 imes 10^{-9}$	$9.198 imes10^{-9}$	$6.258 imes 10^{-8}$
	ε_{xy}^t	$5.680 imes10^{-10}$	$3.784 imes10^{-10}$	$8.924 imes10^{-9}$	$2.188 imes10^{-9}$	$1.052 imes10^{-7}$	$1.471 imes10^{-9}$	$3.743 imes10^{-11}$	$1.700 imes10^{-8}$	$6.960 imes10^{-8}$
	ε_{vv}^{t}	$2.708 imes10^{-9}$	$1.457 imes 10^{-9}$	$1.404 imes10^{-7}$	$1.267 imes10^{-9}$	$2.058 imes10^{-8}$	$1.267 imes10^{-8}$	$3.100 imes 10^{-9}$	$3.589 imes10^{-9}$	$5.309 imes10^{-8}$
	ε_{xx}^{p}	$3.854 imes10^{-10}$	$2.155 imes10^{-10}$	$1.699 imes 10^{-8}$	$6.681 imes10^{-10}$	$1.337 imes10^{-8}$	$1.435 imes 10^{-8}$	2.849×10^{-10}	$2.012 imes 10^{-9}$	$1.782 imes 10^{-8}$
	ε_{xy}^p	$4.304 imes10^{-11}$	$3.372 imes 10^{-11}$	$3.608 imes 10^{-11}$	$1.825 imes 10^{-12}$	$3.730 imes10^{-9}$	$6.049 imes 10^{-10}$	$1.562 imes 10^{-11}$	$8.146 imes10^{-10}$	$2.586 imes 10^{-9}$
MCE	ε_{yy}^{p}	$4.490 imes10^{-10}$	$2.477 imes10^{-10}$	$2.367 imes10^{-8}$	$1.571 imes 10^{-10}$	$1.679 imes10^{-8}$	$1.822 imes 10^{-8}$	$4.851 imes10^{-10}$	$2.358 imes10^{-9}$	$2.449 imes10^{-8}$
MSE	ϵ_{zz}^{p}	$7.588 imes10^{-12}$	$3.101 imes 10^{-12}$	$4.214 imes10^{-8}$	$2.199 imes10^{-9}$	$3.233 imes 10^{-10}$	2.600×10^{-10}	$1.187 imes10^{-11}$	$2.771 imes10^{-11}$	$5.800 imes 10^{-10}$
	σ_{xx}	6.301	2.904	4.242	1.704	3.102×10^3	6.781	$2.446 imes10^{-1}$	3.087×10^2	$1.655 imes 10^3$
	σ_{xy}	2.546	1.489	$1.974 imes10^1$	$1.220 imes 10^1$	5.306×10^2	5.268	$4.153 imes10^{-1}$	$8.179 imes10^1$	3.604×10^2
	σ_{yy}	$9.601 imes 10^1$	$3.555 imes 10^1$	$2.554 imes10^4$	$7.326 imes 10^1$	$2.483 imes 10^2$	5.289×10^2	3.727	$5.885 imes 10^1$	$1.065 imes 10^3$
	σ_{zz}	9.587	3.424	4.705×10^2	7.179	$1.947 imes 10^2$	3.277×10^1	3.251	$3.488 imes 10^1$	2.663×10^{2}
	и	$5.949 imes10^{-4}$	$7.015 imes 10^{-5}$	$2.758 imes 10^{-3}$	$9.579 imes10^{-4}$	$1.676 imes10^{-5}$	$8.592 imes10^{-4}$	$1.889 imes10^{-4}$	$3.838 imes10^{-4}$	$2.781 imes 10^{-3}$
	v	$9.229 imes 10^{-6}$	1.558×10^{-6}	1.601×10^{-3}	$3.683 imes 10^{-5}$	$5.846 imes 10^{-7}$	$1.598 imes 10^{-5}$	$1.576 imes 10^{-6}$	$2.105 imes 10^{-6}$	8.758×10^{-5}

 Table A12. Detailed results for the bending beam use case Simulation 4.

 Table A13. Detailed results for the bending beam use case Simulation 6.

	SIMULATION 6									
		М	LP	PI	NN	SVR	GBI	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.9997	$1.585 imes 10^{-4}$	0.9827	$1.679 imes10^{-3}$	0.9606	0.9970	$3.028 imes 10^{-4}$	0.9946	0.9615
	ε_{xy}^t	0.9988	$5.440 imes10^{-4}$	0.9636	$1.211 imes 10^{-2}$	0.6360	0.9956	$2.013 imes10^{-4}$	0.9418	0.7492
	ε_{yy}^{t}	0.9997	$1.581 imes10^{-4}$	0.9683	$3.948 imes 10^{-4}$	0.9979	0.9990	$1.438 imes10^{-4}$	0.9997	0.9935
	ϵ_{xx}^{p}	0.9973	$1.546 imes10^{-3}$	0.8567	$3.014 imes 10^{-3}$	0.7713	0.8529	$1.868 imes10^{-3}$	0.9825	0.7532
	ε_{xy}^p	0.9887	$5.094 imes10^{-3}$	0.9788	$7.437 imes10^{-3}$	0.1049	0.7773	$4.855 imes10^{-3}$	0.7837	0.3351
PJ	ϵ_{yy}^{p}	0.9979	$1.115 imes10^{-3}$	0.8769	$1.114 imes10^{-2}$	0.7980	0.8627	$1.675 imes10^{-3}$	0.9851	0.7650
K2	ϵ_{zz}^{p}	0.9980	$7.159 imes10^{-4}$	0.6162	$1.176 imes 10^{-2}$	0.8392	0.8955	$3.934 imes10^{-4}$	0.9910	0.8054
	σ_{xx}	0.9985	$5.385 imes10^{-4}$	0.9993	$1.296 imes10^{-4}$	0.0374	0.9987	$1.248 imes10^{-4}$	0.9051	0.4865
	σ_{xy}	0.9984	$7.070 imes 10^{-4}$	0.9819	1.416×10^{-2}	0.4890	0.9953	$2.116 imes10^{-4}$	0.9198	0.6422
	σ_{yy}	0.9997	$1.586 imes10^{-4}$	0.9465	$1.587 imes 10^{-3}$	0.9993	0.9988	$1.469 imes10^{-4}$	0.9999	0.9969
	σ_{zz}	0.9997	1.588×10^{-4}	0.9890	3.975×10^{-5}	0.9937	0.9991	1.271×10^{-4}	0.9990	0.9919
	и	0.9997	1.787×10^{-5}	0.9984	$2.302 imes 10^{-4}$	1.0000	0.9997	$6.919 imes 10^{-5}$	0.9998	0.9989
	υ	0.9997	$6.709 imes 10^{-5}$	0.9503	1.090×10^{-3}	1.0000	0.9995	$1.477 imes 10^{-4}$	0.9999	0.9974
mean		0.9981	8.315×10^{-4}	0.9314	$8.396 imes10^{-4}$	0.7406	0.9516	$1.368 imes 10^{-4}$	0.9617	0.8059
	ε_{xx}^t	4.762×10^{-10}	2.159×10^{-10}	$2.352 imes 10^{-8}$	$2.287 imes 10^{-9}$	$5.373 imes10^{-8}$	4.027×10^{-9}	4.125×10^{-10}	7.327×10^{-9}	$5.246 imes 10^{-8}$
	ε_{xy}^t	$2.949 imes 10^{-10}$	$1.330 imes 10^{-10}$	$8.896 imes10^{-9}$	2.962×10^{-9}	$8.902 imes10^{-8}$	$1.069 imes10^{-9}$	$4.922 imes 10^{-11}$	$1.423 imes10^{-8}$	$6.133 imes10^{-8}$
	ε_{yy}^{t}	$1.818 imes10^{-9}$	$1.064 imes10^{-9}$	$2.134 imes10^{-7}$	2.658×10^{-9}	$1.434 imes10^{-8}$	$6.562 imes 10^{-9}$	$9.683 imes 10^{-10}$	$2.272 imes 10^{-9}$	$4.385 imes10^{-8}$
	ϵ_{xx}^{p}	$9.135 imes10^{-11}$	$5.298 imes10^{-11}$	$4.910 imes10^{-9}$	$1.033 imes10^{-10}$	$7.838 imes10^{-9}$	$5.041 imes 10^{-9}$	$6.403 imes10^{-11}$	$5.983 imes10^{-10}$	$8.458 imes 10^{-9}$
	ϵ_{xy}^p	$1.017 imes10^{-11}$	$4.605 imes10^{-12}$	$1.921 imes 10^{-11}$	$6.723 imes 10^{-12}$	$8.092 imes10^{-10}$	$2.014 imes10^{-10}$	$4.389 imes10^{-12}$	$1.955 imes10^{-10}$	$6.011 imes10^{-10}$
MCE	ϵ_{yy}^{p}	$1.126 imes10^{-10}$	$5.894 imes10^{-11}$	$6.510 imes10^{-9}$	$5.889 imes 10^{-10}$	$1.068 imes10^{-8}$	7.262×10^{-9}	$8.856 imes 10^{-11}$	$7.876 imes 10^{-10}$	$1.242 imes 10^{-8}$
MSE	ϵ_{zz}^{p}	$4.137 imes10^{-12}$	$1.456 imes10^{-12}$	$2.030 imes10^{-8}$	$6.220 imes 10^{-10}$	$3.271 imes 10^{-10}$	$2.126 imes 10^{-10}$	$8.001 imes 10^{-13}$	$1.840 imes10^{-11}$	3.959×10^{-10}
	σ_{xx}	4.891	1.801	2.311	$4.333 imes10^{-1}$	$3.219 imes 10^3$	4.183	$4.173 imes10^{-1}$	$3.174 imes 10^2$	1.717×10^3
	σ_{xy}	1.582	$7.091 imes10^{-1}$	$1.820 imes 10^1$	$1.420 imes 10^1$	$5.125 imes 10^2$	4.749	$2.123 imes10^{-1}$	$8.043 imes10^1$	3.589×10^2
	σ_{yy}	$8.720 imes 10^1$	$5.288 imes 10^1$	1.785×10^4	5.289×10^2	2.192×10^2	$4.124 imes 10^2$	$4.896 imes 10^1$	$4.382 imes 10^1$	$1.044 imes 10^3$
	σ_{zz}	8.678	5.215	$3.603 imes 10^2$	1.305	$2.061 imes 10^2$	$2.859 imes 10^1$	4.174	$3.387 imes10^1$	2.660×10^2
	и	$7.648 imes 10^{-4}$	$4.353 imes 10^{-5}$	$3.887 imes 10^{-3}$	$5.607 imes 10^{-4}$	$1.611 imes 10^{-5}$	$6.987 imes 10^{-4}$	$1.685 imes 10^{-4}$	$3.679 imes10^{-4}$	2.779×10^{-3}
	υ	$9.476 imes10^{-6}$	$2.243 imes10^{-6}$	$1.663 imes10^{-3}$	$3.645 imes10^{-5}$	$4.862 imes10^{-7}$	$1.622 imes 10^{-5}$	$4.937 imes10^{-6}$	$1.937 imes 10^{-6}$	8.695×10^{-5}

	SIMULATION 9									
		Μ	ILP	PI	NN	SVR	GB	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
-	ε_{xx}^t	0.7851	$3.018 imes 10^{-3}$	0.6358	$6.166 imes10^{-4}$	0.8656	0.8172	$3.255 imes 10^{-5}$	0.7939	0.9395
	ε_{xy}^t	0.8255	$4.803 imes10^{-3}$	0.8392	$2.690 imes10^{-2}$	0.6478	0.9133	$4.185 imes10^{-7}$	0.7931	0.6226
	ε_{yy}^{t}	0.9627	$3.529 imes 10^{-6}$	0.9126	$3.213 imes10^{-4}$	0.9776	0.9721	$3.246 imes10^{-8}$	0.9732	0.9432
	ε_{xx}^{p}	-984.3572	3.895×10^4	-2372.9520	1.322×10^1	-305.8183	-823.3812	$3.067 imes 10^1$	-809.9266	-220.5149
	ε_{xy}^p	-13394.3542	1.990×10^{6}	-13885.9308	3.975×10^{2}	-604.7674	-8965.1296	4.317×10^2	-2397.3474	-4955.1166
R2	ϵ_{yy}^{p}	-821.5068	2.422×10^4	-343.2822	2.128	-282.6090	-698.7968	$1.881 imes10^{-1}$	-683.0748	-193.7274
K2	ϵ_{zz}^{p}	-359.9536	1.372×10^3	-382.8576	$1.639 imes 10^1$	-214.6722	-322.9159	$4.464 imes10^{-2}$	-309.8423	-109.3652
	σ_{xx}	0.9529	$1.611 imes 10^{-3}$	0.9893	$1.808 imes 10^{-3}$	0.0275	0.9932	$2.982 imes 10^{-9}$	0.5629	0.2630
	σ_{xy}	0.9120	$1.109 imes10^{-3}$	0.9260	$1.163 imes10^{-2}$	0.4862	0.9627	$3.386 imes10^{-7}$	0.6904	0.5129
	σ_{yy}	0.9672	$5.183 imes 10^{-6}$	0.8105	$3.138 imes10^{-3}$	0.9569	0.9763	$4.897 imes10^{-8}$	0.9745	0.8841
	σ_{zz}	0.9825	$1.315 imes 10^{-5}$	0.9681	$8.932 imes 10^{-5}$	0.9738	0.9887	$2.130 imes10^{-7}$	0.9855	0.9184
	и	0.9947	1.871×10^{-5}	0.9985	$4.685 imes10^{-4}$	0.9950	0.9980	$2.820 imes 10^{-9}$	0.9978	0.9581
	υ	0.9933	2.244×10^{-5}	0.9493	1.716×10^{-3}	0.9960	0.9980	2.141×10^{-9}	0.9982	0.9443
mean		-1196.2920	$6.166 imes 10^3$	-1305.9226	$3.269 imes 10^1$	-107.7646	-830.8926	4.298	-322.4940	-420.9029
-	ε_{xx}^t	$2.655 imes 10^{-7}$	4.608×10^{-15}	$4.500 imes 10^{-7}$	$7.618 imes10^{-10}$	1.660×10^{-7}	$2.177 imes10^{-7}$	$2.073 imes 10^{-17}$	$2.546 imes10^{-7}$	$7.480 imes 10^{-8}$
	ε_{xy}^t	$4.174 imes10^{-8}$	$2.747 imes 10^{-16}$	$3.847 imes10^{-8}$	$6.433 imes10^{-9}$	$8.423 imes10^{-8}$	$2.062 imes 10^{-8}$	$6.416 imes10^{-22}$	$4.949 imes10^{-8}$	$9.025 imes10^{-8}$
	$\varepsilon_{\nu\nu}^{t}$	$2.494 imes10^{-7}$	$1.581 imes10^{-16}$	$5.852 imes10^{-7}$	$2.150 imes10^{-9}$	$1.500 imes10^{-7}$	$1.973 imes10^{-7}$	$2.708 imes10^{-16}$	$1.793 imes10^{-7}$	$3.804 imes10^{-7}$
	ε_{xx}^{p}	$3.694 imes10^{-7}$	5.475×10^{-15}	$8.900 imes10^{-7}$	$4.957 imes10^{-9}$	$1.150 imes 10^{-7}$	$3.109 imes10^{-7}$	2.740×10^{-19}	$3.040 imes 10^{-7}$	$8.305 imes 10^{-8}$
	ε_{xy}^p	$1.826 imes 10^{-8}$	3.699×10^{-18}	$1.893 imes 10^{-8}$	$5.419 imes 10^{-10}$	8.258×10^{-10}	$1.224 imes 10^{-8}$	$6.153 imes10^{-24}$	3.270×10^{-9}	6.756×10^{-9}
MCE	ϵ_{yy}^{p}	$4.966 imes10^{-7}$	8.827×10^{-15}	$2.079 imes10^{-7}$	$1.285 imes 10^{-9}$	1.712×10^{-7}	$4.229 imes10^{-7}$	$6.942 imes 10^{-20}$	$4.130 imes10^{-7}$	$1.176 imes10^{-7}$
MSE	ϵ_{zz}^{p}	$9.798 imes 10^{-9}$	1.011×10^{-18}	$2.318 imes10^{-7}$	9.893×10^{-9}	5.854×10^{-9}	$8.779 imes 10^{-9}$	6.376×10^{-22}	$8.438 imes 10^{-9}$	2.996×10^{-9}
	σ_{xx}	1.599×10^{2}	1.859×10^{4}	$3.640 imes 10^1$	6.144	3.304×10^3	2.324×10^1	$2.649 imes 10^{-2}$	1.485×10^3	2.504×10^3
	σ_{xy}	$8.763 imes 10^1$	1.101×10^3	7.371×10^1	$1.158 imes 10^1$	5.118×10^2	$3.585 imes 10^1$	1.534	3.084×10^2	4.852×10^2
	σ_{yy}	$1.180 imes 10^4$	$6.690 imes 10^5$	$6.809 imes 10^4$	$1.127 imes 10^3$	$1.547 imes 10^4$	$8.593 imes 10^3$	$1.887 imes 10^3$	$9.171 imes 10^3$	$4.165 imes 10^4$
	σ_{zz}	5.870×10^2	$1.478 imes 10^4$	$1.069 imes 10^3$	2.994	$8.768 imes 10^2$	3.739×10^2	$4.308 imes 10^2$	$4.876 imes 10^2$	$2.737 imes 10^3$
	и	$1.288 imes10^{-2}$	$1.115 imes 10^{-4}$	$3.569 imes10^{-3}$	$1.144 imes10^{-3}$	$1.217 imes10^{-2}$	$4.617 imes10^{-3}$	$6.444 imes10^{-9}$	$5.283 imes10^{-3}$	$1.023 imes10^{-1}$
	υ	2.259×10^{-4}	2.552×10^{-8}	1.711×10^{-3}	$5.786 imes 10^{-5}$	1.339×10^{-4}	$6.601 imes 10^{-5}$	2.616×10^{-12}	$6.196 imes 10^{-5}$	1.880×10^{-3}

 Table A14. Detailed results for the bending beam use case Simulation 9.

 Table A15. Detailed results for the block compression use case Simulation 1.

SIMULATION 1										
		MLP		PI	NN	SVR	GB	DTR	KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.7303	$1.285 imes10^{-1}$	-3.1200	1.797	-1.0225	0.4661	$1.606 imes 10^{-3}$	0.7233	0.0611
	ε_{xy}^t	0.5272	$2.271 imes10^{-1}$	-1.8630	$3.719 imes10^{-1}$	-0.1080	0.4285	$3.330 imes 10^{-4}$	0.7319	0.0383
	ε_{yy}^{t}	0.7301	$1.291 imes10^{-1}$	-3.0260	2.761	-1.0094	0.4515	$2.165 imes10^{-4}$	0.7236	0.0549
	ε_{xx}^{p}	0.7267	$1.309 imes10^{-1}$	-2.6201	1.502	-0.9605	0.4632	$1.165 imes10^{-3}$	0.7213	0.0619
	ϵ_{xy}^p	0.5208	$2.282 imes 10^{-1}$	-0.2147	$6.512 imes10^{-1}$	-0.0480	0.3885	$1.938 imes10^{-2}$	0.7295	0.0348
R2	ε_{yy}^{p}	0.7273	$1.308 imes10^{-1}$	-0.4142	$7.218 imes10^{-1}$	-0.9576	0.4298	$1.476 imes 10^{-3}$	0.7217	0.0624
K2	ϵ_{zz}^{p}	0.3664	$2.504 imes10^{-1}$	0.2890	$8.202 imes 10^{-2}$	-1.0694	0.2682	$1.412 imes 10^{-3}$	0.6842	0.0806
	σ_{xx}	0.2825	$2.839 imes 10^{-1}$	0.8531	3.238×10^{-2}	-0.5722	0.7233	$2.191 imes 10^{-4}$	0.8244	0.1672
	σ_{xy}	0.2157	$4.538 imes 10^{-1}$	0.8347	8.739×10^{-3}	0.0408	0.5910	$4.449 imes 10^{-4}$	0.7997	0.1585
	σ_{yy}	0.2810	$2.974 imes 10^{-1}$	0.7870	2.325×10^{-2}	0.7210	0.6808	3.475×10^{-4}	0.7726	-0.3058
	σ_{zz}	0.3929	$3.008 imes10^{-1}$	0.8048	$3.480 imes10^{-3}$	0.6143	0.6356	$2.169 imes10^{-4}$	0.8023	-0.1644
	и	0.8266	$7.245 imes 10^{-2}$	0.9294	$4.231 imes10^{-3}$	0.4551	0.9157	$4.560 imes 10^{-5}$	0.9360	0.5587
	υ	0.9031	5.961×10^{-2}	0.9872	$2.228 imes 10^{-4}$	0.7144	0.9619	1.290×10^{-5}	0.9805	0.5683
mean		0.5562	$1.952 imes 10^{-1}$	-0.4441	$6.066 imes10^{-1}$	-0.2463	0.5695	$1.665 imes 10^{-3}$	0.7808	0.1059
	ε_{xx}^t	$9.226 imes10^{-4}$	$4.397 imes 10^{-4}$	1.409×10^{-2}	$6.146 imes 10^{-3}$	$6.918 imes10^{-3}$	$1.826 imes 10^{-3}$	$5.492 imes 10^{-6}$	$9.465 imes 10^{-4}$	$3.211 imes 10^{-3}$
	ε_{xy}^t	$2.624 imes10^{-3}$	$1.261 imes10^{-3}$	$1.589 imes10^{-2}$	$2.065 imes10^{-3}$	$6.150 imes10^{-3}$	$3.172 imes10^{-3}$	$1.849 imes10^{-6}$	$1.488 imes10^{-3}$	$5.338 imes10^{-3}$
	ε_{yy}^{t}	$9.301 imes10^{-4}$	$4.449 imes10^{-4}$	$1.388 imes10^{-2}$	$9.514 imes10^{-3}$	$6.925 imes10^{-3}$	$1.890 imes10^{-3}$	$7.460 imes10^{-7}$	$9.526 imes10^{-4}$	$3.257 imes10^{-3}$
	ε_{xx}^{p}	$9.391 imes10^{-4}$	$4.498 imes10^{-4}$	$1.244 imes10^{-2}$	$5.160 imes10^{-3}$	$6.737 imes10^{-3}$	$1.845 imes10^{-3}$	$4.004 imes10^{-6}$	$9.577 imes10^{-4}$	$3.224 imes10^{-3}$
	ϵ^p_{xy}	$2.464 imes10^{-3}$	$1.173 imes10^{-3}$	$6.245 imes10^{-3}$	$3.348 imes10^{-3}$	$5.387 imes10^{-3}$	$3.143 imes10^{-3}$	$9.964 imes10^{-5}$	$1.391 imes10^{-3}$	$4.962 imes10^{-3}$
MCE	$\varepsilon_{vv}^{p^{o}}$	$9.431 imes10^{-4}$	$4.524 imes10^{-4}$	$4.890 imes10^{-3}$	$2.496 imes10^{-3}$	$6.769 imes10^{-3}$	$1.972 imes 10^{-3}$	$5.103 imes10^{-6}$	$9.625 imes10^{-4}$	$3.242 imes 10^{-3}$
MSE	ϵ_{zz}^{p}	$6.827 imes10^{-8}$	$2.698 imes10^{-8}$	$2.458 imes10^{-3}$	$2.836 imes10^{-4}$	$2.230 imes10^{-7}$	$7.885 imes10^{-8}$	1.521×10^{-10}	$3.403 imes10^{-8}$	$9.906 imes10^{-8}$
	σ_{xx}	$1.703 imes 10^4$	$6.737 imes 10^3$	$3.486 imes 10^3$	$7.684 imes 10^2$	$3.732 imes 10^4$	$6.568 imes 10^3$	5.200	$4.168 imes 10^3$	$1.977 imes 10^4$
	σ_{xy}	$1.182 imes 10^4$	$6.839 imes 10^3$	$2.491 imes 10^3$	$1.317 imes 10^2$	$1.446 imes 10^4$	$6.164 imes 10^3$	6.705	$3.019 imes 10^3$	$1.268 imes 10^4$
	σ_{yy}	$9.018 imes10^4$	$3.730 imes 10^4$	$2.671 imes 10^4$	$2.916 imes 10^3$	$3.499 imes 10^4$	$4.003 imes 10^4$	$4.358 imes10^1$	$2.852 imes 10^4$	$1.638 imes 10^5$
	σ_{zz}	$1.872 imes 10^4$	$9.276 imes 10^3$	$6.021 imes 10^3$	$1.073 imes 10^2$	$1.189 imes 10^4$	$1.124 imes 10^4$	6.688	$6.098 imes 10^3$	$3.591 imes 10^4$
	и	$3.141 imes 10^{-1}$	$1.312 imes 10^{-1}$	$1.278 imes10^{-1}$	$7.662 imes 10^{-3}$	$9.869 imes10^{-1}$	$1.526 imes10^{-1}$	$8.258 imes10^{-5}$	$1.159 imes10^{-1}$	$7.993 imes10^{-1}$
	υ	$4.938 imes10^{-1}$	$3.039 imes 10^{-1}$	$6.544 imes10^{-2}$	$1.136 imes 10^{-3}$	1.456	$1.943 imes10^{-1}$	6.575×10^{-5}	$9.955 imes10^{-2}$	2.201

SIMULATION 2										
		М	LP	PI	NN	J SVR		GBDTR		GPR
		mean	std	mean	std		mean	std		
	$\varepsilon_{\gamma\gamma}^t$	0.7096	$2.194 imes 10^{-1}$	-1.8843	1.366×10^{-1}	-0.2305	0.5318	$2.513 imes 10^{-3}$	0.7129	0.0908
	ε_{xy}^{t}	0.5973	$3.255 imes 10^{-1}$	-1.0111	$5.049 imes 10^{-1}$	-0.1731	0.2782	2.402×10^{-3}	0.6317	0.0484
	$\varepsilon_{\nu\nu}^{t}$	0.7065	$2.224 imes10^{-1}$	0.4236	$2.569 imes10^{-1}$	-0.2238	0.5362	$1.582 imes 10^{-3}$	0.7144	0.0893
	ϵ_{xx}^{p}	0.7009	$2.318 imes10^{-1}$	-1.1047	$4.716 imes10^{-1}$	-0.1968	0.5474	$7.692 imes 10^{-4}$	0.7105	0.0898
	ϵ^p_{xy}	0.6101	$3.059 imes 10^{-1}$	0.6086	$2.773 imes 10^{-2}$	-0.0903	0.2472	$3.168 imes 10^{-3}$	0.6283	0.0483
DO	ϵ_{yy}^{p}	0.7005	$2.322 imes 10^{-1}$	-0.0181	$3.360 imes10^{-2}$	-0.2002	0.5343	$8.637 imes10^{-4}$	0.7113	0.0899
K2	ϵ_{zz}^{p}	-0.5742	$9.762 imes10^{-1}$	0.6019	$7.576 imes10^{-2}$	-1.0839	0.3289	$7.350 imes10^{-4}$	0.7009	0.0660
	σ_{xx}	0.3274	$3.777 imes 10^{-1}$	0.8818	$2.484 imes10^{-3}$	-1.6968	0.6480	$3.008 imes 10^{-4}$	0.8516	0.3220
	σ_{xy}	-0.4305	$9.030 imes10^{-1}$	0.5625	$6.341 imes10^{-3}$	-0.5689	0.0328	$2.754 imes10^{-4}$	0.5789	0.2049
	σ_{yy}	0.1829	$4.317 imes10^{-1}$	0.7002	$3.199 imes10^{-3}$	0.5536	0.6007	$2.593 imes 10^{-5}$	0.7000	-0.1031
	σ_{zz}	-0.3596	$8.129 imes10^{-1}$	0.7370	$1.084 imes10^{-2}$	0.4829	0.5160	$1.780 imes10^{-4}$	0.7096	-0.1446
	и	0.8932	$1.158 imes10^{-1}$	0.9263	$8.374 imes10^{-3}$	0.3561	0.9418	7.221×10^{-5}	0.9579	0.4798
	υ	0.8345	$1.753 imes10^{-1}$	0.9813	$4.156 imes10^{-3}$	0.7313	0.9507	$2.445 imes 10^{-5}$	0.9677	0.5499
mean		0.3768	$3.803 imes 10^{-1}$	0.1850	$5.531 imes 10^{-2}$	-0.1800	0.5149	$3.320 imes 10^{-4}$	0.7366	0.1409
	ε_{xx}^t	$1.744 imes 10^{-3}$	$1.318 imes 10^{-3}$	$1.732 imes 10^{-2}$	$8.206 imes 10^{-4}$	$7.390 imes 10^{-3}$	$2.812 imes 10^{-3}$	1.509×10^{-5}	$1.724 imes 10^{-3}$	$5.461 imes 10^{-3}$
	ε_{xy}^t	$2.154 imes10^{-3}$	$1.741 imes10^{-3}$	$1.076 imes10^{-2}$	$2.700 imes10^{-3}$	$6.274 imes10^{-3}$	$3.861 imes10^{-3}$	$1.285 imes10^{-5}$	$1.970 imes10^{-3}$	$5.090 imes10^{-3}$
	ϵ_{vv}^{t}	1.772×10^{-3}	$1.342 imes 10^{-3}$	$3.479 imes 10^{-3}$	$1.550 imes 10^{-3}$	$7.387 imes10^{-3}$	$2.799 imes 10^{-3}$	$9.547 imes 10^{-6}$	$1.724 imes 10^{-3}$	$5.496 imes10^{-3}$
	ϵ_{xx}^{p}	$1.811 imes 10^{-3}$	$1.404 imes 10^{-3}$	$1.275 imes10^{-2}$	$2.856 imes10^{-3}$	$7.248 imes10^{-3}$	$2.741 imes10^{-3}$	$4.658 imes10^{-6}$	$1.753 imes10^{-3}$	$5.512 imes10^{-3}$
	ε_{xy}^p	$1.859 imes10^{-3}$	$1.459 imes10^{-3}$	$1.866 imes10^{-3}$	$1.322 imes 10^{-4}$	$5.199 imes10^{-3}$	$3.590 imes 10^{-3}$	$1.511 imes 10^{-5}$	$1.772 imes 10^{-3}$	$4.538 imes10^{-3}$
MOL	$\epsilon_{\nu\nu}^{p}$	$1.824 imes10^{-3}$	$1.414 imes10^{-3}$	$6.200 imes 10^{-3}$	$2.046 imes10^{-4}$	$7.309 imes10^{-3}$	$2.836 imes10^{-3}$	5.260×10^{-6}	$1.758 imes10^{-3}$	$5.542 imes 10^{-3}$
MSE	ϵ_{77}^{p}	$1.408 imes 10^{-7}$	$8.729 imes 10^{-8}$	$2.424 imes 10^{-3}$	$4.614 imes10^{-4}$	$1.863 imes 10^{-7}$	$6.001 imes 10^{-8}$	$6.573 imes 10^{-11}$	$2.675 imes 10^{-8}$	$8.352 imes 10^{-8}$
	σ_{xx}	$1.019 imes 10^4$	5.721×10^3	1.791×10^3	$3.762 imes 10^1$	$4.085 imes 10^4$	5.332×10^3	4.557	$2.249 imes 10^3$	$1.027 imes 10^4$
	σ_{xy}	8.585×10^3	5.419×10^3	2.626×10^{3}	$3.805 imes 10^1$	9.416×10^{3}	5.805×10^3	1.653	2.527×10^3	4.772×10^3
	σ_{vv}	$8.018 imes 10^4$	$4.236 imes 10^4$	$2.942 imes 10^4$	$3.139 imes 10^2$	$4.381 imes 10^4$	$3.919 imes10^4$	2.545	$2.944 imes 10^4$	$1.083 imes 10^5$
	σ_{zz}	$2.661 imes 10^4$	$1.591 imes 10^4$	$5.149 imes 10^3$	$2.122 imes 10^2$	$1.012 imes 10^4$	$9.474 imes 10^3$	3.484	$5.684 imes 10^3$	$2.240 imes 10^4$
	и	$4.301 imes 10^{-1}$	$4.665 imes10^{-1}$	$2.971 imes10^{-1}$	$3.374 imes10^{-2}$	2.594	$2.343 imes10^{-1}$	$2.909 imes 10^{-4}$	$1.697 imes10^{-1}$	2.096
	υ	$8.877 imes10^{-1}$	$9.405 imes10^{-1}$	$1.001 imes 10^{-1}$	$2.229 imes 10^{-2}$	1.442	$2.647 imes10^{-1}$	$1.312 imes 10^{-4}$	$1.735 imes 10^{-1}$	2.414

 Table A16. Detailed results for the block compression use case Simulation 2.

Table A17. Detailed results for the block compression use case Simulation 7.

SIMULATION 7											
		М	LP	PI	NN	SVR	GBI	OTR	KNNR	GPR	
		mean	std	mean	std		mean	std			
	ε_{xx}^t	0.9991	$2.601 imes 10^{-4}$	0.9881	$6.498 imes 10^{-3}$	0.5368	0.9664	$2.355 imes 10^{-2}$	0.9688	0.3910	
	ε_{xy}^t	0.9987	$6.959 imes10^{-4}$	0.9623	$2.560 imes 10^{-2}$	0.2573	0.9512	$3.642 imes 10^{-2}$	0.9508	0.2373	
	ε_{yy}^{t}	0.9991	$2.628 imes10^{-4}$	0.9696	$1.661 imes 10^{-2}$	0.5397	0.9663	$2.395 imes 10^{-2}$	0.9691	0.3940	
	ε_{xx}^{p}	0.9991	$2.756 imes10^{-4}$	0.8726	$4.550 imes10^{-3}$	0.5257	0.9655	$2.371 imes10^{-2}$	0.9688	0.3834	
	ε_{xy}^p	0.9986	$7.165 imes10^{-4}$	0.9616	$3.809 imes10^{-3}$	0.2496	0.9577	$2.802 imes 10^{-2}$	0.9484	0.2319	
DO	ε_{yy}^{p}	0.9991	$2.774 imes10^{-4}$	0.8969	$4.043 imes10^{-3}$	0.5281	0.9635	$2.655 imes 10^{-2}$	0.9690	0.3846	
K2	$\epsilon_{zz}^{p^*}$	0.9968	$4.519 imes10^{-5}$	0.7795	$9.273 imes 10^{-3}$	0.6862	0.9629	2.088×10^{-2}	0.9789	0.4545	
	σ_{xx}	0.9965	$6.357 imes 10^{-4}$	0.9883	$6.623 imes 10^{-4}$	0.7980	0.9743	1.251×10^{-2}	0.9868	0.5950	
	σ_{xy}	0.9962	$9.610 imes 10^{-4}$	0.9775	1.717×10^{-3}	0.6131	0.9410	3.089×10^{-2}	0.9772	0.5081	
	σ_{yy}	0.9915	3.103×10^{-3}	0.8713	1.406×10^{-3}	0.8900	0.9891	4.567×10^{-3}	0.9945	0.7272	
	σ_{zz}	0.9943	2.068×10^{-3}	0.9874	3.501×10^{-5}	0.8345	0.9800	1.025×10^{-2}	0.9906	0.6242	
	и	0.9996	3.315×10^{-5}	0.9851	1.746×10^{-3}	0.9386	0.9973	1.892×10^{-3}	0.9967	0.9069	
	υ	0.9997	2.460×10^{-5}	0.9923	2.524×10^{-4}	0.9415	0.9976	1.783×10^{-3}	0.9972	0.9224	
mean		0.9976	8.258×10^{-5}	0.9410	$4.310 imes 10^{-3}$	0.6415	0.9702	$1.884 imes 10^{-2}$	0.9767	0.5200	
	ε_{xx}^t	$3.776 imes 10^{-6}$	1.124×10^{-6}	$5.131 imes 10^{-5}$	$2.808 imes 10^{-5}$	$2.001 imes 10^{-3}$	1.454×10^{-4}	$1.018 imes 10^{-4}$	1.349×10^{-4}	2.631×10^{-3}	
	ε_{xy}^t	$7.595 imes 10^{-6}$	$4.066 imes 10^{-6}$	$2.200 imes10^{-4}$	$1.496 imes10^{-4}$	$4.339 imes10^{-3}$	$2.854 imes10^{-4}$	$2.128 imes10^{-4}$	$2.873 imes10^{-4}$	$4.456 imes10^{-3}$	
	ε_{yy}^{t}	$3.777 imes 10^{-6}$	$1.144 imes10^{-6}$	$1.324 imes10^{-4}$	$7.231 imes 10^{-5}$	$2.004 imes10^{-3}$	$1.467 imes10^{-4}$	$1.043 imes10^{-4}$	$1.347 imes10^{-4}$	$2.638 imes10^{-3}$	
	ε_{xx}^{p}	$3.881 imes 10^{-6}$	$1.196 imes10^{-6}$	$5.530 imes10^{-4}$	$1.975 imes10^{-5}$	$2.059 imes10^{-3}$	$1.496 imes10^{-4}$	$1.029 imes10^{-4}$	$1.356 imes10^{-4}$	$2.676 imes10^{-3}$	
	ϵ^p_{xy}	$7.212 imes 10^{-6}$	$3.779 imes10^{-6}$	$2.027 imes10^{-4}$	$2.009 imes10^{-5}$	$3.957 imes10^{-3}$	$2.229 imes10^{-4}$	$1.478 imes10^{-4}$	$2.722 imes 10^{-4}$	$4.051 imes10^{-3}$	
MCE	ϵ_{yy}^{p}	$3.894 imes10^{-6}$	$1.213 imes10^{-6}$	$4.511 imes10^{-4}$	$1.769 imes10^{-5}$	$2.065 imes 10^{-3}$	$1.598 imes10^{-4}$	$1.162 imes 10^{-4}$	$1.357 imes10^{-4}$	$2.692 imes 10^{-3}$	
MSE	ϵ_{zz}^{p}	$5.595 imes 10^{-10}$	$7.808 imes10^{-12}$	$9.648 imes 10^{-4}$	$4.057 imes 10^{-5}$	$5.421 imes 10^{-8}$	$6.411 imes 10^{-9}$	$3.608 imes 10^{-9}$	$3.652 imes 10^{-9}$	$9.424 imes 10^{-8}$	
	σ_{xx}	$1.240 imes 10^2$	$2.269 imes 10^1$	$4.180 imes 10^2$	$2.364 imes10^1$	$7.209 imes 10^3$	$9.186 imes 10^2$	$4.463 imes 10^2$	$4.708 imes 10^2$	$1.445 imes 10^4$	
	σ_{xy}	$6.742 imes10^1$	$1.684 imes10^1$	3.950×10^2	$3.009 imes 10^1$	$6.781 imes 10^3$	$1.034 imes 10^3$	5.413×10^2	$3.991 imes 10^2$	$8.620 imes 10^3$	
	σ_{yy}	1.877×10^3	$6.894 imes 10^2$	2.858×10^4	3.124×10^2	$2.443 imes 10^4$	2.421×10^{3}	1.015×10^{3}	1.226×10^{3}	$6.060 imes 10^4$	
	σ_{zz}	2.603×10^{2}	9.521×10^{1}	5.801×10^{2}	1.612	7.619×10^{3}	9.203×10^{2}	4.717×10^2	4.317×10^2	1.730×10^{4}	
	и	1.251×10^{-3}	9.453×10^{-5}	4.255×10^{-2}	4.980×10^{-3}	1.752×10^{-1}	7.838×10^{-3}	5.395×10^{-3}	9.348×10^{-3}	$2.655 imes 10^{-1}$	
	υ	1.509×10^{-3}	1.275×10^{-4}	4.010×10^{-2}	1.308×10^{-3}	$3.030 imes 10^{-1}$	1.242×10^{-2}	9.241×10^{-3}	1.433×10^{-2}	4.024×10^{-1}	

SIMULATION 12										
		М	LP	PI	NN	SVR G		GBDTR KNN		GPR
		mean	std	mean	std		mean	std		
	$\varepsilon_{\gamma\gamma}^t$	0.6584	3.166×10^{-1}	-3.4145	2.071	-1.1624	0.4656	$2.148 imes 10^{-4}$	0.7187	0.0506
	ε_{xy}^{t}	0.5324	$3.411 imes 10^{-1}$	-1.7259	$5.343 imes10^{-1}$	-0.1194	0.4278	$4.223 imes 10^{-4}$	0.7196	0.0415
	$\varepsilon_{\nu\nu}^{t}$	0.6563	$3.215 imes10^{-1}$	-2.9570	2.652	-1.1091	0.4534	$8.915 imes10^{-4}$	0.7196	0.0503
	ϵ_{xx}^{p}	0.6578	$3.175 imes 10^{-1}$	-2.7614	1.762	-1.1139	0.4618	$1.278 imes 10^{-3}$	0.7158	0.0478
	ϵ^p_{xy}	0.5168	$3.478 imes 10^{-1}$	-0.1122	$6.743 imes10^{-1}$	-0.0789	0.4009	$8.991 imes 10^{-3}$	0.7157	0.0401
D 2	ϵ_{yy}^{p}	0.6591	$3.172 imes 10^{-1}$	-0.5161	$8.422 imes 10^{-1}$	-1.1014	0.4300	$2.718 imes10^{-4}$	0.7165	0.0495
KZ	ϵ_{zz}^{p}	0.6064	$3.871 imes10^{-1}$	0.2723	$1.236 imes10^{-1}$	-0.4602	0.2658	$7.615 imes10^{-4}$	0.6808	0.0781
	σ_{xx}	0.6182	$1.745 imes 10^{-1}$	0.8828	$4.138 imes10^{-2}$	0.0180	0.7218	$3.966 imes 10^{-5}$	0.8423	0.1688
	σ_{xy}	0.4799	$4.811 imes10^{-1}$	0.8803	$1.074 imes10^{-2}$	0.3261	0.5912	$8.127 imes10^{-4}$	0.7735	0.1288
	σ_{yy}	0.5583	$4.457 imes10^{-1}$	0.8136	$9.338 imes10^{-3}$	0.3793	0.6803	$2.977 imes 10^{-4}$	0.8285	0.1275
	σ_{zz}	0.5919	$3.890 imes10^{-1}$	0.9196	$1.648 imes10^{-3}$	0.3378	0.6356	$1.603 imes10^{-4}$	0.7979	0.0963
	и	0.7277	$2.782 imes 10^{-1}$	0.9072	$6.483 imes 10^{-3}$	0.4679	0.9157	$7.408 imes 10^{-5}$	0.9269	0.5649
	υ	0.9310	5.347×10^{-2}	0.9866	$1.786 imes10^{-4}$	0.7166	0.9621	2.432×10^{-6}	0.9800	0.5744
mean		0.6303	$3.204 imes 10^{-1}$	-0.4480	$6.652 imes 10^{-1}$	-0.2230	0.5702	$6.266 imes10^{-4}$	0.7797	0.1553
	ε_{xx}^t	$1.092 imes 10^{-3}$	$1.012 imes 10^{-3}$	$1.412 imes 10^{-2}$	$6.623 imes 10^{-3}$	$6.915 imes10^{-3}$	$1.828 imes 10^{-3}$	$7.349 imes10^{-7}$	$8.997 imes 10^{-4}$	$3.036 imes 10^{-3}$
	ε_{xy}^t	$2.505 imes10^{-3}$	$1.827 imes10^{-3}$	$1.460 imes10^{-2}$	$2.863 imes10^{-3}$	$5.997 imes10^{-3}$	$3.176 imes10^{-3}$	$2.344 imes10^{-6}$	$1.502 imes 10^{-3}$	$5.135 imes10^{-3}$
	ϵ_{vv}^{t}	$1.115 imes 10^{-3}$	$1.043 imes10^{-3}$	$1.284 imes10^{-2}$	$8.604 imes10^{-3}$	$6.842 imes 10^{-3}$	$1.884 imes 10^{-3}$	$3.073 imes 10^{-6}$	$9.098 imes10^{-4}$	$3.081 imes 10^{-3}$
	ϵ_{xx}^{p}	$1.098 imes 10^{-3}$	$1.019 imes10^{-3}$	$1.207 imes10^{-2}$	$5.655 imes10^{-3}$	$6.783 imes10^{-3}$	$1.849 imes10^{-3}$	$4.391 imes10^{-6}$	$9.120 imes10^{-4}$	$3.055 imes 10^{-3}$
	ε_{xy}^p	$2.264 imes10^{-3}$	$1.629 imes10^{-3}$	$5.210 imes10^{-3}$	$3.159 imes10^{-3}$	$5.054 imes10^{-3}$	$3.080 imes 10^{-3}$	$4.622 imes 10^{-5}$	$1.332 imes 10^{-3}$	$4.497 imes10^{-3}$
MOL	$\epsilon_{\nu\nu}^{p}$	$1.107 imes10^{-3}$	$1.030 imes10^{-3}$	$4.921 imes10^{-3}$	$2.734 imes10^{-3}$	$6.821 imes10^{-3}$	$1.971 imes10^{-3}$	9.399×10^{-7}	$9.202 imes 10^{-4}$	$3.085 imes 10^{-3}$
MSE	ϵ_{77}^{p}	$1.229 imes 10^{-7}$	$1.208 imes 10^{-7}$	$2.362 imes 10^{-3}$	$4.012 imes 10^{-4}$	$4.558 imes10^{-7}$	$7.910 imes10^{-8}$	$8.205 imes 10^{-11}$	$9.964 imes10^{-8}$	$2.878 imes 10^{-7}$
	σ_{xx}	$2.769 imes 10^4$	$1.265 imes 10^4$	8.502×10^3	3.001×10^3	7.121×10^4	$6.602 imes 10^3$	$9.414 imes10^{-1}$	$1.144 imes 10^4$	$6.028 imes 10^4$
	σ_{xy}	$2.415 imes 10^4$	$2.233 imes 10^4$	5.559×10^{3}	$4.987 imes 10^2$	$3.128 imes 10^4$	$6.161 imes 10^3$	1.225×10^1	$1.052 imes 10^4$	$4.045 imes 10^4$
	σ_{yy}	1.760×10^5	$1.776 imes 10^5$	$7.428 imes 10^4$	3.722×10^3	$2.474 imes 10^5$	$4.010 imes 10^4$	$3.734 imes 10^1$	$6.835 imes 10^4$	$3.478 imes 10^5$
	σ_{zz}	$3.808 imes 10^4$	$3.630 imes 10^4$	$7.501 imes 10^3$	$1.538 imes 10^2$	$6.179 imes 10^4$	$1.124 imes 10^4$	4.943	$1.886 imes 10^4$	$8.433 imes 10^4$
	и	$4.605 imes10^{-1}$	$4.704 imes10^{-1}$	$1.569 imes10^{-1}$	$1.096 imes10^{-2}$	$8.999 imes10^{-1}$	$1.527 imes10^{-1}$	$1.342 imes 10^{-4}$	$1.235 imes 10^{-1}$	$7.358 imes10^{-1}$
	υ	$3.434 imes 10^{-1}$	$2.660 imes 10^{-1}$	$6.647 imes10^{-2}$	$8.887 imes10^{-4}$	1.410	$1.934 imes10^{-1}$	$1.240 imes 10^{-5}$	$9.955 imes10^{-2}$	2.117

Table A18. Detailed results for	[,] the block com	pression use cas	e Simulation 12
	the stoen com	iprecedent abe eac	e omnenenen 14

 Table A19. Detailed results for the block compression use case Simulation 13.

SIMULATION 13										
		MLP		PI	NN	SVR	R GBDTR		KNNR	GPR
		mean	std	mean	std		mean	std		
	ε_{xx}^t	0.7511	$2.314 imes10^{-1}$	-4.3817	2.685	-0.2933	0.5204	$9.591 imes10^{-4}$	0.7164	0.0857
	ε_{xy}^t	0.5801	$3.853 imes10^{-1}$	-0.9114	$1.065 imes 10^{-1}$	-0.1797	0.2623	$2.829 imes10^{-3}$	0.6314	0.0485
	ε_{yy}^{t}	0.7517	$2.319 imes10^{-1}$	0.1125	$9.052 imes 10^{-2}$	-0.2646	0.5280	$1.380 imes10^{-3}$	0.7186	0.0873
	ε_{xx}^{p}	0.7547	$2.273 imes10^{-1}$	-2.1130	$9.596 imes10^{-1}$	-0.2740	0.5357	$4.099 imes10^{-4}$	0.7131	0.0826
	ε_{xy}^p	0.5616	$4.021 imes10^{-1}$	0.5356	$2.972 imes 10^{-2}$	-0.1116	0.2250	$7.643 imes10^{-3}$	0.6277	0.0480
P2	ε_{yy}^{p}	0.7556	$2.269 imes10^{-1}$	-0.4174	$3.678 imes10^{-1}$	-0.2741	0.5217	$8.630 imes10^{-4}$	0.7142	0.0830
K2	ϵ_{zz}^{p}	0.6959	$2.525 imes 10^{-1}$	0.4548	$2.042 imes 10^{-1}$	-0.4013	0.4990	$7.038 imes10^{-5}$	0.7267	0.0912
	σ_{xx}	0.4251	5.887×10^{-1}	0.9077	3.046×10^{-3}	-0.4988	0.7847	3.553×10^{-4}	0.8620	0.2942
	σ_{xy}	-0.0088	$8.836 imes 10^{-1}$	0.8314	3.051×10^{-3}	0.1802	0.4255	6.447×10^{-4}	0.6805	0.1513
	σ_{yy}	0.6042	4.473×10^{-1}	0.6678	8.365×10^{-4}	-0.0250	0.7608	5.706×10^{-6}	0.8418	0.1470
	σ_{zz}	0.6356	3.848×10^{-1}	0.9351	1.247×10^{-3}	0.0788	0.6999	1.686×10^{-4}	0.8282	0.1321
	и	0.9627	2.725×10^{-2}	0.9392	$4.615 imes 10^{-3}$	0.3676	0.9467	1.345×10^{-4}	0.9625	0.4940
	v	0.9478	5.094×10^{-2}	0.9805	3.346×10^{-3}	0.7270	0.9521	1.989×10^{-5}	0.9697	0.5572
mean		0.6475	$3.326 imes 10^{-1}$	-0.1122	$3.265 imes 10^{-1}$	-0.0745	0.5894	1.579×10^{-4}	0.7687	0.1771
	ε_{xx}^t	$1.412 imes 10^{-3}$	$1.313 imes 10^{-3}$	$3.054 imes 10^{-2}$	1.523×10^{-2}	7.339×10^{-3}	2.721×10^{-3}	$5.442 imes 10^{-6}$	1.609×10^{-3}	$5.188 imes 10^{-3}$
	ε_{xy}^t	$2.253 imes10^{-3}$	$2.067 imes10^{-3}$	$1.025 imes 10^{-2}$	$5.715 imes10^{-4}$	$6.329 imes10^{-3}$	$3.958 imes10^{-3}$	$1.518 imes10^{-5}$	$1.977 imes10^{-3}$	$5.105 imes10^{-3}$
	ε_{yy}^t	1.422×10^{-3}	$1.328 imes 10^{-3}$	5.080×10^{-3}	$5.182 imes 10^{-4}$	$7.239 imes 10^{-3}$	2.702×10^{-3}	7.900×10^{-6}	1.611×10^{-3}	5.225×10^{-3}
	ε_{xx}^{p}	$1.389 imes10^{-3}$	$1.288 imes10^{-3}$	$1.763 imes 10^{-2}$	$5.436 imes10^{-3}$	$7.217 imes 10^{-3}$	$2.630 imes 10^{-3}$	2.322×10^{-6}	$1.625 imes 10^{-3}$	$5.197 imes10^{-3}$
	ε_{xy}^p	$2.107 imes10^{-3}$	$1.933 imes10^{-3}$	$2.232 imes 10^{-3}$	$1.428 imes10^{-4}$	$5.342 imes10^{-3}$	$3.724 imes10^{-3}$	$3.673 imes10^{-5}$	$1.789 imes10^{-3}$	$4.575 imes10^{-3}$
MCE	ϵ_{yy}^{p}	$1.398 imes 10^{-3}$	$1.299 imes10^{-3}$	$8.111 imes 10^{-3}$	$2.104 imes10^{-3}$	$7.291 imes 10^{-3}$	$2.737 imes 10^{-3}$	$4.939 imes10^{-6}$	$1.635 imes 10^{-3}$	$5.247 imes 10^{-3}$
MSE	ϵ_{zz}^{p}	$7.358 imes 10^{-8}$	$6.111 imes 10^{-8}$	$3.120 imes 10^{-3}$	$1.168 imes 10^{-3}$	$3.391 imes 10^{-7}$	$1.212 imes 10^{-7}$	$1.703 imes 10^{-11}$	$6.614 imes10^{-8}$	$2.199 imes10^{-7}$
	σ_{xx}	$2.766 imes 10^4$	$2.832 imes 10^4$	$4.438 imes 10^3$	$1.466 imes 10^2$	$7.211 imes 10^4$	$1.036 imes 10^4$	$1.709 imes 10^1$	$6.640 imes 10^3$	$3.395 imes 10^4$
	σ_{xy}	1.954×10^4	1.711×10^4	3.266×10^{3}	$5.908 imes 10^1$	1.588×10^4	$1.113 imes 10^4$	$1.249 imes 10^1$	$6.187 imes 10^3$	$1.644 imes 10^4$
	σ_{yy}	$1.214 imes 10^5$	$1.372 imes 10^5$	$1.019 imes 10^5$	$2.565 imes 10^2$	$3.143 imes10^5$	$7.333 imes 10^4$	1.750	$4.851 imes 10^4$	$2.615 imes 10^5$
	σ_{zz}	$2.089 imes 10^4$	$2.205 imes 10^4$	3.720×10^3	$7.147 imes 10^1$	$5.280 imes 10^4$	1.720×10^4	9.664	$9.844 imes 10^3$	$4.974 imes 10^4$
	и	$1.395 imes10^{-1}$	$1.019 imes10^{-1}$	$2.273 imes10^{-1}$	$1.726 imes10^{-2}$	2.365	$1.992 imes10^{-1}$	$5.028 imes 10^{-4}$	$1.401 imes 10^{-1}$	1.892
	υ	$2.707 imes 10^{-1}$	$2.644 imes10^{-1}$	$1.011 imes 10^{-1}$	1.737×10^{-2}	1.417	$2.487 imes 10^{-1}$	$1.032 imes 10^{-4}$	$1.573 imes 10^{-1}$	2.299

References

- 1. Reddy, J.N. Introduction to the Finite Element Method; Mechanical Engineering; McGraw Hill Education: New York, NY, USA, 2019.
- Yang, X.-S.; Koziel, S.; Leifsson, L. Computational Optimization, Modelling and Simulation: Recent Trends and Challenges. Procedia Comput. Sci. 2013, 18, 855–860. [CrossRef]
- 3. Roberts, S.M.; Kusiak, J.; Liu, Y.L.; Forcellese, A.; Withers, P.J. Prediction of damage evolution in forged aluminium metal matrix composites using a neural network approach. *J. Mater. Process. Technol.* **1998**, *80–81*, 507–512. [CrossRef]
- Hans Raj, K.; Sharma, R.S.; Srivastava, S.; Patvardhan, C. Modeling of manufacturing processes with ANNs for intelligent manufacturing. *Int. J. Mach. Tools Manuf.* 2000, 40, 851–868. [CrossRef]
- 5. García-Crespo, A.; Ruiz-Mezcua, B.; Fernández-Fdz, D.; Zaera, R. Prediction of the response under impact of steel armours using a multilayer perceptron. *Neural Comput. Appl.* **2007**, *16*, 147–154. [CrossRef]
- Nourbakhsh, M.; Irizarry, J.; Haymaker, J. Generalizable surrogate model features to approximate stress in 3D trusses. *Eng. Appl. Artif. Intell.* 2018, 71, 15–27. [CrossRef]
- Chan, W.L.; Fu, M.W.; Lu, J. An integrated FEM and ANN methodology for metal-formed product design. *Eng. Appl. Artif. Intell.* 2008, 21, 1170–1181. [CrossRef]
- D'Addona, D.M.; Antonelli, D. Neural Network Multiobjective Optimization of Hot Forging. *Procedia CIRP* 2018, 67, 498–503. [CrossRef]
- 9. Gudur, P.P.; Dixit, U.S. A neural network-assisted finite element analysis of cold flat rolling. *Eng. Appl. Artif. Intell.* 2008, 21, 43–52. [CrossRef]
- Pellicer-Valero, O.J.; Rupérez, M.J.; Martínez-Sanchis, S.; Martín-Guerrero, J.D. Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. *Expert Syst. Appl.* 2020, 143, 113083. [CrossRef]
- 11. Abueidda, D.W.; Almasri, M.; Ammourah, R.; Ravaioli, U.; Jasiuk, I.M.; Sobh, N.A. Prediction and optimization of mechanical properties of composites using convolutional neural networks. *Compos. Struct.* **2019**, 227, 111264. [CrossRef]
- Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; Battaglia, P.W. Learning Mesh-Based Simulation with Graph Networks. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26 April–1 May 2020.
- Loghin, A.; Ismonov, S. Augmenting Generic Fatigue Crack Growth Models Using 3D Finite Element Simulations and Gaussian Process Modeling. In Proceedings of the ASME 2019 Pressure Vessels & Piping Conference, San Antonio, TX, USA, 14–19 July 2019; Volume 2. [CrossRef]
- 14. Ming, W.; Zhang, G.; Li, H.; Guo, J.; Zhang, Z.; Huang, Y.; Chen, Z. A hybrid process model for EDM based on finite-element method and Gaussian process regression. *Int. J. Adv. Manuf. Technol.* **2014**, *74*, 1197–1211. [CrossRef]
- 15. Pan, F.; Zhu, P.; Zhang, Y. Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression. *Comput. Struct.* **2010**, *88*, 36–44. [CrossRef]
- 16. Li, H.; Shi, M.; Liu, X.; Shi, Y. Uncertainty optimization of dental implant based on finite element method, global sensitivity analysis and support vector regression. Proceedings of the Institution of Mechanical Engineers. *Part H J. Eng. Med.* **2019**, 233, 232–243. [CrossRef] [PubMed]
- 17. Hu, F.; Li, D. Modelling and Simulation of Milling Forces Using an Arbitrary Lagrangian–Eulerian Finite Element Method and Support Vector Regression. J. Optim. Theory Appl. 2012, 153, 461–484. [CrossRef]
- Martínez-Martínez, F.; Rupérez-Moreno, M.J.; Martínez-Sober, M.; Solves-Llorens, J.A.; Lorente, D.; Serrano-López, A.J.; Martínez-Sanchis, S.; Monserrat, C.; Martín-Guerrero, J.D. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. *Comput. Biol. Med.* 2017, 90, 116–124. [CrossRef] [PubMed]
- 19. Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.C.; Wang, L. Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. *Undergr. Space* **2020**. [CrossRef]
- Qi, Z.; Zhang, N.; Liu, Y.; Chen, W. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. *Compos. Struct.* 2019, 212, 199–206. [CrossRef]
- Haghighat, E.; Juanes, R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. *Comput. Methods Appl. Mech. Eng.* 2021, 373, 113552. [CrossRef]
- 22. Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. *Comput. Methods Appl. Mech. Eng.* **2021**, *379*, 113741. [CrossRef]
- 23. Shin, Y. On the Convergence of Physics Informed Neural Networks for Linear Second-Order Elliptic and Parabolic Type PDEs. *CiCP* 2020, *28*, 2042–2074. [CrossRef]
- 24. Yin, M.; Zheng, X.; Humphrey, J.D.; Em Karniadakis, G. Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks. *Comput. Methods Appl. Mech. Eng.* **2021**, 375, 113603. [CrossRef]
- 25. Arnold, F.; King, R. State–space modeling for control based on physics-informed neural networks. *Eng. Appl. Artif. Intell.* 2021, 101, 104195. [CrossRef]
- 26. Zobeiry, N.; Humfeld, K.D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. *Eng. Appl. Artif. Intell.* **2021**, *101*, 104232. [CrossRef]
- 27. Nascimento, R.G.; Fricke, K.; Viana, F.A.C. A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network. *Eng. Appl. Artif. Intell.* **2020**, *96*, 103996. [CrossRef]
- 28. Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. *J. Comput. Phys.* **2021**, *426*, 109951. [CrossRef]

- 29. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. *Comput. Methods Appl. Mech. Eng.* **2020**, *360*, 112789. [CrossRef]
- Goan, E.; Fookes, C. Bayesian Neural Networks: An Introduction and Survey. In *Case Studies in Applied Bayesian Data Science*; CIRM Jean-Morlet Chair, Fall 2018; Lecture Notes in Mathematics; Mengersen, K.L., Pudlo, P., Robert, C.P., Eds.; Springer: Cham, Switzerland, 2020; Volume 2259, pp. 45–87.
- Garnelo, M.; Rosenbaum, D.; Maddison, C.; Ramalho, T.; Saxton, D.; Shanahan, M.; Teh, Y.W.; Rezende, D.; Eslami, S.M.A. Conditional Neural Processes. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; pp. 1704–1713.
- 32. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient pathologies in physics-informed neural networks. *arXiv* **2020**, arXiv:2001.04536.
- 33. Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional Physics-Informed Neural Networks. *SIAM J. Sci. Comput.* **2019**, *41*, A2603–A2626. [CrossRef]
- 34. Yang, Y.; Perdikaris, P. Adversarial uncertainty quantification in physics-informed neural networks. *J. Comput. Phys.* **2019**, 394, 136–152. [CrossRef]
- 35. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *J. Comput. Phys.* **2019**, *378*, 686–707. [CrossRef]
- Ngatchou, P.; Zarei, A.; El-Sharkawi, A. Pareto Multi Objective Optimization. In Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; IEEE Service Center: Piscataway, NJ, USA, 2005; pp. 84–91. [CrossRef]
- Pettit, C.L.; Wilson, D.K. A physics-informed neural network for sound propagation in the atmospheric boundary layer. In Proceedings of the 179th Meeting of the Acoustical Society of America, Acoustics Virtually Everywhere, 7–11 December 2020; p. 22002. [CrossRef]
- 38. Lihua, L. Simulation physics-informed deep neural network by adaptive Adam optimization method to perform a comparative study of the system. *Eng. Comput.* **2021**, 1–20. [CrossRef]
- 39. McClenny, L.; Braga-Neto, U. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. *arXiv* 2020, arXiv:2009.04544.
- 40. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physicsinformed neural networks. J. Comput. Phys. 2020, 404, 109136. [CrossRef]
- 1.11. Ensemble Methods—Scikit-Learn 0.24.1 Documentation (2021.000Z). Available online: https://scikit-learn.org/stable/ modules/ensemble.html (accessed on 5 November 2020).
- 42. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
- 1.6. Nearest Neighbors—Scikit-Learn 0.24.1 Documentation (2021.000Z). Available online: https://scikit-learn.org/stable/ modules/neighbors.html (accessed on 5 November 2020).
- 44. Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. *J. Math. Psychol.* **2018**, *85*, 1–16. [CrossRef]
- 45. Rasmussen, C.E.; Williams, C.K.I. *Gaussian Processes for Machine Learning*, 3rd ed.; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2008.
- Awad, M.; Khanna, R. Support Vector Regression. In *Efficient Learning Machines. Theories, Concepts, and Applications for Engineers and System Designers*; The Expert's Voice in Machine Learning; Awad, M., Khanna, R., Eds.; Apress Open: New York, NY, USA, 2015; pp. 67–80.
- 47. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
- 48. Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. *Chemom. Intell. Lab. Syst.* **1997**, 39, 43–62. [CrossRef]
- 49. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. *Neural Netw.* **1993**, *6*, 861–867. [CrossRef]
- Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The Expressive Power of Neural Networks: A View from the Width. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
- 51. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. *Neural Netw.* **1989**, 2, 359–366. [CrossRef]
- 52. Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. *Atmos. Environ.* **1998**, *32*, 2627–2636. [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. *Nature* 1986, 323, 533–536. [CrossRef]
- 54. Lu, L.; Pestourie, R.; Yao, W.; Wang, Z.; Verdugo, F.; Johnson, S.G. Physics-informed neural networks with hard constraints for inverse design. *arXiv* 2021, arXiv:2102.04626.