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Abstract: The technical world of today fundamentally relies on structural analysis in the form of
design and structural mechanic simulations. A traditional and robust simulation method is the
physics-based finite element method (FEM) simulation. FEM simulations in structural mechanics
are known to be very accurate; however, the higher the desired resolution, the more computational
effort is required. Surrogate modeling provides a robust approach to address this drawback.
Nonetheless, finding the right surrogate model and its hyperparameters for a specific use case
is not a straightforward process. In this paper, we discuss and compare several classes of mesh-free
surrogate models based on traditional and thriving machine learning (ML) and deep learning (DL)
methods. We show that relatively simple algorithms (such as k-nearest neighbor regression) can be
competitive in applications with low geometrical complexity and extrapolation requirements. With
respect to tasks exhibiting higher geometric complexity, our results show that recent DL methods at
the forefront of literature (such as physics-informed neural networks) are complicated to train and to
parameterize and thus, require further research before they can be put to practical use. In contrast,
we show that already well-researched DL methods, such as the multi-layer perceptron, are superior
with respect to interpolation use cases and can be easily trained with available tools. With our work,
we thus present a basis for the selection and practical implementation of surrogate models.

Keywords: FEM; surrogate modeling; mesh-free; machine learning; deep learning

1. Introduction

Assessing the properties of mechanical structures with real physical experiments
is expensive, as it costs both time and resources. To reduce these costs of knowledge
enrichment in the field of structural analysis, computer simulations of structural mechanics
have become crucial. An essential simulation method is the finite element method (FEM) in
which the simulation domain space is represented by a finite number of connected elements.
Space- and time-dependent behavior between connected elements and within the elements
themselves is governed by physical equations. Observation of real physical experiments
provides the coefficients for these governing equations. Since most geometries and use
cases cannot be solved analytically, an approximation of the proposed physical equations
is obtained by numerical methods [1]. However, solving complex problems with FEM is
time-consuming and computationally expensive. In order to reduce the computational
effort, surrogate modeling offers a promising solution [2].

Surrogate models are trained in a supervised manner and are designed to learn the
function mapping between inputs and outputs from a given FEM simulation use case. With
a sufficient amount of training data with respect to the use case, an according model is able
to substitute for the FEM simulation use case up to a certain accuracy.

There is already a considerable number of related work concerning surrogate modeling
of structural mechanics simulations with machine learning (ML) or deep learning (DL)
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approaches. In the following, we want to present the most important works for this paper.
Artificial neural networks (ANN) are used in the work of Roberts et al. [3] to predict
damage development in forged brake discs reinforced with Al-SiC particles, using damage
maps. The ANN is a multilayer perceptron (MLP), and training data are obtained from
FEM simulations using the commercial DEFORM simulation software. For rapid estimation
of forming and cutting forces for given process parameters, Hans Raj et al. [4] investigate
a method using MLP models. The researchers focus on two processes: hot upsetting and
extrusion. Each process, represented by a MLP, is trained with FEM simulation results
from the FORGE2 commercial FEM simulation software. García-Crespo et al. [5] predict
the projectile response after impact with steel armor using a MLP; their surrogate model
studied is trained with data from FEM simulations of the use case. Nourbakhsh et al. [6]
explore generalizable surrogate models for 3D trusses, using MLP and FEM training data.
Chan et al. [7] estimate the performance of hot-forged product designs, using a MLP
trained on FEM results obtained with the commercial software DEFORM. D’Addona and
Antonelli [8] use single-layer feedforward ANNs instead of FEM as a metamodel in a
sequential approximate optimization (SAO) algorithm. In a case study on hot forging of
a steel disk, they compare their results with an ANN trained on FEM simulation results
and the FEM simulation software QForm3D. Gudur and Dixit [9] predict the velocity field
and location of neutral point of cold flat rolling with a MLP trained with rigid-plastic FEM
simulation results. Pellicer-Valero et al. [10] predict the mechanical behavior of different
livers with MLPs trained from FEM simulations.

Abueidda et al. [11] estimate the mechanical properties of a two-dimensional
checkerboard composite using a convolutional neural network (CNN) trained with FEM
results. Regarding mesh-based approaches, Pfaff et al. [12] present a framework to train
graph neural networks (GNN) on mesh-based simulations and show the applicability in
aerodynamics, structural mechanics, and fabric.

Surrogate models were also obtained using classical, i.e., non-neural ML, approaches.
For example, the authors of [3] apply Gaussian process regression (GPR) besides ANN
in their approach. Loghin and Ismonov [13] predict the stress intensity factors, using
GPR trained with FEM results of a classical bolt-nut assembly. Ming et al. [14] model
the electrical discharge machining process with GPR trained from data generated with
numerical FEM simulation.

Using support vector regression (SVR), Pan et al. [15] construct a metamodel in an
optimization approach for lightweight vehicle design. Training data are generated, using
design of experiment approaches with FEM simulations. To predict the stress at the implant–
bone interface, Li et al. [16] utilize SVR in order to replace FEM simulation. Hu and Li [17]
estimate cutting coefficients in a mechanistic milling force model with SVR trained with
FEM simulation data.

Employing tree-based models, Martínez-Martínez et al. [18] estimate the
biomechanical behavior of breast tissue under compression, using three different tree-based
models trained from FEM simulations. The models are trained with FEM data in terms of
nodal coordinates and nodal tissue membership. Zhang et al. [19] estimate the base failure
stability for braced excavations in anisotropic clay using extreme gradient boosting, random
forest regression (RFR) and data obtained from FEM simulation results. Qi et al. [20] utilize
a decision tree regressor to predict the mechanical properties of carbon fiber reinforced
plastics with data obtained from FEM simulations. Besides MLPs Pellicer-Valero et al. [10]
utilize RFRs to predict the biomechanics of livers.

A recent neural network–based approach are physics informed neural networks
(PINNs). PINNs are trained simultaneously on data and governing differential equations
and can be used for the solution and inversion of equations governing physical systems.
Utilizing PINNs, Haghighat and Juanes [21] substitute a particular FEM simulation
of a perforated strip under uniaxial extension. In [22], Haghighat et al. present a
surrogate modeling approach with PINNs and a specific use case. Focusing on consistency,
Shin [23] evaluates findings regarding PINNs with Poisson’s equation and the heat
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equation. Yin et al. [24] use PINNs to predict permeability and viscoelastic modulus
from thrombus deformation data, described by the fourth-order Cahn–Hilliard and
Navier–Stokes equations. In addition to the application of PINNs in structural mechanics
problems, there is also a considerable number of papers, especially in computational fluid
dynamics [25–29].

Related work shows capabilities of surrogate modeling, thus demonstrating the
feasibility of supervised learning models trained with FEM simulations. From our analysis
of the existing literature, we identify the following drawbacks:

• In most cases, the surrogate model only substitutes for a subset of the considered
computational domain. Thus, such an approach focuses only on a region of interest
and cannot be used to evaluate the entire computational domain (notable exceptions
are [12,22]).

• Surrogate models representing the complete discretized computational domain (mesh)
are solely fitted and evaluated on one use case—generalization to unseen data is only
achieved with respect to the discretization of the computational domain, but not with
respect to other use case specific parameters (notable exception concerning material
parameters [22]).

• Due to differences in FEM use cases and data, the comparison of related work is useful
only in some cases.

• Replication of published experiments is often not achievable because important
parameters are not reported, e.g., number of finite elements, type of finite elements
(bilinear, biquadratic, reduced integration etc.), method of discretization (meshing), as
well as hyperparameters of the ML models, such as learning or activation functions.

To address these drawbacks, we present the following contributions of our paper:

1. We present the main DL and ML methods together with a compact description
and mathematical notation to equip practitioners with a reference to surrogate
FEM simulation mesh-free and assess the feasibility and maturity of the novel
PINNs method.

2. We utilize three classic use cases in structural mechanics and evaluate these models
in terms of performance on unseen configurations (inter- and extrapolation) in order
to assess their ability to generalize across different use case specific parameters.

3. We discuss the characteristics of all DL and ML models, and their practical
implications, in the context of the use cases.

With our work, we pave the way of mesh-free surrogate modeling for practical use: we
provide a basis for efficient model and hyperparameters selection regarding use case and
performance metrics. These insights shall not only assist the domain expert during model
selection, but will also help in consolidating the current research in mesh-free surrogate
modeling for structural mechanics applications.

We report all information to make our experiments reproducible. If certain model
settings are not mentioned, they are left at default values. Moreover, our FEM simulations
are performed with Abaqus Student Edition 2019 (Dassault Systèmes, Velizy-Villacoublay,
France), and thus, the process of data generation is not limited to commercial software,
which makes it possible for everyone to connect to our research.

The remainder of this paper is organized as follows. In Section 2, we present the
materials and methods of our experiments, first providing insights into the process of
data generation, using the FEM simulations in Section 2.1, then describing the datasets
obtained from the FEM simulations in Section 2.2, followed by the ML and DL models used
in Section 2.3. Section 3 shows the results, which are discussed in Section 4. In Section 5,
we present the conclusion of our work and an outlook for the future.

2. Materials and Methods

In this section, we present all relevant information about the methodology of our
experiments. First, Section 2.1 provides an overview of the data generation process, using
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three classic FEM simulation use cases. Then, Section 2.2 describes the datasets used from
the FEM simulations, and Section 2.3 presents the ML and DL models used. A more detailed
overview of the mathematical background and assumptions of the ML and DL models can
be found in the Appendix. When predicting a particular use case with a surrogate model,
the individual nodes discretizing the particular geometry of the use case (i.e., mesh) are
sequentially input into the surrogate model with the appropriate generalization variable.
The surrogate model then predicts the output of each node in sequence; see Figure 1.

Figure 1. Principle of our surrogate model approach: all N nodes (i.e., their coordinates), together
with the respective generalization variable, are sequentially entered into a surrogate model, which
then sequentially predicts the outcome of the respective coordinates (i.e., the displacements, strains,
and stresses of the respective node).

It should be noted that there are no constraints on the discretization (mesh), i.e., the
node coordinates can be freely chosen within the simulation domain and nodes are not
connected to each other. Therefore, we refer to our approach as mesh-free, but we want
to clearly distinguish ourselves from other mesh-free methods, such as smoothed particle
hydrodynamics, the diffuse element method, the moving particle finite element method,
etc. The predictions of the individual nodes together constitute the prediction for the
simulation domain of the particular use case. By adding the nodal displacement outputs of
the surrogate model to the initial node coordinates, we obtain the new deformed geometry.
Further surrogate model outputs (e.g., stresses, strains) describe the queried nodes and
thus the complete simulation domain in more detail.

2.1. FEM Use Cases

For illustration, we base our evaluation on three classic use cases from structural
mechanics. We consider the (1) tensile load, (2) bending load and (3) compressive load:

1. Elongation of a plate with a perforation;
2. Bending of a beam;
3. Compression of a block with four perforations.

See Table 1 and Figure 2. We utilize an isotropic elasto-plastic rate-independent
material model (i.e., a perfectly plastic material). The kinematic relations for our 2D
plane strain use cases are defined by the total strain components εxx = ∂ux

∂x , εyy =
∂uy
∂y ,

εxy = 1
2 (

∂ux
∂y +

∂uy
∂x ), εzz = 0 with displacements ux and uy and deviatoric strain components

exx = εxx − εvol
3 , eyy = εyy − εvol

3 , exy = εxy and ezz = − εvol
3 . Since there is no volumetric

plastic strain in the von Mises yield function, the volumetric strain can be expressed as
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εvol = trace(ε) s.t. εvol = εxx + εyy. The deviatoric stress components are defined by
sxx = σxx − (

σxx+σyy+σzz
3 ), syy = σyy − (

σxx+σyy+σzz
3 ), sxy = σxy and szz = σzz − (

σxx+σyy+σzz
3 ),

where σij (i, j ∈ {x, y}) are the components of the Cauchy stress tensor. The plastic strain

components are defined by ε
pl
xx = ε̄pl 3

2
sxx
q , ε

pl
yy = ε̄pl 3

2
syy
q , ε

pl
xy = ε̄pl 3

2
sxy
q and ε

pl
zz = ε̄pl 3

2
szz
q

with equivalent plastic strain of the von Mises model as ε̄pl = ε̄− σY
3µ ≥ 0, where σY is

the yield stress and µ the second Lamé parameter. The total equivalent strain is defined

by ε̄ =
√

2
3 ∑i,j∈{x,y} eijeij with deviatoric strain components eij. The decomposition of

the strain is εij = εel
ij + ε

pl
ij with elastic component εel

ij and plastic component ε
pl
ij of the

respective strain matrices. The equivalent stress is defined by q =
√

3
2 sijsij. In our PINN

approach, we utilize the definitions of the total strain components, deviatoric strain and
stress components and plastic strain components in the respective regularization term.

We use quarter symmetry in use cases 1 and 3 to make efficient use of computational
resources. Additional information regarding the variation of parameters in the simulations
is presented in Table 2, where simulations marked in bold are used for the test and
evaluation of the surrogate models and are not in the training dataset. Conversely,
simulations not marked in bold represent the training dataset and are not in the test
dataset. In use cases exhibiting varied geometry parameters (i.e., elongation of a plate and
compression of a block use cases), the mesh is also different in each simulation. Thus, we
train and evaluate the surrogate models on use cases with different meshes (i.e., in each
simulation, the node coordinates differ).

Table 1. Classic FEM use cases. Overview of the three use cases and their main change and types of
deformations. In the first two use cases, only a single change is conduced, while in the last use case, a
combination of changes is studied.

Use Case Change Deformation

Plate Geometry Elongation
Beam Material Properties Bending
Block Geometry, Material Properties Compression

The first use case, a perforated steel strip under tensile load, is similar to the
nonlinear solid mechanics use case of [21,22]. However, in our approach, we evaluate the
generalization over the perforation diameter and use material properties for steel and a top
edge displacement of 5 mm in positive y-axis to consider a more challenging use case.

We execute different simulation settings, where the generalization variable (diameter
of perforation) is changed in each simulation; see Figure 2a and Table 2. In our second
use case, we simulate a bending beam that end is displaced about 5 mm in the positive x-
direction; see Figure 2b. We vary the yield stress generalization variable in each simulation
setting; see Table 2. In our third use case, we simulate a quarter-symmetric block with four
perforations under compressive load, which is compressed about 5 mm in the negative
y-axis; see Figure 2c. In this use case, we vary two generalization variables (yield stress
and width of the block) in each simulation; see Table 2.

We evaluate our models on interpolation (i.e., that the generalization variables for
testing are within the range of the generalization variables observed during training) and
extrapolation (i.e., that the generalization variables for testing are outside the range of the
generalization variables observed during training) tasks. In Table 2, we mark interpolation
tasks with superscript (i) and extrapolation tasks with superscript (e).

In Figure 3, we present the perfect nonlinear elastoplastic material behavior of our use
cases. The Young’s modulus is 210 GPa, Poisson’s ratio 0.3 and the yield stress 900 MPa.
In our first use case, the perforated plate, we use this setting in each simulation. In the
other two use cases, the yield stress varies, while the remaining material parameters stay
the same.



Appl. Sci. 2021, 11, 9411 6 of 32

(a) Dimensions of the plate with
one perforation

(b) Dimensions
of the beam

(c) Dimensions of the block with four
perforations

(d)
Coordinate
system

Figure 2. The three use cases: (a) elongation of a plate (diameter = 100 mm) about 5 mm at the top end
in positive y-direction, (b) bending of a beam by a displacement at the top end about 5 mm in positive
x-direction, (c) compression of a block with four perforations in the center of the quarter-symmetric
parts (width = 220 mm) about 5 mm in negative y-direction and (d) the considered coordinate system.

All parts are meshed, using plane strain 4-node bilinear quadrilateral elements with
reduced integration and hourglass control. Please note that although [22] recommends the
use of larger order elements for the approximation of body forces, we use bilinear elements
since we do not use body forces in our surrogate modeling approaches. We create a finer
mesh near additional geometric details (i.e., perforations in the plate and block use cases)
and seed the perforation edge of the plate with an approximate size of 3.8 mm and the
remaining edges with an approximate size of 5 mm. The perforation edges of the block are
seeded with an approximate size of 3 mm and the remaining edges with an approximate
size of 4 mm. The beam exhibits no comparable geometric details; thus, we seed all edges
with an approximate size of 1.5 mm.
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Table 2. Dataset generation by executing several different simulations with varying generalization variables (Plate:
perforation Diameter, Beam: Yield Stress and Block: Yield Stress and Width), bold marked simulations are not in the training
dataset and only used for test and evaluation. Interpolation tasks are marked with superscript (i) and extrapolation tasks
with superscript (e).

Plate

Simulation ID 1 (e) 2 3 4 (i) 5 6 (i) 7 8 9 (e)

Diameter [mm] 60 70 80 90 100 110 120 130 140

Beam

Simulation ID 1 (e) 2 3 4 (i) 5 6 (i) 7 8 9 (e)

Yield Stress [MPa] 850 900 950 1000 1050 1100 1150 1200 1250

Block

Simulation ID 1 (e) 2 (e) 3 4 5 6 7 (i) 8 9 10 11 12 (e) 13 (e)

Yield Stress [MPa] 750 750 900 900 900 1050 1050 1050 1200 1200 1200 1350 1350
Width [mm] 180 260 200 220 240 200 220 240 200 220 240 180 260

Figure 3. Perfect nonlinear elastoplastic material properties for a Young’s modulus of 210 GPa,
Poisson’s ratio of 0.3 and yield stress of 900 MPa. The yield stress varies in simulations regarding the
beam and block use cases.

We obtain our FEM simulation results in the context of general static simulations.
Details of the simulation steps are shown in Table 3. Simulation control parameters that are
not listed are left at default values.

Table 3. Abaqus FEM simulation control parameters.

Abaqus FEM Simulation Settings

Simulation type Static, General
Time period 1
Nlgeom On
Max number of increments 100
Initial increment size 1
Min increment size 1 × 10−5

Max increment size 1
Equation solver method Direct
Solution technique Full Newton
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2.2. Dataset

The nodal data from our Abaqus FEM simulations constitute the datasets. For
each use case, the nodal data are split into training and test dataset, respectively. The
training dataset D = {X1, . . . , Xn} with number of training instances n and the test dataset
T = {Xn+1, . . . , Xn+m} with number of test instances m are generated from several FEM
simulations; see Tables 2 and 6, where bold marked simulations belong to T and the
remaining to D. Thus, we split our data due to different generalization variables and
not randomly. We denote each instance with index i, i ∈ {1, 2, . . . , n + m}. An instance
Xi = (xi, yi) is generated of an input vector xi ∈ Rp and output vector yi ∈ Rq. Each input
vector xi is composed of the initial x- and y-coordinates of a FEM node and the respective
generalization variable (i.e., perforated plate: Diameter, beam: Yield Stress, block with four
perforations: Width and Yield Stress) of the FEM simulation; see Table 4. Thus, we have
p = 3 in the plate and beam use case, and p = 4 in the block use case.

Table 4. Surrogate model input variables. Data obtained from FEM simulations are transformed
so that each FEM node (represented by its x- and y-coordinates) with the respective generalization
variable is an instance.

Simulation Plate Beam Block

Input variables

x-coordinate x-coordinate x-coordinate
y-coordinate y-coordinate y-coordinate
Diameter Yield Stress Yield Stress

Width

In our setting, each output vector yi contains 13 (q = 13) output variables obtained
from FEM simulation with input xi, namely the εt

xx, εt
xy and εt

yy total strain components,
the ε

p
xx, ε

p
xy, ε

p
yy and ε

p
zz plastic strain components, the σxx, σxy, σyy and σzz principal and

shear stress components and the displacement in x- and y-directions u and v of each node;
see Table 5 and Figure 4. We split the data in a training and test dataset (see Table 6) and
standardized the data by removing the mean and scaling to unit variance.

Table 5. Surrogate model output variables. For each input FEM node, a surrogate model predicts its
respective strains, stresses and displacements.

Output Variables

εt
xx ε

p
xx σxx u

εt
xy ε

p
xy σxy v

εt
yy ε

p
yy σyy

ε
p
zz σzz

In Figure 4, we present graphical results with visible mesh obtained from Abaqus
FEM simulation of the output variables used for a block use case.

Table 6. Dataset splits: number of training instances n and test instances m due to the data generation
from Table 2.

Plate Beam Block

Training dataset D 4447 2720 6722
Test dataset T 3534 2176 4107
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(a) εt
xx (b) εt

xy (c) εt
yy

(d) ε
p
xx (e) ε

p
xy (f) ε

p
yy

(g) ε
p
zz (h) σxx (i) σxy

(j) σyy (k) σzz (l) u

(m) v

Figure 4. Block use case: Abaqus FEM results that our surrogate models should predict.

2.3. Surrogate Models

In this section, we give an overview of the surrogate models used and their general
assumptions; to highlight the differences as well as the advantages and disadvantages
between them, we present a detailed mathematical background in Appendix A. We have
selected models from different learning paradigms:

1. Gradient boosting decision tree regressor (GBDTR): piecewise constant model.
2. K-nearest neighbor regressor (KNNR): distance-based model.
3. Gaussian process regressor (GPR): Bayesian model.
4. Support vector regressor (SVR): hyperplane-based model.
5. Multi layer perceptron (MLP): classic feedforward neural network model.
6. Physics informed neural network (PINN): neural network model with physics-

based regularization.
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3. Results

For evaluation, we split the data into a training and test dataset to fit and test our
surrogate models; see Table 6 for the dataset sizes and Table 2 for more details regarding
the data split.

As a next step, we need to define hyperparameters for each model and each use
case. We performed hyperparameter optimization using only training data; no test data
were used. In our PINN approaches, the adaptation of hyperparameters was based on
the work of [21,22]. Our MLPs were designed to be similar to our PINNs to allow for
fair comparisons. We varied hyperparameters in our neural network approaches (MLP
and PINN) following best practices and guidelines, where we optimized the number of
hidden layers, number of neurons per hidden layer, activation function, validation split,
earlystopping patience and the size of the batch per training epoch. Regarding the rest of
our models, we applied a grid-search with a five fold cross-validation, utilizing the training
data to obtain the best hyperparameters. The hyperparameters for each use case are in
Appendix B and Tables A1–A6.

Our evaluation is based on R2-scores with respect to the FEM results and inference
time. For models that contain inherent randomness, such as MLPs, GBDTR and PINNs,
a five-fold cross-validation was conducted. For these models, we report the mean values
and standard deviation of the R2-score. For the sake of brevity, we report only the average
R2-scores across all 13 targets in this section; see Tables 7–9. The R2-scores for individual
targets are provided in Appendix C. The inference times are based on the mean value of
three measurements. Inferences were run on a machine with 16 GB RAM, 8 CPUs and
Intel(R) i7-8565 2.0GHz processor. To compare the inference time of our surrogate models
with the computation time required to run FEM simulations, we have included the latter
also in Tables 7–9.

Table 7. Plate: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the
corresponding standard deviations of the average R2-scores due to repeated experiments of stochastic process models. For
further information concerning simulations, see Table 2.

Model MLP PINN SVR GBDTR KNNR GPR FEM

Simulation 1

R2 0.9900
(6.155 × 10−9 )

0.7797
(8.709 × 10−2)

0.6188 0.6606
(3.959 × 10−8 )

0.8164 0.6131 -

Inference
time [s] 0.0523 0.0746 1.15 0.311 0.00722 0.151 9.01

Simulation 4

R2 0.9978
(1.970 × 10−4)

0.9089
(2.598 × 10−2)

0.7174 0.9014
(6.310 × 10−2)

0.9298 0.8761 -

Inference
time [s] 0.0781 0.0638 1.20 0.271 0.00734 0.139 9.08

Simulation 6

R2 0.9920
(1.889 × 10−3 )

0.8470
(6.309 × 10−2 )

0.7251 0.8503
(1.005 × 10−1 )

0.9219 0.8676 -

Inference
time [s] 0.0595 0.0641 1.10 0.251 0.00797 0.131 9.88

Simulation 9

R2 0.9786
(2.970 × 10−5 )

0.7562
(1.046 × 10−1 )

0.6568 0.7263
(9.780 × 10−9 )

0.8045 0.5651 -

Inference
time [s] 0.0665 0.0715 1.02 0.251 0.00734 0.139 10.03



Appl. Sci. 2021, 11, 9411 11 of 32

For graphical results, we chose simulations that cover the error situation quite well in
order to make statements about the performance of each model. In addition to the absolute
errors (Figures 5a–f–10a–f), the corresponding FEM simulations of the basis are shown in
Figures 5g–10g.

(a) MLP (b) PINN (c) SVR

(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 5. Elongation of a perforated plate, Simulation 1 (extrapolation): absolute errors of different
surrogate models (a–f) and ground truth Abaqus FEM simulation (g) of σxy.

GBDTR, KNNR, GPR and SVR algorithms were implemented with the scikit-learn
library version 0.24.0 in Python. The SVR and GBDTR algorithms were constructed with
MultiOutputRegressor scikit-learn API to fit one regressor per target. Regarding our DL
algorithms, the utilized MLPs were implemented with the keras API version 2.4.3 and our
PINNs were implemented with the sciann API version 0.5.5.0 in Python 3.8.5. We used the
PDEs from [21,22], but instead of the inversion part, we trained our PINNs additionally
with plastic strain data, same as for the rest of the surrogate models.
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(a) MLP (b) PINN (c) SVR

(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 6. Elongation of a perforated plate, Simulation 4 (interpolation): absolute errors of different
surrogate models (a–f) and ground truth Abaqus FEM simulation (g) of σzz.

In the elongation of a perforated plate use case, our approach is based on a total of nine
FEM simulations. We used five simulations for training and four simulations to evaluate
the fitted models; see Table 2. We report the average of R2-scores across all outputs in
Table 7 with the corresponding inference times.

Regarding extrapolation, the absolute errors of each surrogate model with respect to
σxy of Simulation 1 are shown in Figure 5. We plot the absolute errors of each surrogate
model of σzz of Simulation 4 in Figure 6 as an example of interpolation. In addition, we
show in both figures the ground truth of the corresponding output variable obtained from
the FEM simulation. For both interpolation and extrapolation, the errors are large near the
shear band. As far as extrapolation is concerned, in addition to the errors near the shear
band, most models have significant errors near the maximum negative xy shear stresses;
see blue areas in Figure 5g. GBDTR performs well overall, though the error increases in
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various locations; while PINNs have a similar average performance, they perform better
outside the shear band regarding absolute errors. MLP overall shows the best results
followed by KNNR.

In the bending beam use case, similar to the perforated plate use case, we trained
our models on five simulations and tested them using the remaining four, see Table 2. We
present the average R2-scores across all outputs and inference times in Table 8 for the test
simulations 1, 4, 6 and 9.

Table 8. Beam: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the
corresponding standard deviations of the average R2-scores due to repeated experiments of stochastic process models. For
further information concerning simulations, see Table 2.

Model MLP PINN SVR GBDTR KNNR GPR FEM

Simulation 1

R2 0.6682
(7.345 × 10−6 )

0.6165
(1.648 × 10−2 )

0.5122 0.7120
(1.088 × 10−8 )

0.6288 0.5377 -

Inference
time [s] 0.0781 0.0638 1.20 0.271 0.00734 0.139 9.08

Simulation 4

R2 0.9979
(1.319 × 10−3 )

0.9379
(1.042 × 10−3 )

0.7558 0.9640
(6.751 × 10−4 )

0.9621 0.8243 -

Inference
time [s] 0.0457 0.110 0.418 0.0541 0.0790 0.221 6.81

Simulation 6

R2 0.9981
(8.315 × 10−4 )

0.9314
(8.396 × 10−4 )

0.7406 0.9516
(1.368 × 10−4 )

0.9617 0.8059 -

Inference
time [s] 0.0442 0.0668 0.402 0.0569 0.0705 0.212 6.61

Simulation 9

R2 −1196.2920
(6.166 × 103 )

−1305.9226
(3.269 × 101 )

−107.7646 −830.8926
(4.2984 )

−322.4940 −420.9029 -

Inference
time [s] 0.0781 0.0638 1.20 0.271 0.00734 0.139 9.08

We provide a graphical representation of the absolute error of the surrogate models
regarding εt

yy in Figure 7a–f with the FEM simulation result in (g) as one instance of
interpolation. Absolute errors of the surrogate models regarding ε

p
xx and extrapolation are

shown in Figure 8. Overall higher errors can be observed near the encastred boundary
condition of the beam for some models for that output. While the PINN shows a competitive
average R2-score regarding interpolation, on this single target, its performance shows
significant weaknesses.
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(a) MLP (b) PINN (c) SVR

(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 7. Bending of a beam, Simulation 6 (interpolation): absolute errors of different surrogate
models (a–f) and ground truth Abaqus FEM simulation (g) of εt

yy.
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(a) MLP (b) PINN (c) SVR

(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 8. Bending of a beam, Simulation 9 (extrapolation): absolute errors of different surrogate
models (a–f) and ground truth Abaqus FEM simulation (g) of ε

p
xx.

The compression of a block with four perforations use case presents a more complex
setting because we generalize by two generalization variables (yield stress and block width).
Therefore, we utilize more training data for this use case; see Table 2. We report the average
results of R2-scores with corresponding standard deviations, if applicable, in Table 9.
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Table 9. Block: averaged results, bold values indicate the best performing surrogate models. Values in parentheses are the
corresponding standard deviations of the average R2-scores, due to repeated experiments of stochastic process models. For
further information concerning simulations, see Table 2.

Model MLP PINN SVR GBDTR KNNR GPR FEM

Simulation 1

R2 0.5562
(1.952 × 10−1)

−0.4441
(6.066 × 10−1 )

−0.2463 0.5695
(1.665 × 10−3 )

0.7808 0.1059 -

Inference
time [s] 0.0781 0.0638 1.20 0.271 0.00734 0.139 9.08

Simulation 2

R2 0.3768
(3.803 × 10−1 )

0.1850
(5.531 × 10−2 )

−0.1800 0.5149
(3.320 × 10−4 )

0.7366 0.1409 -

Inference
time [s] 0.0457 0.110 0.418 0.0541 0.0790 0.221 6.81

Simulation 7

R2 0.9976
(8.258 × 10−5 )

0.9410
(4.310 × 10−3 )

0.6415 0.9702
(1.884 × 10−2 )

0.9767 0.5200 -

Inference
time [s] 0.0442 0.0668 0.402 0.0569 0.0705 0.212 6.61

Simulation 12

R2 0.6303
(3.204 × 10−1 )

−0.4480
(6.652 × 10−1 )

−0.2230 0.5702
(6.266 × 10−4 )

0.7797 0.1553 -

Inference
time [s] 0.0442 0.0668 0.402 0.0569 0.0705 0.212 6.61

Simulation 13

R2 0.6475
(3.326 × 10−1 )

−0.1122
(3.265 × 10−1 )

−0.0745 0.5894
(1.579 × 10−4 )

0.7687 0.1771 -

Inference
time [s] 0.0781 0.0638 1.20 0.271 0.00734 0.139 9.08

As an instance for interpolation, the absolute errors regarding ε
p
xx can be seen in

Figure 9a–f with Abaqus FEM simulation result (g). Respectively, an instance for
extrapolation is shown in Figure 10 with absolute errors (a–f) and FEM ground truth (g).
Some models show higher prediction errors near shear bands (high ε

p
xx regions) regarding

the interpolation task. However, SVR and GPR cannot extract meaningful information
from the training data, especially in the space free of plastic deformation. This is indicated
by the low average R2-scores, compared to the other models. Considering absolute errors
of σxy and extrapolation the MLP, which is otherwise performing well, shows weaknesses
and is in general outperformed by the KNNR.

(a) MLP (b) PINN (c) SVR

Figure 9. Cont.
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(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 9. Compression of a block, Simulation 7 (interpolation): absolute errors of different surrogate
models (a–f) and ground truth Abaqus FEM simulation (g) of ε

p
xx.

(a) MLP (b) PINN (c) SVR

(d) GBDTR (e) KNNR (f) GPR

(g) FEM result

Figure 10. Compression of a block, Simulation 13 (extrapolation): absolute errors of different
surrogate models (a–f) and ground truth Abaqus FEM simulation (g) of σxy.

4. Discussion

All classes of surrogate models that we considered in this work share several key
characteristics: (1) they are mesh-free and thus, can deliver results with infinite resolution;
(2) the computation time required to obtain the target values at predefined positions is
orders of magnitude lower than for FEM simulations; (3) since for each simulation setup,
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where the geometry changes, a different mesh is created during FEM simulations, our
results indicate that all classes of surrogate models generalize (interpolate) reasonably well
across training data positions; (4) furthermore, all surrogate model classes generalize at
least to some extent across use case parameters, such as changes in geometry or material
parameters. Finally, all surrogate model classes must be used with care, as they do not
extrapolate well to data positions and/or use case parameters unseen during training. Our
findings show this in the extrapolation result of the beam use case, Simulation 9: due to the
greater yield stress, almost no plastic deformation occurs; thus, the surrogate models are not
able to learn such material behavior. Similar findings can be seen from the extrapolation
results of the block use case, Simulation 1, 2, 12 and 13: approaches utilizing PINNs
and SVRs are not able to predict acceptable strain components, leading to overall worse
averaged R2-scores. In general, it can be stated that the surrogate models used show similar
behavior with respect to inter- and extrapolation, but differ with respect to individual
components, i.e., some models are better at predicting individual components (e.g., strains)
for unknown generalization variables (e.g., yield strength) than others. Another example
would be the symmetric nature of the use case, making it redundant to evaluate, e.g.,
stresses at negative x-positions, the proposed surrogate models will certainly respond
with such stress values, which consequently, cannot be considered meaningful. Similarly,
while the surrogate models may well be evaluated at physically meaningless use case
parameters, e.g., negative radii, the thus obtained results must be considered meaningless
as well. Therefore, all surrogate models must be treated with this in mind, which is
a fundamental difference to FEM simulations that do not offer such modes of failure.
With these considerations in mind, we now turn to discuss specific characteristics of each
surrogate model class.

Our KNNR approach, which can be considered simple compared to the other algorithms,
gave competitive results; moreover, this approach showed the best results regarding
extrapolation (i.e., Simulations 1, 2, 12 and 13) in the block use case.

Algorithms we constructed with MultiOutputRegressor (SVR and GBDTR) could give
better results if the hyperparameters are tuned to each target separately. However, we did
not do this for fairness reasons since our other algorithms are also fitted to the overall use
case and not to each target individually. We intend to monitor this in the future.

In our setting, the GPR algorithm did not deliver good results. Tuning the kernel
function could deliver better results; however, we do not believe that it would be practical
to modify for each new simulation use case. Thus, we not intend to head in this direction.
However, we plan to investigate whether other Bayesian methods (e.g., Bayesian neural
network [30] or neural processes [31]) could be beneficial.

Our MLPs approaches delivered the overall best results in our comparison, especially
regarding interpolation (i.e., in the plate and beam use cases Simulations 4 and 6 and in
the block use case, Simulation 7). They achieved high accuracies (R2-score > 0.992), while
reducing the inference time by a factor of over 100 in comparison to FEM simulations. As
mentioned before, designing the architecture is not a straightforward process; however, if
the network is deep enough and suitable optimization methods are available (e.g., Adam
optimizer) the network can be also efficiently trained utilizing early stopping.

As already reported in literature [32–35], we experienced in our setting that PINNs
are not straightforward to design and train. Due to several plateaus in the loss function,
early stopping did not prove to be effective. Therefore, we set a fixed number of training
epochs. One reason for our observation could be the existence of a non-convex Pareto
frontier [36]. In the multi-objective optimization problem, the optimizer might attempt to
adjust the model parameters while situated between the different losses, leading it to favor
one loss at the expense of the other [37]. Possible approaches to overcome this problem
are adaptive optimizers [38], adaptive loss [39], and adaptive activation functions [40].
Moreover, PINNs are objects of current research and will gain more and more attention
in the future. Besides other fundamental methods, we additionally plan to aim in that
direction for improved surrogate modeling.
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5. Conclusions

In this work, we deliver a comprehensive evaluation of generalizable and mesh-free
ML and DL surrogate models based on FEM simulation and show that surrogate modeling
leads to fast predictions with infinite resolution for practical use. In the context of our
evaluation, we show which ML and DL models are target oriented at which level of
complexity with respect to prediction accuracy and inference time, which can serve as a
basis for the practical implementation of surrogate models (in, for example, production for
real-time prediction, cyber–physical systems, and process design).

In future work, we plan to conduct more complex experiments, e.g., generalizing
across more input variables regarding geometry (e.g., consideration of all component
dimensions) and material parameters (e.g., non-perfect nonlinear material behavior, time-
dependent material properties, grain growth, and phase transformation). We will moreover
explore extended surrogate models with more complex output variables (e.g., grain size,
grain structure, and phase transformation).
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Appendix A. Surrogate Models

We follow the notation introduced in Section 2.2 with data instance Xi = (xi, yi)
containing input vector xi and output vector yi, the number of training instances is n and
the number of test instances is m. Notations regarding individual models are introduced
when needed.

Appendix A.1. GBDTR

Boosting methods are powerful techniques in which the final “strong” regressor model
is based on an iteratively formed ensemble of “weak” base regressor models [41]. The main
idea behind boosting is to sequentially add new models to the ensemble, iteratively refining
the output. In GBDTR models, boosting is applied to arbitrary differentiable loss functions.
In general, GBDTR models are additive models, where the samples are modified so that
the labels are set to the negative gradient, while the distribution is held constant [42].
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The additive method of GBDTR is the following:

ŷi = FG(xi) =
G

∑
g=1

hg(xi) (A1)

where ŷi is the prediction for a given input xi, and hg are the fitted base tree regressors. The
constant G is the number of base tree regressors. The GBDTR algorithm is greedy, where a
newly added tree regressor hg is fitted to minimize the loss Lg of the resulting ensemble
Fg = Fg−1 + hg, i.e.,

hg = arg min
h

Lg = arg min
h

n

∑
i=1

l(yi, Fg−1(xi) + h(xi)) (A2)

Here, l(yi, F(xi)) is defined by the loss parameters, and h(xi) is the candidate base
regressor. With the utilization of a first-order Taylor approximation:

l(z) ≈ l(a) + (z− a)
∂l(a)

∂a
(A3)

where z corresponds to Fg−1(xi)+ hg(xi) and a corresponds to Fg−1(xi), we can approximate
the value of l with the following:

l(yi, Fg−1(xi) + hg(xi)) ≈ l(yi, Fg−1(xi)) + hg(xi)

[
∂l(yi, F(xi))

∂F(xi)

]
F=Fg−1

(A4)

We denote the derivative of the loss with gi and remove constant terms:

hm ≈ arg min
h

n

∑
i=1

h(xi)gi (A5)

hm is minimized if h(xi) is fitted to predict a value proportional to the negative gradient.

Appendix A.2. KNNR

The KNNR algorithm is a relatively simple method mathematically, compared to
other algorithms presented here. Here, the model stores all available use cases from the
training dataset D and predicts the numerical target ŷj of a test query instance xj with
n < j ≤ (n + m) based on a similarity measure (e.g., distance functions). The algorithm
computes the distance-weighted average of the numerical targets of the K nearest neighbors
of xj in D [43].

Specifically, we introduce a distance metric d that measures the distance between all
training instances xi with i ≤ n and a test instance xj. Next, the training instances are
sorted w.r.t. their respective distance in ascending order to the test instance, i.e., there is
a permutation πj of the training indices i such that d(xπj(1), xj) ≤ d(xπj(2), xj) ≤ · · · ≤
d(xπj(n), xj). Then, the estimate ŷj(xj) is given as the following:

ŷj(xj) =
1
K

K

∑
i=1

yπj(i) (A6)

where K must be specified as a hyperparameter.

Appendix A.3. GPR

Gaussian process regression modeling is a non-parametric Bayesian approach [44]. In
general, a Gaussian process is a generalization of the Gaussian distribution. The Gaussian
distribution describes random variables or random vectors, while a Gaussian process
describes a function f (x) [45].

In general, a Gaussian process is completely specified by its mean function µ(x) and
covariance function K(x, x′) (also called kernel).



Appl. Sci. 2021, 11, 9411 21 of 32

If the function f (x) under consideration is modeled by a Gaussian process, i.e., if
f (x) ∼ GP(µ(x), K(x, x′)), then we have the following

E[ f (x)] = µ(x) (A7)

E[( f (x)− µ(x))( f (x′)− µ(x′))] = K(x, x′) (A8)

for all x and x′. Thus, we can define the Gaussian process as the following:

f (x) ∼ N (µ(x), K(x, x)) (A9)

We use the notation that matrix D = (XD, YD) contains the training data with input
data matrix XD = (x1, . . . , xn) and output data matrix YD = (y1, . . . , yn), and test data
matrix T = (XT , YT) contains the test data with XT = (xn+1, . . . , xn+m) as input and
YT = (yn+1, . . . , yn+m) as output. We can define that they are jointly Gaussian and zero
mean with consideration of the prior distribution:[

YD
YT

]
∼ N (0,

[
K(XD, XD)) K(XD, XT))
K(XT , XD)) K(XT , XT))

]
) (A10)

The Gaussian process makes a prediction YT for XT in a probabilistic way, where, as
stated before, the posterior distribution can be fully described by the mean and the covariance.

YT |XT , XD, YD ∼ N (K(XT , XD)K(XD, XD)
−1YD,

K(XT , XT)− K(XT , XD)K(XD, XD)
−1K(XD, XT))

(A11)

Appendix A.4. SVR

The SVR approach is a generalization of the SVM classification problem by introducing
an ε-sensitive region around the approximated function, also called an ε-tube. The
optimization task in SVR contains two steps: first, finding a convex ε-insensitive loss
function that need to be minimized, and second, finding the smallest ε-tube that contains
the most training instances.

The convex optimization has a unique solution and is solved using numerical
optimization algorithms. One of the main advantages of SVR is that the computational
complexity does not depend on the dimensionality of the input space [46]. To deal with
otherwise intractable constraints of the optimization problem, we introduce slack variables
ξi and ξ∗i [47]. The positive constant C determines the trade-off between the flatness of the
function and the magnitude up to which deviations greater than ε are allowed. The primal
quadratic optimization problem of SVR is defined as the following:

minimize
ω,b

1
2
||ω||2 + C

n

∑
i=1

(ξi + ξ∗i ) (A12)

subject to the f ollowing :


yi −ωTxi − b ≤ ε + ξi
ωTxi + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(A13)

Here, ω is the weight and b the bias to be adjusted. The constrained quadratic
optimization problem can be solved by minimizing the Lagrangian with non-negative
Lagrange multipliers λi, λ∗i , αi, α∗i , i ∈ {1, . . . , n}:

L(ω, ξ∗, ξ, λ, λ∗, α, α∗) =
1
2
||ω||2 + C

n

∑
i=1

ξi + ξ∗i +
n

∑
i=1

α∗i (yi −ωTxi − ε− ξ∗i )

+
n

∑
i=1

αi(−yi + ωTxi − ε− ξi)−
n

∑
i=1

λiξi + λ∗i ξ∗i

(A14)
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The minimum of L can be found by taking the partial derivatives with respect to the
variables and making them equal to zero (Karush-Kuhn-Tucker (KKT) conditions). With the
final KKT condition, we can state the following:

αi(−yi + ωTxi − ε− ξi) = 0

α∗i (−yi + ωTxi − ε− ξ∗i ) = 0

λiξi = 0

λ∗i ξ∗i = 0

(A15)

The Lagrange multipliers that are zero correspond to the inside of the ε-tube, while
the support vectors have non-zero Lagrange multipliers. The function estimate depends
only on the support vectors, hence this representation is sparse. More specifically, we can
derive the following function approximation to predict ŷj(xj):

ŷj(xj) =
nSV

∑
i=1

(α∗i − αi)xT
i xj (A16)

with αi, α∗i ∈ [0, C] and the number of support vectors nSV . For nonlinear SVR we replace
ωTxi in (12)–(15) by ωTφ(xi) and the inner product in (16) by the kernel K(xi, xj).

Appendix A.5. MLP

A neural network is a network of simple processing elements, also called neurons. The
neurons are arranged in layers. In a fully-connected multi-layer network, a neuron in one
layer is connected to every neuron in the layer before and after it. The number of neurons in
the input layer is the number of input features p and the number of neurons in the output
layer is the number of targets q [48]. MLPs have several theoretical advantages, compared
to other ML algorithms. Due to the universal approximation theorem, an MLP can
approximate any function if the activation functions of the network are appropriate [49–51].
The MLP makes no prior assumptions about the data distribution, and in many cases,
can be trained to generalize to new data not yet seen [52]. However, finding the right
architecture and finding the setting of training parameters is not straightforward and
usually done by trial and error influenced by the literature and guidelines.

A neural network output ŷ corresponding to an input x can be represented as a
composition of functions, where the output of layer L− 1 acts as input to the following
layer L. For example, for non-linear activation function σL, weight matrix WL, and bias
vector bL of the respective layer L, we obtain the following:

ŷ(x) = tL(x) = σL(WT
L tL−1(x) + bL) (A17)

With the neural network estimate ŷ(x) and the respective target y of an input x, we
can denote a loss function L. A very common loss function for MLPs for regression tasks is
the mean-squared error:

L(W, b) =
1
n

n

∑
i=1

(ŷ(xi)− yi)
2 (A18)

where W and b are the collections of all weight matrices and bias terms, respectively.
Optimal weight W∗ and bias b∗ terms for each layer are identified with minimizing the
loss function L via back-propagation [53].

W∗/b∗ = argmin
W,b

L(W, b) (A19)
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Appendix A.6. PINN

In PINNs, the network is trained simultaneously on data and governing differential
equations. PINNs are regularized such that their function approximation ŷ(x) obeys known
laws of physics that apply to the observed data. This type of network is well suited for
solving and inverting equations that control physical systems and find application in fluid
and solid mechanics as well as in dynamical systems [21,35].

PINNs share similarities with common ANNs, but the loss function has an additional
part that describes the physics behind the use case setting. More specifically, the loss L is
composed of the data-driven loss Ldata and the physics-informed loss Lphysics:

L = Ldata + Lphysics (A20)

While the data-driven loss is often a standard mean-squared error, the physics-
informed loss accounts for the degree to which the function approximation solves a
given system of governing differential equations. For further details, we refer the reader
to [23,35,54] in general and to the Python package of [21,22] in particular for simple
implementation of structural mechanics use cases.

Appendix B. Hyperparameters

Table A1. Best performing hyperparameters GBDTR.

Plate Beam Block

loss ls ls ls
criterion friedman_mse mse friedman_mse
max_features auto log2 auto
n_estimators 400 1000 2000

Table A2. Best performing hyperparameters KNNR.

Plate Beam Block

n_neighbors (K) 7 5 10
weights distance distance distance
algorithm brute ball_tree auto
leaf_size 1 5 1
p_value 1 2 5

Table A3. Best performing hyperparameters GPR.

Plate Beam Block

kernel Matern()**2 RationalQuadratic()**2 RationalQuadratic()**2
alpha 10−13 10−13 10−14

Table A4. Best performing hyperparameters SVR.

Plate Beam Block

kernel rbf rbf rbf
gamma scale scale scale
epsilon 0.005 0.005 0.4
C 95 5 105
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Table A5. Best performing hyperparameters MLP.

Plate Beam Block

hidden layers 3 2 4
neurons 100-100-100 100-100 100-100-100-100
activation function relu relu relu
batch size 32 32 64
validation split 0.1 0.1 0.1
early stopping patience 5000 5000 7500
max epochs 100,000 100,000 100,000
stopped at 27,693 26,383 43,272

Table A6. Best hyperparameters PINN.

Plate Beam Block

hidden layers 4 4 4
neurons 100-100-100-100 100-100-100-100 100-100-100-100
activation function tanh tanh tanh
batch size 64 64 64
epochs 50,000 50,000 50,000

Appendix C. Detailed Results

Table A7. Detailed results for the plate elongation use case Simulation 1.

SIMULATION 1

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9923 3.121 × 10−6 0.8331 5.206 × 10−2 4.117 × 10−1 5.296 × 10−1 1.788 × 10−6 7.973 × 10−1 5.936 × 10−1

εt
xy 0.9900 3.681 × 10−7 0.4748 1.814 × 10−1 5.390 × 10−2 3.846 × 10−1 2.065 × 10−5 5.121 × 10−1 5.039 × 10−1

εt
yy 0.9924 3.055 × 10−6 0.8749 9.156 × 10−2 4.169 × 10−1 5.281 × 10−1 1.243 × 10−7 7.992 × 10−1 5.950 × 10−1

ε
p
xx 0.9923 3.269 × 10−6 0.7385 3.795 × 10−2 4.079 × 10−1 5.120 × 10−1 2.215 × 10−7 7.964 × 10−1 5.933 × 10−1

ε
p
xy 0.9901 2.085 × 10−6 0.6195 3.218 × 10−1 4.889 × 10−2 3.509 × 10−1 1.003 × 10−5 5.014 × 10−1 5.011 × 10−1

ε
p
yy 0.9923 3.243 × 10−6 0.7463 3.195 × 10−2 4.127 × 10−1 5.069 × 10−1 5.126 × 10−8 7.976 × 10−1 5.941 × 10−1

ε
p
zz 0.9865 5.307 × 10−6 0.3235 4.347 × 10−1 8.349 × 10−1 7.773 × 10−1 7.044 × 10−10 9.194 × 10−1 6.734 × 10−1

σxx 0.9798 9.128 × 10−6 0.9496 1.676 × 10−2 8.886 × 10−1 7.682 × 10−1 1.685 × 10−10 8.854 × 10−1 7.017 × 10−1

σxy 0.9760 2.915 × 10−7 0.8405 9.858 × 10−2 8.373 × 10−1 6.984 × 10−1 3.676 × 10−9 8.605 × 10−1 6.706 × 10−1

σyy 0.9908 2.639 × 10−6 0.8574 6.011 × 10−2 9.822 × 10−1 8.925 × 10−1 2.420 × 10−9 9.120 × 10−1 5.432 × 10−1

σzz 0.9914 2.684 × 10−6 0.9484 1.407 × 10−2 9.208 × 10−1 8.774 × 10−1 2.448 × 10−8 9.326 × 10−1 6.558 × 10−1

u 0.9981 3.358 × 10−8 0.9690 1.919 × 10−2 9.095 × 10−1 8.721 × 10−1 2.230 × 10−7 9.443 × 10−1 6.629 × 10−1

v 0.9976 5.954 × 10−9 0.9610 3.203 × 10−2 9.195 × 10−1 8.903 × 10−1 1.258 × 10−11 9.549 × 10−1 6.810 × 10−1

mean 0.9900 6.155 × 10−9 0.7797 8.709 × 10−2 0.6188 0.6606 3.959 × 10−8 0.8164 0.6131

MSE

εt
xx 2.916 × 10−5 4.483 × 10−11 6.325 × 10−4 1.973 × 10−4 2.230 × 10−3 1.783 × 10−3 2.569 × 10−11 7.683 × 10−4 1.540 × 10−3

εt
xy 3.237 × 10−5 3.865 × 10−12 1.702 × 10−3 5.879 × 10−4 3.066 × 10−3 1.994 × 10−3 2.168 × 10−10 1.581 × 10−3 1.608 × 10−3

εt
yy 2.927 × 10−5 4.523 × 10−11 4.815 × 10−4 3.523 × 10−4 2.244 × 10−3 1.816 × 10−3 1.841 × 10−12 7.727 × 10−4 1.558 × 10−3

ε
p
xx 2.945 × 10−5 4.752 × 10−11 9.969 × 10−4 1.447 × 10−4 2.257 × 10−3 1.861 × 10−3 3.220 × 10−12 7.764 × 10−4 1.551 × 10−3

ε
p
xy 2.974 × 10−5 1.886 × 10−11 1.144 × 10−3 9.679 × 10−4 2.861 × 10−3 1.952 × 10−3 9.069 × 10−11 1.499 × 10−3 1.500 × 10−3

ε
p
yy 2.954 × 10−5 4.803 × 10−11 9.764 × 10−4 1.230 × 10−4 2.260 × 10−3 1.898 × 10−3 7.593 × 10−13 7.789 × 10−4 1.562 × 10−3

ε
p
zz 1.921 × 10−9 1.071 × 10−19 2.604 × 10−3 1.673 × 10−3 2.345 × 10−8 3.163 × 10−8 1.421 × 10−23 1.145 × 10−8 4.638 × 10−8

σxx 1.599 × 102 5.736 × 102 3.997 × 102 1.329 × 102 8.831 × 102 1.837 × 103 1.059 × 10−2 9.082 × 102 2.364 × 103

σxy 1.196 × 102 7.221 7.941 × 102 4.906 × 102 8.099 × 102 1.501 × 103 9.107 × 10−2 6.941 × 102 1.640 × 103

σyy 5.013 × 102 7.911 × 103 7.809 × 103 3.291 × 103 9.766 × 102 5.883 × 103 7.253 4.818 × 103 2.501 × 104

σzz 1.896 × 102 1.297 × 103 1.135 × 103 3.094 × 102 1.741 × 103 2.696 × 103 1.183 × 101 1.481 × 103 7.567 × 103

u 4.736 × 10−3 2.001 × 10−7 7.558 × 10−2 4.684 × 10−2 2.210 × 10−1 3.123 × 10−1 1.329 × 10−6 1.361 × 10−1 8.230 × 10−1

v 0.0055 3.012 × 10−8 0.0877 7.203 × 10−2 1.810 × 10−1 2.467 × 10−1 6.361 × 10−11 1.015 × 10−1 7.174 × 10−1
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Table A8. Detailed results for the plate elongation use case Simulation 4.

SIMULATION 4

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9994 1.890 × 10−5 0.9615 1.029 × 10−2 0.6110 0.9061 8.599 × 10−2 0.9354 0.8478

εt
xy 0.9984 1.387 × 10−4 0.6064 2.507 × 10−1 0.1553 0.8252 1.696 × 10−1 0.7558 0.6991

εt
yy 0.9994 1.450 × 10−5 0.9817 8.052 × 10−3 0.6169 0.9067 9.160 × 10−2 0.9361 0.8495

ε
p
xx 0.9994 1.634 × 10−5 0.8183 5.486 × 10−2 0.6087 0.8379 3.180 × 10−2 0.9346 0.8457

ε
p
xy 0.9984 1.217 × 10−5 0.9410 7.109 × 10−3 0.1468 0.7309 1.302 × 10−1 0.7502 0.6967

ε
p
yy 0.9994 1.572 × 10−5 0.8881 8.563 × 10−4 0.6117 0.8487 3.739 × 10−2 0.9351 0.8467

ε
p
zz 0.9934 1.400 × 10−3 0.7888 2.487 × 10−3 0.9349 0.9317 1.525 × 10−2 0.9790 0.9440

σxx 0.9957 1.192 × 10−4 0.9903 3.579 × 10−4 0.9326 0.9572 4.072 × 10−2 0.9742 0.9404
σxy 0.9930 6.390 × 10−4 0.9753 1.977 × 10−4 0.8643 0.8846 1.103 × 10−1 0.9417 0.8974
σyy 0.9985 9.487 × 10−5 0.8972 3.716 × 10−3 0.9932 0.9660 3.214 × 10−2 0.9909 0.9736
σzz 0.9972 1.784 × 10−4 0.9813 2.062 × 10−4 0.9813 0.9726 2.625 × 10−2 0.9901 0.9667
u 0.9995 4.181 × 10−5 0.9934 3.368 × 10−4 0.9297 0.9710 2.879 × 10−2 0.9792 0.9370
v 0.9997 6.148 × 10−5 0.9927 1.157 × 10−3 0.9392 0.9792 2.026 × 10−2 0.9857 0.9454

mean 0.9978 1.970 × 10−4 0.9089 2.598 × 10−2 0.7174 0.9014 6.310 × 10−2 0.9298 0.8761

MSE

εt
xx 2.150 × 10−6 6.723 × 10−8 1.370 × 10−4 3.662 × 10−5 1.384 × 10−3 3.200 × 10−4 3.200 × 10−4 2.298 × 10−4 5.412 × 10−4

εt
xy 4.496 × 10−6 3.991 × 10−7 1.132 × 10−3 7.213 × 10−4 2.430 × 10−3 4.955 × 10−4 4.955 × 10−4 7.027 × 10−4 8.656 × 10−4

εt
yy 2.186 × 10−6 5.247 × 10−8 6.610 × 10−5 2.914 × 10−5 1.386 × 10−3 3.345 × 10−4 3.345 × 10−4 2.312 × 10−4 5.447 × 10−4

ε
p
xx 2.173 × 10−6 5.875 × 10−8 6.531 × 10−4 1.972 × 10−4 1.407 × 10−3 3.485 × 10−4 3.484 × 10−4 2.352 × 10−4 5.547 × 10−4

ε
p
xy 4.228 × 10−6 3.139 × 10−8 1.522 × 10−4 1.834 × 10−5 2.202 × 10−3 5.152 × 10−4 5.152 × 10−4 6.446 × 10−4 7.827 × 10−4

ε
p
yy 2.194 × 10−6 5.701 × 10−8 4.060 × 10−4 3.106 × 10−6 1.409 × 10−3 3.422 × 10−4 3.422 × 10−4 2.356 × 10−4 5.562 × 10−4

ε
p
zz 7.663 × 10−10 1.627 × 10−10 7.659 × 10−4 9.020 × 10−6 7.573 × 10−9 4.990 × 10−9 4.726 × 10−9 2.438 × 10−9 6.512 × 10−9

σxx 5.480 × 101 1.515 1.226 × 102 4.547 8.561 × 102 5.339 × 102 5.272 × 102 3.283 × 102 7.575 × 102

σxy 3.438 × 101 3.155 1.218 × 102 9.760 × 10−1 6.699 × 102 5.597 × 102 5.547 × 102 2.880 × 102 5.066 × 102

σyy 1.267 × 102 8.027 8.700 × 103 3.144 × 102 5.743 × 102 3.081 × 103 2.514 × 103 7.740 × 102 2.236 × 103

σzz 6.863 × 101 4.437 4.654 × 102 5.129 4.640 × 102 6.858 × 102 6.491 × 102 2.456 × 102 8.285 × 102

u 8.003 × 10−4 6.664 × 10−5 1.046 × 10−2 5.368 × 10−4 1.120 × 10−1 4.637 × 10−2 4.578 × 10−2 3.320 × 10−2 1.005 × 10−1

v 4.276 × 10−4 8.849 × 10−5 1.057 × 10−2 1.666 × 10−3 8.756 × 10−2 2.954 × 10−2 2.952 × 10−2 2.062 × 10−2 7.857 × 10−2

Table A9. Detailed results for the plate elongation use case Simulation 6.

SIMULATION 6

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9958 2.566 × 10−3 0.9336 1.934 × 10−2 0.6182 0.8405 1.562 × 10−1 0.9228 0.8366

εt
xy 0.9930 4.453 × 10−3 0.2877 3.328 × 10−1 0.1915 0.6924 3.030 × 10−1 0.7280 0.6696

εt
yy 0.9959 2.522 × 10−3 0.9211 5.104 × 10−2 0.6238 0.8344 1.648 × 10−1 0.9238 0.8385

ε
p
xx 0.9958 2.606 × 10−3 0.5414 3.173 × 10−1 0.6149 0.7529 8.924 × 10−2 0.9221 0.8352

ε
p
xy 0.9932 4.276 × 10−3 0.9131 2.635 × 10−2 0.1831 0.5966 1.726 × 10−1 0.7218 0.6668

ε
p
yy 0.9958 2.590 × 10−3 0.7744 8.943 × 10−2 0.6178 0.7799 9.094 × 10−2 0.9228 0.8362

ε
p
zz 0.9901 2.688 × 10−3 0.8264 2.288 × 10−2 0.9590 0.8938 2.641 × 10−3 0.9860 0.9487

σxx 0.9837 1.326 × 10−2 0.9839 3.098 × 10−4 0.9527 0.9600 3.838 × 10−2 0.9799 0.9407
σxy 0.9768 8.968 × 10−3 0.9655 2.023 × 10−3 0.8687 0.8571 1.381 × 10−1 0.9431 0.9030
σyy 0.9890 1.196 × 10−2 0.9103 1.363 × 10−3 0.9908 0.9729 2.571 × 10−2 0.9938 0.9709
σzz 0.9900 8.749 × 10−3 0.9851 1.518 × 10−3 0.9818 0.9682 3.102 × 10−2 0.9923 0.9636
u 0.9980 1.261 × 10−3 0.9835 1.344 × 10−3 0.9077 0.9366 6.320 × 10−2 0.9717 0.9336
v 0.9988 6.926 × 10−4 0.9849 6.032 × 10−3 0.9161 0.9685 3.118 × 10−2 0.9760 0.9359

mean 0.9920 1.889 × 10−3 0.8470 6.309 × 10−2 0.7251 0.8503 1.005 × 10−1 0.9219 0.8676

MSE

εt
xx 1.563 × 10−5 9.386 × 10−6 2.475 × 10−4 7.210 × 10−5 1.423 × 10−3 5.884 × 10−4 5.884 × 10−4 2.878 × 10−4 6.090 × 10−4

εt
xy 2.402 × 10−5 1.372 × 10−5 2.360 × 10−3 1.103 × 10−3 2.680 × 10−3 1.012 × 10−3 1.012 × 10−3 9.014 × 10−4 1.095 × 10−3

εt
yy 1.579 × 10−5 9.392 × 10−6 2.994 × 10−4 1.936 × 10−4 1.427 × 10−3 6.268 × 10−4 6.268 × 10−4 2.890 × 10−4 6.128 × 10−4

ε
p
xx 1.596 × 10−5 9.635 × 10−6 1.725 × 10−3 1.194 × 10−3 1.449 × 10−3 6.327 × 10−4 6.327 × 10−4 2.929 × 10−4 6.201 × 10−4

ε
p
xy 2.135 × 10−5 1.199 × 10−5 2.627 × 10−4 7.965 × 10−5 2.469 × 10−3 8.705 × 10−4 8.705 × 10−4 8.407 × 10−4 1.007 × 10−3

ε
p
yy 1.599 × 10−5 9.654 × 10−6 8.559 × 10−4 3.392 × 10−4 1.450 × 10−3 5.899 × 10−4 5.899 × 10−4 2.930 × 10−4 6.214 × 10−4

ε
p
zz 1.341 × 10−9 6.361 × 10−10 6.584 × 10−4 8.677 × 10−5 4.377 × 10−9 5.918 × 10−9 5.708 × 10−9 1.492 × 10−9 5.484 × 10−9

σxx 4.784 × 102 5.454 × 102 2.162 × 102 4.170 6.368 × 102 5.300 × 102 5.246 × 102 2.709 × 102 7.981 × 102

σxy 2.621 × 102 2.590 × 102 1.620 × 102 9.491 6.161 × 102 6.614 × 102 6.566 × 102 2.669 × 102 4.552 × 102

σyy 2.230 × 103 2.811 × 103 8.488 × 103 1.291 × 102 8.701 × 102 2.741 × 103 2.264 × 103 5.900 × 102 2.755 × 103

σzz 4.078 × 102 4.385 × 102 3.842 × 102 3.926 × 101 4.705 × 102 8.263 × 102 7.996 × 102 1.981 × 102 9.411 × 102

u 2.471 × 10−3 1.295 × 10−3 1.953 × 10−2 1.591 × 10−3 1.093 × 10−1 7.515 × 10−2 7.473 × 10−2 3.349 × 10−2 7.862 × 10−2

v 1.594 × 10−3 3.341 × 10−4 1.621 × 10−2 6.487 × 10−3 9.022 × 10−2 3.373 × 10−2 3.371 × 10−2 2.578 × 10−2 6.895 × 10−2
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Table A10. Detailed results for the plate elongation use case Simulation 9.

SIMULATION 9

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9902 4.611 × 10−7 0.8149 1.175 × 10−1 5.305 × 10−1 7.066 × 10−1 4.844 × 10−7 8.255 × 10−1 5.599 × 10−1

εt
xy 0.9699 1.932 × 10−5 0.3356 9.434 × 10−2 5.673 × 10−2 3.932 × 10−1 1.518 × 10−8 4.667 × 10−1 3.628 × 10−1

εt
yy 0.9903 4.339 × 10−7 0.8484 1.445 × 10−1 5.344 × 10−1 7.197 × 10−1 3.018 × 10−8 8.272 × 10−1 5.611 × 10−1

ε
p
xx 0.9904 3.884 × 10−7 0.6097 7.907 × 10−2 5.180 × 10−1 7.195 × 10−1 4.415 × 10−11 8.235 × 10−1 5.571 × 10−1

ε
p
xy 0.9704 1.921 × 10−5 0.5937 3.410 × 10−1 4.617 × 10−2 4.245 × 10−1 3.808 × 10−8 4.609 × 10−1 3.586 × 10−1

ε
p
yy 0.9904 3.972 × 10−7 0.7357 4.504 × 10−2 5.204 × 10−1 7.128 × 10−1 7.477 × 10−7 8.242 × 10−1 5.579 × 10−1

ε
p
zz 0.9628 7.728 × 10−6 0.3747 4.181 × 10−1 9.292 × 10−1 8.309 × 10−1 6.767 × 10−9 9.016 × 10−1 6.839 × 10−1

σxx 0.9633 3.899 × 10−4 0.9577 1.764 × 10−2 9.258 × 10−1 9.264 × 10−1 1.662 × 10−9 9.516 × 10−1 6.847 × 10−1

σxy 0.9438 1.369 × 10−3 0.8168 1.079 × 10−1 8.161 × 10−1 6.292 × 10−1 1.792 × 10−7 7.731 × 10−1 5.730 × 10−1

σyy 0.9876 5.783 × 10−5 0.9443 4.324 × 10−3 9.779 × 10−1 9.280 × 10−1 1.478 × 10−11 9.367 × 10−1 5.502 × 10−1

σzz 0.9865 1.062 × 10−5 0.9526 2.420 × 10−2 9.704 × 10−1 9.328 × 10−1 3.200 × 10−10 9.407 × 10−1 6.108 × 10−1

u 0.9898 3.302 × 10−6 0.9168 6.792 × 10−2 8.492 × 10−1 6.756 × 10−1 2.928 × 10−7 8.302 × 10−1 6.322 × 10−1

v 0.9859 2.747 × 10−6 0.9300 6.483 × 10−2 8.630 × 10−1 8.433 × 10−1 2.501 × 10−8 8.963 × 10−1 6.544 × 10−1

mean 0.9786 2.970 × 10−5 0.7562 1.046 × 10−1 0.6568 0.7263 9.780 × 10−9 0.8045 0.5651

MSE

εt
xx 3.323 × 10−5 5.335 × 10−12 6.296 × 10−4 3.996 × 10−4 1.597 × 10−3 9.979 × 10−4 5.605 × 10−12 5.937 × 10−4 1.497 × 10−3

εt
xy 1.069 × 10−4 2.439 × 10−10 2.360 × 10−3 3.352 × 10−4 3.351 × 10−3 2.156 × 10−3 1.916 × 10−13 1.895 × 10−3 2.264 × 10−3

εt
yy 3.349 × 10−5 5.193 × 10−12 5.245 × 10−4 5.000 × 10−4 1.611 × 10−3 9.698 × 10−4 3.612 × 10−13 5.977 × 10−4 1.518 × 10−3

ε
p
xx 3.322 × 10−5 4.646 × 10−12 1.350 × 10−3 2.735 × 10−4 1.667 × 10−3 9.703 × 10−4 5.282 × 10−16 6.106 × 10−4 1.532 × 10−3

ε
p
xy 9.449 × 10−5 1.962 × 10−10 1.298 × 10−3 1.090 × 10−3 3.048 × 10−3 1.839 × 10−3 3.889 × 10−13 1.723 × 10−3 2.050 × 10−3

ε
p
yy 3.332 × 10−5 4.818 × 10−12 9.206 × 10−4 1.569 × 10−4 1.670 × 10−3 1.000 × 10−3 9.069 × 10−12 6.123 × 10−4 1.540 × 10−3

ε
p
zz 2.279 × 10−9 2.901 × 10−20 2.178 × 10−3 1.456 × 10−3 4.339 × 10−9 1.036 × 10−8 2.540 × 10−23 6.026 × 10−9 1.937 × 10−8

σxx 3.733 × 102 4.030 × 104 4.303 × 102 1.794 × 102 7.548 × 102 7.480 × 102 1.718 × 10−1 4.916 × 102 3.206 × 103

σxy 1.946 × 102 1.639 × 104 6.338 × 102 3.734 × 102 6.364 × 102 1.283 × 103 2.146 7.852 × 102 1.478 × 103

σyy 1.092 × 103 4.456 × 105 4.890 × 103 3.796 × 102 1.943 × 103 6.320 × 103 1.139 × 10−1 5.556 × 103 3.948 × 104

σzz 2.613 × 102 3.972 × 103 9.161 × 102 4.681 × 102 5.727 × 102 1.300 × 103 1.197 × 10−1 1.147 × 103 7.528 × 103

u 5.525 × 10−3 9.688 × 10−7 4.508 × 10−2 3.679 × 10−2 8.165 × 10−2 1.757 × 10−1 8.590 × 10−8 9.196 × 10−2 1.992 × 10−1

v 0.0072 7.221 × 10−7 0.0359 3.324 × 10−2 7.021 × 10−2 8.034 × 10−2 6.573 × 10−9 5.317 × 10−2 1.772 × 10−1

Table A11. Detailed results for the bending beam use case Simulation 1.

SIMULATION 1

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.8367 8.066 × 10−5 0.7682 1.742 × 10−2 0.8036 0.8566 2.006 × 10−6 0.8377 0.6790

εt
xy 0.8570 6.906 × 10−5 0.6632 1.499 × 10−1 0.4932 0.9030 2.784 × 10−7 0.6409 0.5727

εt
yy 0.9594 1.142 × 10−5 0.8487 3.318 × 10−4 0.9520 0.9651 2.776 × 10−9 0.9607 0.8805

ε
p
xx 0.0647 7.879 × 10−6 0.0304 1.866 × 10−4 0.0083 0.1599 1.015 × 10−5 0.1426 0.0633

ε
p
xy −0.0091 4.606 × 10−4 −0.0106 3.336 × 10−4 −0.0051 0.0906 3.080 × 10−6 0.0098 0.0652

ε
p
yy 0.0723 2.093 × 10−5 0.0335 4.720 × 10−4 0.0051 0.1746 9.704 × 10−7 0.1568 0.0720

ε
p
zz 0.1157 3.506 × 10−4 −0.0078 8.842 × 10−4 0.0152 0.2458 1.254 × 10−6 0.2373 0.1278

σxx 0.9643 3.732 × 10−4 0.9822 2.748 × 10−3 0.0291 0.9837 3.203 × 10−7 0.6293 0.1681
σxy 0.9157 1.814 × 10−4 0.8902 1.515 × 10−2 0.4227 0.9451 4.972 × 10−6 0.6324 0.5024
σyy 0.9482 8.435 × 10−5 0.9546 1.249 × 10−3 0.9618 0.9547 1.283 × 10−7 0.9540 0.9815
σzz 0.9789 1.711 × 10−5 0.9742 1.819 × 10−3 0.9766 0.9818 2.750 × 10−7 0.9781 0.9521
u 0.9948 6.208 × 10−6 0.9974 5.933 × 10−4 0.9978 0.9974 1.963 × 10−10 0.9972 0.9678
v 0.9875 2.782 × 10−5 0.8897 6.238 × 10−2 0.9976 0.9973 6.646 × 10−8 0.9976 0.9580

mean 0.6682 7.345 × 10−6 0.6165 1.648 × 10−2 0.5122 0.7120 1.088 × 10−8 0.6288 0.5377

MSE

εt
xx 3.452 × 10−7 3.602 × 10−16 4.899 × 10−7 3.682 × 10−8 4.151 × 10−7 3.077 × 10−7 9.363 × 10−17 3.430 × 10−7 6.783 × 10−7

εt
xy 3.723 × 10−8 4.679 × 10−18 8.765 × 10−8 3.903 × 10−8 1.319 × 10−7 2.554 × 10−8 7.242 × 10−20 9.346 × 10−8 1.112 × 10−7

εt
yy 2.876 × 10−7 5.739 × 10−16 1.073 × 10−6 2.352 × 10−9 3.402 × 10−7 2.484 × 10−7 3.517 × 10−18 2.785 × 10−7 8.473 × 10−7

ε
p
xx 4.778 × 10−7 2.056 × 10−18 4.953 × 10−7 9.531 × 10−11 5.066 × 10−7 4.288 × 10−7 4.320 × 10−18 4.380 × 10−7 4.785 × 10−7

ε
p
xy 1.779 × 10−8 1.431 × 10−19 1.781 × 10−8 5.879 × 10−12 1.772 × 10−8 1.604 × 10−8 2.456 × 10−21 1.745 × 10−8 1.648 × 10−8

ε
p
yy 6.251 × 10−7 9.503 × 10−18 6.512 × 10−7 3.180 × 10−10 6.704 × 10−7 5.577 × 10−7 2.451 × 10−18 5.681 × 10−7 6.253 × 10−7

ε
p
zz 1.029 × 10−8 4.752 × 10−20 6.790 × 10−7 5.958 × 10−10 1.146 × 10−8 8.783 × 10−9 8.663 × 10−23 8.878 × 10−9 1.015 × 10−8

σxx 9.974 × 101 2.906 × 103 4.964 × 101 7.668 2.709 × 103 4.422 × 101 5.128 × 10−2 1.035 × 103 2.322 × 103

σxy 7.615 × 101 1.479 × 102 9.920 × 101 1.368 × 101 5.214 × 102 5.007 × 101 7.083 3.320 × 102 4.494 × 102

σyy 1.295 × 104 5.275 × 106 1.135 × 104 3.123 × 102 9.543 × 103 1.141 × 104 4.827 × 104 1.150 × 104 4.631 × 103

σzz 5.921 × 102 1.342 × 104 7.215 × 102 5.094 × 101 6.548 × 102 5.054 × 102 6.585 × 101 6.130 × 102 1.342 × 103

u 1.251 × 10−2 3.633 × 10−5 6.323 × 10−3 1.435 × 10−3 5.220 × 10−3 6.289 × 10−3 1.284 × 10−8 6.723 × 10−3 7.797 × 10−2

v 4.059 × 10−4 2.945 × 10−8 3.589 × 10−3 2.030 × 10−3 7.902 × 10−5 8.486 × 10−5 2.337 × 10−11 7.796 × 10−5 1.367 × 10−3
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Table A12. Detailed results for the bending beam use case Simulation 4.

SIMULATION 4

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9992 4.882 × 10−4 0.9839 6.920 × 10−4 0.9601 0.9928 1.008 × 10−3 0.9940 0.9590

εt
xy 0.9977 1.512 × 10−3 0.9643 8.745 × 10−3 0.5794 0.9941 1.496 × 10−4 0.9321 0.7219

εt
yy 0.9996 2.146 × 10−4 0.9793 1.865 × 10−4 0.9970 0.9981 4.564 × 10−4 0.9995 0.9922

ε
p
xx 0.9965 1.939 × 10−3 0.8471 6.012 × 10−3 0.8796 0.8709 2.564 × 10−3 0.9819 0.8397

ε
p
xy 0.9894 8.291 × 10−3 0.9911 4.488 × 10−4 0.0827 0.8513 3.840 × 10−3 0.7997 0.3642

ε
p
yy 0.9972 1.521 × 10−3 0.8546 9.650 × 10−4 0.8968 0.8881 2.980 × 10−3 0.9855 0.8495

ε
p
zz 0.9985 6.214 × 10−4 0.7411 1.351 × 10−2 0.9352 0.9479 2.379 × 10−3 0.9944 0.8838

σxx 0.9981 8.971 × 10−4 0.9987 5.263 × 10−4 0.0418 0.9979 7.556 × 10−5 0.9046 0.4887
σxy 0.9974 1.516 × 10−3 0.9799 1.242 × 10−2 0.4600 0.9946 4.227 × 10−4 0.9167 0.6331
σyy 0.9997 1.157 × 10−4 0.9169 2.384 × 10−4 0.9992 0.9983 1.213 × 10−5 0.9998 0.9965
σzz 0.9997 1.080 × 10−4 0.9852 2.265 × 10−4 0.9939 0.9990 1.026 × 10−4 0.9989 0.9916
u 0.9998 2.885 × 10−5 0.9989 3.940 × 10−4 1.0000 0.9996 7.767 × 10−5 0.9998 0.9989
v 0.9997 4.696 × 10−5 0.9517 1.110 × 10−3 1.0000 0.9995 4.749 × 10−5 0.9999 0.9974

mean 0.9979 1.319 × 10−3 0.9379 1.042 × 10−3 0.7558 0.9640 6.751 × 10−4 0.9621 0.8243

MSE

εt
xx 1.158 × 10−9 7.461 × 10−10 2.467 × 10−8 1.057 × 10−9 6.097 × 10−8 1.099 × 10−8 1.541 × 10−9 9.198 × 10−9 6.258 × 10−8

εt
xy 5.680 × 10−10 3.784 × 10−10 8.924 × 10−9 2.188 × 10−9 1.052 × 10−7 1.471 × 10−9 3.743 × 10−11 1.700 × 10−8 6.960 × 10−8

εt
yy 2.708 × 10−9 1.457 × 10−9 1.404 × 10−7 1.267 × 10−9 2.058 × 10−8 1.267 × 10−8 3.100 × 10−9 3.589 × 10−9 5.309 × 10−8

ε
p
xx 3.854 × 10−10 2.155 × 10−10 1.699 × 10−8 6.681 × 10−10 1.337 × 10−8 1.435 × 10−8 2.849 × 10−10 2.012 × 10−9 1.782 × 10−8

ε
p
xy 4.304 × 10−11 3.372 × 10−11 3.608 × 10−11 1.825 × 10−12 3.730 × 10−9 6.049 × 10−10 1.562 × 10−11 8.146 × 10−10 2.586 × 10−9

ε
p
yy 4.490 × 10−10 2.477 × 10−10 2.367 × 10−8 1.571 × 10−10 1.679 × 10−8 1.822 × 10−8 4.851 × 10−10 2.358 × 10−9 2.449 × 10−8

ε
p
zz 7.588 × 10−12 3.101 × 10−12 4.214 × 10−8 2.199 × 10−9 3.233 × 10−10 2.600 × 10−10 1.187 × 10−11 2.771 × 10−11 5.800 × 10−10

σxx 6.301 2.904 4.242 1.704 3.102 × 103 6.781 2.446 × 10−1 3.087 × 102 1.655 × 103

σxy 2.546 1.489 1.974 × 101 1.220 × 101 5.306 × 102 5.268 4.153 × 10−1 8.179 × 101 3.604 × 102

σyy 9.601 × 101 3.555 × 101 2.554 × 104 7.326 × 101 2.483 × 102 5.289 × 102 3.727 5.885 × 101 1.065 × 103

σzz 9.587 3.424 4.705 × 102 7.179 1.947 × 102 3.277 × 101 3.251 3.488 × 101 2.663 × 102

u 5.949 × 10−4 7.015 × 10−5 2.758 × 10−3 9.579 × 10−4 1.676 × 10−5 8.592 × 10−4 1.889 × 10−4 3.838 × 10−4 2.781 × 10−3

v 9.229 × 10−6 1.558 × 10−6 1.601 × 10−3 3.683 × 10−5 5.846 × 10−7 1.598 × 10−5 1.576 × 10−6 2.105 × 10−6 8.758 × 10−5

Table A13. Detailed results for the bending beam use case Simulation 6.

SIMULATION 6

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9997 1.585 × 10−4 0.9827 1.679 × 10−3 0.9606 0.9970 3.028 × 10−4 0.9946 0.9615

εt
xy 0.9988 5.440 × 10−4 0.9636 1.211 × 10−2 0.6360 0.9956 2.013 × 10−4 0.9418 0.7492

εt
yy 0.9997 1.581 × 10−4 0.9683 3.948 × 10−4 0.9979 0.9990 1.438 × 10−4 0.9997 0.9935

ε
p
xx 0.9973 1.546 × 10−3 0.8567 3.014 × 10−3 0.7713 0.8529 1.868 × 10−3 0.9825 0.7532

ε
p
xy 0.9887 5.094 × 10−3 0.9788 7.437 × 10−3 0.1049 0.7773 4.855 × 10−3 0.7837 0.3351

ε
p
yy 0.9979 1.115 × 10−3 0.8769 1.114 × 10−2 0.7980 0.8627 1.675 × 10−3 0.9851 0.7650

ε
p
zz 0.9980 7.159 × 10−4 0.6162 1.176 × 10−2 0.8392 0.8955 3.934 × 10−4 0.9910 0.8054

σxx 0.9985 5.385 × 10−4 0.9993 1.296 × 10−4 0.0374 0.9987 1.248 × 10−4 0.9051 0.4865
σxy 0.9984 7.070 × 10−4 0.9819 1.416 × 10−2 0.4890 0.9953 2.116 × 10−4 0.9198 0.6422
σyy 0.9997 1.586 × 10−4 0.9465 1.587 × 10−3 0.9993 0.9988 1.469 × 10−4 0.9999 0.9969
σzz 0.9997 1.588 × 10−4 0.9890 3.975 × 10−5 0.9937 0.9991 1.271 × 10−4 0.9990 0.9919
u 0.9997 1.787 × 10−5 0.9984 2.302 × 10−4 1.0000 0.9997 6.919 × 10−5 0.9998 0.9989
v 0.9997 6.709 × 10−5 0.9503 1.090 × 10−3 1.0000 0.9995 1.477 × 10−4 0.9999 0.9974

mean 0.9981 8.315 × 10−4 0.9314 8.396 × 10−4 0.7406 0.9516 1.368 × 10−4 0.9617 0.8059

MSE

εt
xx 4.762 × 10−10 2.159 × 10−10 2.352 × 10−8 2.287 × 10−9 5.373 × 10−8 4.027 × 10−9 4.125 × 10−10 7.327 × 10−9 5.246 × 10−8

εt
xy 2.949 × 10−10 1.330 × 10−10 8.896 × 10−9 2.962 × 10−9 8.902 × 10−8 1.069 × 10−9 4.922 × 10−11 1.423 × 10−8 6.133 × 10−8

εt
yy 1.818 × 10−9 1.064 × 10−9 2.134 × 10−7 2.658 × 10−9 1.434 × 10−8 6.562 × 10−9 9.683 × 10−10 2.272 × 10−9 4.385 × 10−8

ε
p
xx 9.135 × 10−11 5.298 × 10−11 4.910 × 10−9 1.033 × 10−10 7.838 × 10−9 5.041 × 10−9 6.403 × 10−11 5.983 × 10−10 8.458 × 10−9

ε
p
xy 1.017 × 10−11 4.605 × 10−12 1.921 × 10−11 6.723 × 10−12 8.092 × 10−10 2.014 × 10−10 4.389 × 10−12 1.955 × 10−10 6.011 × 10−10

ε
p
yy 1.126 × 10−10 5.894 × 10−11 6.510 × 10−9 5.889 × 10−10 1.068 × 10−8 7.262 × 10−9 8.856 × 10−11 7.876 × 10−10 1.242 × 10−8

ε
p
zz 4.137 × 10−12 1.456 × 10−12 2.030 × 10−8 6.220 × 10−10 3.271 × 10−10 2.126 × 10−10 8.001 × 10−13 1.840 × 10−11 3.959 × 10−10

σxx 4.891 1.801 2.311 4.333 × 10−1 3.219 × 103 4.183 4.173 × 10−1 3.174 × 102 1.717 × 103

σxy 1.582 7.091 × 10−1 1.820 × 101 1.420 × 101 5.125 × 102 4.749 2.123 × 10−1 8.043 × 101 3.589 × 102

σyy 8.720 × 101 5.288 × 101 1.785 × 104 5.289 × 102 2.192 × 102 4.124 × 102 4.896 × 101 4.382 × 101 1.044 × 103

σzz 8.678 5.215 3.603 × 102 1.305 2.061 × 102 2.859 × 101 4.174 3.387 × 101 2.660 × 102

u 7.648 × 10−4 4.353 × 10−5 3.887 × 10−3 5.607 × 10−4 1.611 × 10−5 6.987 × 10−4 1.685 × 10−4 3.679 × 10−4 2.779 × 10−3

v 9.476 × 10−6 2.243 × 10−6 1.663 × 10−3 3.645 × 10−5 4.862 × 10−7 1.622 × 10−5 4.937 × 10−6 1.937 × 10−6 8.695 × 10−5
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Table A14. Detailed results for the bending beam use case Simulation 9.

SIMULATION 9

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.7851 3.018 × 10−3 0.6358 6.166 × 10−4 0.8656 0.8172 3.255 × 10−5 0.7939 0.9395

εt
xy 0.8255 4.803 × 10−3 0.8392 2.690 × 10−2 0.6478 0.9133 4.185 × 10−7 0.7931 0.6226

εt
yy 0.9627 3.529 × 10−6 0.9126 3.213 × 10−4 0.9776 0.9721 3.246 × 10−8 0.9732 0.9432

ε
p
xx −984.3572 3.895 × 104 −2372.9520 1.322 × 101 −305.8183 −823.3812 3.067 × 101 -809.9266 −220.5149

ε
p
xy −13394.3542 1.990 × 106 −13885.9308 3.975 × 102 −604.7674 −8965.1296 4.317 × 102 −2397.3474 −4955.1166

ε
p
yy −821.5068 2.422 × 104 −343.2822 2.128 −282.6090 −698.7968 1.881 × 10−1 −683.0748 −193.7274

ε
p
zz −359.9536 1.372 × 103 −382.8576 1.639 × 101 −214.6722 −322.9159 4.464 × 10−2 −309.8423 −109.3652

σxx 0.9529 1.611 × 10−3 0.9893 1.808 × 10−3 0.0275 0.9932 2.982 × 10−9 0.5629 0.2630
σxy 0.9120 1.109 × 10−3 0.9260 1.163 × 10−2 0.4862 0.9627 3.386 × 10−7 0.6904 0.5129
σyy 0.9672 5.183 × 10−6 0.8105 3.138 × 10−3 0.9569 0.9763 4.897 × 10−8 0.9745 0.8841
σzz 0.9825 1.315 × 10−5 0.9681 8.932 × 10−5 0.9738 0.9887 2.130 × 10−7 0.9855 0.9184
u 0.9947 1.871 × 10−5 0.9985 4.685 × 10−4 0.9950 0.9980 2.820 × 10−9 0.9978 0.9581
v 0.9933 2.244 × 10−5 0.9493 1.716 × 10−3 0.9960 0.9980 2.141 × 10−9 0.9982 0.9443

mean −1196.2920 6.166 × 103 −1305.9226 3.269 × 101 −107.7646 −830.8926 4.298 −322.4940 −420.9029

MSE

εt
xx 2.655 × 10−7 4.608 × 10−15 4.500 × 10−7 7.618 × 10−10 1.660 × 10−7 2.177 × 10−7 2.073 × 10−17 2.546 × 10−7 7.480 × 10−8

εt
xy 4.174 × 10−8 2.747 × 10−16 3.847 × 10−8 6.433 × 10−9 8.423 × 10−8 2.062 × 10−8 6.416 × 10−22 4.949 × 10−8 9.025 × 10−8

εt
yy 2.494 × 10−7 1.581 × 10−16 5.852 × 10−7 2.150 × 10−9 1.500 × 10−7 1.973 × 10−7 2.708 × 10−16 1.793 × 10−7 3.804 × 10−7

ε
p
xx 3.694 × 10−7 5.475 × 10−15 8.900 × 10−7 4.957 × 10−9 1.150 × 10−7 3.109 × 10−7 2.740 × 10−19 3.040 × 10−7 8.305 × 10−8

ε
p
xy 1.826 × 10−8 3.699 × 10−18 1.893 × 10−8 5.419 × 10−10 8.258 × 10−10 1.224 × 10−8 6.153 × 10−24 3.270 × 10−9 6.756 × 10−9

ε
p
yy 4.966 × 10−7 8.827 × 10−15 2.079 × 10−7 1.285 × 10−9 1.712 × 10−7 4.229 × 10−7 6.942 × 10−20 4.130 × 10−7 1.176 × 10−7

ε
p
zz 9.798 × 10−9 1.011 × 10−18 2.318 × 10−7 9.893 × 10−9 5.854 × 10−9 8.779 × 10−9 6.376 × 10−22 8.438 × 10−9 2.996 × 10−9

σxx 1.599 × 102 1.859 × 104 3.640 × 101 6.144 3.304 × 103 2.324 × 101 2.649 × 10−2 1.485 × 103 2.504 × 103

σxy 8.763 × 101 1.101 × 103 7.371 × 101 1.158 × 101 5.118 × 102 3.585 × 101 1.534 3.084 × 102 4.852 × 102

σyy 1.180 × 104 6.690 × 105 6.809 × 104 1.127 × 103 1.547 × 104 8.593 × 103 1.887 × 103 9.171 × 103 4.165 × 104

σzz 5.870 × 102 1.478 × 104 1.069 × 103 2.994 8.768 × 102 3.739 × 102 4.308 × 102 4.876 × 102 2.737 × 103

u 1.288 × 10−2 1.115 × 10−4 3.569 × 10−3 1.144 × 10−3 1.217 × 10−2 4.617 × 10−3 6.444 × 10−9 5.283 × 10−3 1.023 × 10−1

v 2.259 × 10−4 2.552 × 10−8 1.711 × 10−3 5.786 × 10−5 1.339 × 10−4 6.601 × 10−5 2.616 × 10−12 6.196 × 10−5 1.880 × 10−3

Table A15. Detailed results for the block compression use case Simulation 1.

SIMULATION 1

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.7303 1.285 × 10−1 −3.1200 1.797 −1.0225 0.4661 1.606 × 10−3 0.7233 0.0611

εt
xy 0.5272 2.271 × 10−1 −1.8630 3.719 × 10−1 −0.1080 0.4285 3.330 × 10−4 0.7319 0.0383

εt
yy 0.7301 1.291 × 10−1 −3.0260 2.761 −1.0094 0.4515 2.165 × 10−4 0.7236 0.0549

ε
p
xx 0.7267 1.309 × 10−1 −2.6201 1.502 −0.9605 0.4632 1.165 × 10−3 0.7213 0.0619

ε
p
xy 0.5208 2.282 × 10−1 −0.2147 6.512 × 10−1 −0.0480 0.3885 1.938 × 10−2 0.7295 0.0348

ε
p
yy 0.7273 1.308 × 10−1 −0.4142 7.218 × 10−1 −0.9576 0.4298 1.476 × 10−3 0.7217 0.0624

ε
p
zz 0.3664 2.504 × 10−1 0.2890 8.202 × 10−2 −1.0694 0.2682 1.412 × 10−3 0.6842 0.0806

σxx 0.2825 2.839 × 10−1 0.8531 3.238 × 10−2 −0.5722 0.7233 2.191 × 10−4 0.8244 0.1672
σxy 0.2157 4.538 × 10−1 0.8347 8.739 × 10−3 0.0408 0.5910 4.449 × 10−4 0.7997 0.1585
σyy 0.2810 2.974 × 10−1 0.7870 2.325 × 10−2 0.7210 0.6808 3.475 × 10−4 0.7726 −0.3058
σzz 0.3929 3.008 × 10−1 0.8048 3.480 × 10−3 0.6143 0.6356 2.169 × 10−4 0.8023 −0.1644
u 0.8266 7.245 × 10−2 0.9294 4.231 × 10−3 0.4551 0.9157 4.560 × 10−5 0.9360 0.5587
v 0.9031 5.961 × 10−2 0.9872 2.228 × 10−4 0.7144 0.9619 1.290 × 10−5 0.9805 0.5683

mean 0.5562 1.952 × 10−1 −0.4441 6.066 × 10−1 −0.2463 0.5695 1.665 × 10−3 0.7808 0.1059

MSE

εt
xx 9.226 × 10−4 4.397 × 10−4 1.409 × 10−2 6.146 × 10−3 6.918 × 10−3 1.826 × 10−3 5.492 × 10−6 9.465 × 10−4 3.211 × 10−3

εt
xy 2.624 × 10−3 1.261 × 10−3 1.589 × 10−2 2.065 × 10−3 6.150 × 10−3 3.172 × 10−3 1.849 × 10−6 1.488 × 10−3 5.338 × 10−3

εt
yy 9.301 × 10−4 4.449 × 10−4 1.388 × 10−2 9.514 × 10−3 6.925 × 10−3 1.890 × 10−3 7.460 × 10−7 9.526 × 10−4 3.257 × 10−3

ε
p
xx 9.391 × 10−4 4.498 × 10−4 1.244 × 10−2 5.160 × 10−3 6.737 × 10−3 1.845 × 10−3 4.004 × 10−6 9.577 × 10−4 3.224 × 10−3

ε
p
xy 2.464 × 10−3 1.173 × 10−3 6.245 × 10−3 3.348 × 10−3 5.387 × 10−3 3.143 × 10−3 9.964 × 10−5 1.391 × 10−3 4.962 × 10−3

ε
p
yy 9.431 × 10−4 4.524 × 10−4 4.890 × 10−3 2.496 × 10−3 6.769 × 10−3 1.972 × 10−3 5.103 × 10−6 9.625 × 10−4 3.242 × 10−3

ε
p
zz 6.827 × 10−8 2.698 × 10−8 2.458 × 10−3 2.836 × 10−4 2.230 × 10−7 7.885 × 10−8 1.521 × 10−10 3.403 × 10−8 9.906 × 10−8

σxx 1.703 × 104 6.737 × 103 3.486 × 103 7.684 × 102 3.732 × 104 6.568 × 103 5.200 4.168 × 103 1.977 × 104

σxy 1.182 × 104 6.839 × 103 2.491 × 103 1.317 × 102 1.446 × 104 6.164 × 103 6.705 3.019 × 103 1.268 × 104

σyy 9.018 × 104 3.730 × 104 2.671 × 104 2.916 × 103 3.499 × 104 4.003 × 104 4.358 × 101 2.852 × 104 1.638 × 105

σzz 1.872 × 104 9.276 × 103 6.021 × 103 1.073 × 102 1.189 × 104 1.124 × 104 6.688 6.098 × 103 3.591 × 104

u 3.141 × 10−1 1.312 × 10−1 1.278 × 10−1 7.662 × 10−3 9.869 × 10−1 1.526 × 10−1 8.258 × 10−5 1.159 × 10−1 7.993 × 10−1

v 4.938 × 10−1 3.039 × 10−1 6.544 × 10−2 1.136 × 10−3 1.456 1.943 × 10−1 6.575 × 10−5 9.955 × 10−2 2.201
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Table A16. Detailed results for the block compression use case Simulation 2.

SIMULATION 2

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.7096 2.194 × 10−1 −1.8843 1.366 × 10−1 −0.2305 0.5318 2.513 × 10−3 0.7129 0.0908

εt
xy 0.5973 3.255 × 10−1 −1.0111 5.049 × 10−1 −0.1731 0.2782 2.402 × 10−3 0.6317 0.0484

εt
yy 0.7065 2.224 × 10−1 0.4236 2.569 × 10−1 −0.2238 0.5362 1.582 × 10−3 0.7144 0.0893

ε
p
xx 0.7009 2.318 × 10−1 −1.1047 4.716 × 10−1 −0.1968 0.5474 7.692 × 10−4 0.7105 0.0898

ε
p
xy 0.6101 3.059 × 10−1 0.6086 2.773 × 10−2 −0.0903 0.2472 3.168 × 10−3 0.6283 0.0483

ε
p
yy 0.7005 2.322 × 10−1 −0.0181 3.360 × 10−2 −0.2002 0.5343 8.637 × 10−4 0.7113 0.0899

ε
p
zz −0.5742 9.762 × 10−1 0.6019 7.576 × 10−2 −1.0839 0.3289 7.350 × 10−4 0.7009 0.0660

σxx 0.3274 3.777 × 10−1 0.8818 2.484 × 10−3 −1.6968 0.6480 3.008 × 10−4 0.8516 0.3220
σxy −0.4305 9.030 × 10−1 0.5625 6.341 × 10−3 −0.5689 0.0328 2.754 × 10−4 0.5789 0.2049
σyy 0.1829 4.317 × 10−1 0.7002 3.199 × 10−3 0.5536 0.6007 2.593 × 10−5 0.7000 −0.1031
σzz −0.3596 8.129 × 10−1 0.7370 1.084 × 10−2 0.4829 0.5160 1.780 × 10−4 0.7096 −0.1446
u 0.8932 1.158 × 10−1 0.9263 8.374 × 10−3 0.3561 0.9418 7.221 × 10−5 0.9579 0.4798
v 0.8345 1.753 × 10−1 0.9813 4.156 × 10−3 0.7313 0.9507 2.445 × 10−5 0.9677 0.5499

mean 0.3768 3.803 × 10−1 0.1850 5.531 × 10−2 −0.1800 0.5149 3.320 × 10−4 0.7366 0.1409

MSE

εt
xx 1.744 × 10−3 1.318 × 10−3 1.732 × 10−2 8.206 × 10−4 7.390 × 10−3 2.812 × 10−3 1.509 × 10−5 1.724 × 10−3 5.461 × 10−3

εt
xy 2.154 × 10−3 1.741 × 10−3 1.076 × 10−2 2.700 × 10−3 6.274 × 10−3 3.861 × 10−3 1.285 × 10−5 1.970 × 10−3 5.090 × 10−3

εt
yy 1.772 × 10−3 1.342 × 10−3 3.479 × 10−3 1.550 × 10−3 7.387 × 10−3 2.799 × 10−3 9.547 × 10−6 1.724 × 10−3 5.496 × 10−3

ε
p
xx 1.811 × 10−3 1.404 × 10−3 1.275 × 10−2 2.856 × 10−3 7.248 × 10−3 2.741 × 10−3 4.658 × 10−6 1.753 × 10−3 5.512 × 10−3

ε
p
xy 1.859 × 10−3 1.459 × 10−3 1.866 × 10−3 1.322 × 10−4 5.199 × 10−3 3.590 × 10−3 1.511 × 10−5 1.772 × 10−3 4.538 × 10−3

ε
p
yy 1.824 × 10−3 1.414 × 10−3 6.200 × 10−3 2.046 × 10−4 7.309 × 10−3 2.836 × 10−3 5.260 × 10−6 1.758 × 10−3 5.542 × 10−3

ε
p
zz 1.408 × 10−7 8.729 × 10−8 2.424 × 10−3 4.614 × 10−4 1.863 × 10−7 6.001 × 10−8 6.573 × 10−11 2.675 × 10−8 8.352 × 10−8

σxx 1.019 × 104 5.721 × 103 1.791 × 103 3.762 × 101 4.085 × 104 5.332 × 103 4.557 2.249 × 103 1.027 × 104

σxy 8.585 × 103 5.419 × 103 2.626 × 103 3.805 × 101 9.416 × 103 5.805 × 103 1.653 2.527 × 103 4.772 × 103

σyy 8.018 × 104 4.236 × 104 2.942 × 104 3.139 × 102 4.381 × 104 3.919 × 104 2.545 2.944 × 104 1.083 × 105

σzz 2.661 × 104 1.591 × 104 5.149 × 103 2.122 × 102 1.012 × 104 9.474 × 103 3.484 5.684 × 103 2.240 × 104

u 4.301 × 10−1 4.665 × 10−1 2.971 × 10−1 3.374 × 10−2 2.594 2.343 × 10−1 2.909 × 10−4 1.697 × 10−1 2.096
v 8.877 × 10−1 9.405 × 10−1 1.001 × 10−1 2.229 × 10−2 1.442 2.647 × 10−1 1.312 × 10−4 1.735 × 10−1 2.414

Table A17. Detailed results for the block compression use case Simulation 7.

SIMULATION 7

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.9991 2.601 × 10−4 0.9881 6.498 × 10−3 0.5368 0.9664 2.355 × 10−2 0.9688 0.3910

εt
xy 0.9987 6.959 × 10−4 0.9623 2.560 × 10−2 0.2573 0.9512 3.642 × 10−2 0.9508 0.2373

εt
yy 0.9991 2.628 × 10−4 0.9696 1.661 × 10−2 0.5397 0.9663 2.395 × 10−2 0.9691 0.3940

ε
p
xx 0.9991 2.756 × 10−4 0.8726 4.550 × 10−3 0.5257 0.9655 2.371 × 10−2 0.9688 0.3834

ε
p
xy 0.9986 7.165 × 10−4 0.9616 3.809 × 10−3 0.2496 0.9577 2.802 × 10−2 0.9484 0.2319

ε
p
yy 0.9991 2.774 × 10−4 0.8969 4.043 × 10−3 0.5281 0.9635 2.655 × 10−2 0.9690 0.3846

ε
p
zz 0.9968 4.519 × 10−5 0.7795 9.273 × 10−3 0.6862 0.9629 2.088 × 10−2 0.9789 0.4545

σxx 0.9965 6.357 × 10−4 0.9883 6.623 × 10−4 0.7980 0.9743 1.251 × 10−2 0.9868 0.5950
σxy 0.9962 9.610 × 10−4 0.9775 1.717 × 10−3 0.6131 0.9410 3.089 × 10−2 0.9772 0.5081
σyy 0.9915 3.103 × 10−3 0.8713 1.406 × 10−3 0.8900 0.9891 4.567 × 10−3 0.9945 0.7272
σzz 0.9943 2.068 × 10−3 0.9874 3.501 × 10−5 0.8345 0.9800 1.025 × 10−2 0.9906 0.6242
u 0.9996 3.315 × 10−5 0.9851 1.746 × 10−3 0.9386 0.9973 1.892 × 10−3 0.9967 0.9069
v 0.9997 2.460 × 10−5 0.9923 2.524 × 10−4 0.9415 0.9976 1.783 × 10−3 0.9972 0.9224

mean 0.9976 8.258 × 10−5 0.9410 4.310 × 10−3 0.6415 0.9702 1.884 × 10−2 0.9767 0.5200

MSE

εt
xx 3.776 × 10−6 1.124 × 10−6 5.131 × 10−5 2.808 × 10−5 2.001 × 10−3 1.454 × 10−4 1.018 × 10−4 1.349 × 10−4 2.631 × 10−3

εt
xy 7.595 × 10−6 4.066 × 10−6 2.200 × 10−4 1.496 × 10−4 4.339 × 10−3 2.854 × 10−4 2.128 × 10−4 2.873 × 10−4 4.456 × 10−3

εt
yy 3.777 × 10−6 1.144 × 10−6 1.324 × 10−4 7.231 × 10−5 2.004 × 10−3 1.467 × 10−4 1.043 × 10−4 1.347 × 10−4 2.638 × 10−3

ε
p
xx 3.881 × 10−6 1.196 × 10−6 5.530 × 10−4 1.975 × 10−5 2.059 × 10−3 1.496 × 10−4 1.029 × 10−4 1.356 × 10−4 2.676 × 10−3

ε
p
xy 7.212 × 10−6 3.779 × 10−6 2.027 × 10−4 2.009 × 10−5 3.957 × 10−3 2.229 × 10−4 1.478 × 10−4 2.722 × 10−4 4.051 × 10−3

ε
p
yy 3.894 × 10−6 1.213 × 10−6 4.511 × 10−4 1.769 × 10−5 2.065 × 10−3 1.598 × 10−4 1.162 × 10−4 1.357 × 10−4 2.692 × 10−3

ε
p
zz 5.595 × 10−10 7.808 × 10−12 9.648 × 10−4 4.057 × 10−5 5.421 × 10−8 6.411 × 10−9 3.608 × 10−9 3.652 × 10−9 9.424 × 10−8

σxx 1.240 × 102 2.269 × 101 4.180 × 102 2.364 × 101 7.209 × 103 9.186 × 102 4.463 × 102 4.708 × 102 1.445 × 104

σxy 6.742 × 101 1.684 × 101 3.950 × 102 3.009 × 101 6.781 × 103 1.034 × 103 5.413 × 102 3.991 × 102 8.620 × 103

σyy 1.877 × 103 6.894 × 102 2.858 × 104 3.124 × 102 2.443 × 104 2.421 × 103 1.015 × 103 1.226 × 103 6.060 × 104

σzz 2.603 × 102 9.521 × 101 5.801 × 102 1.612 7.619 × 103 9.203 × 102 4.717 × 102 4.317 × 102 1.730 × 104

u 1.251 × 10−3 9.453 × 10−5 4.255 × 10−2 4.980 × 10−3 1.752 × 10−1 7.838 × 10−3 5.395 × 10−3 9.348 × 10−3 2.655 × 10−1

v 1.509 × 10−3 1.275 × 10−4 4.010 × 10−2 1.308 × 10−3 3.030 × 10−1 1.242 × 10−2 9.241 × 10−3 1.433 × 10−2 4.024 × 10−1
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Table A18. Detailed results for the block compression use case Simulation 12

SIMULATION 12

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.6584 3.166 × 10−1 −3.4145 2.071 −1.1624 0.4656 2.148 × 10−4 0.7187 0.0506

εt
xy 0.5324 3.411 × 10−1 −1.7259 5.343 × 10−1 −0.1194 0.4278 4.223 × 10−4 0.7196 0.0415

εt
yy 0.6563 3.215 × 10−1 −2.9570 2.652 −1.1091 0.4534 8.915 × 10−4 0.7196 0.0503

ε
p
xx 0.6578 3.175 × 10−1 −2.7614 1.762 −1.1139 0.4618 1.278 × 10−3 0.7158 0.0478

ε
p
xy 0.5168 3.478 × 10−1 −0.1122 6.743 × 10−1 −0.0789 0.4009 8.991 × 10−3 0.7157 0.0401

ε
p
yy 0.6591 3.172 × 10−1 −0.5161 8.422 × 10−1 −1.1014 0.4300 2.718 × 10−4 0.7165 0.0495

ε
p
zz 0.6064 3.871 × 10−1 0.2723 1.236 × 10−1 −0.4602 0.2658 7.615 × 10−4 0.6808 0.0781

σxx 0.6182 1.745 × 10−1 0.8828 4.138 × 10−2 0.0180 0.7218 3.966 × 10−5 0.8423 0.1688
σxy 0.4799 4.811 × 10−1 0.8803 1.074 × 10−2 0.3261 0.5912 8.127 × 10−4 0.7735 0.1288
σyy 0.5583 4.457 × 10−1 0.8136 9.338 × 10−3 0.3793 0.6803 2.977 × 10−4 0.8285 0.1275
σzz 0.5919 3.890 × 10−1 0.9196 1.648 × 10−3 0.3378 0.6356 1.603 × 10−4 0.7979 0.0963
u 0.7277 2.782 × 10−1 0.9072 6.483 × 10−3 0.4679 0.9157 7.408 × 10−5 0.9269 0.5649
v 0.9310 5.347 × 10−2 0.9866 1.786 × 10−4 0.7166 0.9621 2.432 × 10−6 0.9800 0.5744

mean 0.6303 3.204 × 10−1 −0.4480 6.652 × 10−1 −0.2230 0.5702 6.266 × 10−4 0.7797 0.1553

MSE

εt
xx 1.092 × 10−3 1.012 × 10−3 1.412 × 10−2 6.623 × 10−3 6.915 × 10−3 1.828 × 10−3 7.349 × 10−7 8.997 × 10−4 3.036 × 10−3

εt
xy 2.505 × 10−3 1.827 × 10−3 1.460 × 10−2 2.863 × 10−3 5.997 × 10−3 3.176 × 10−3 2.344 × 10−6 1.502 × 10−3 5.135 × 10−3

εt
yy 1.115 × 10−3 1.043 × 10−3 1.284 × 10−2 8.604 × 10−3 6.842 × 10−3 1.884 × 10−3 3.073 × 10−6 9.098 × 10−4 3.081 × 10−3

ε
p
xx 1.098 × 10−3 1.019 × 10−3 1.207 × 10−2 5.655 × 10−3 6.783 × 10−3 1.849 × 10−3 4.391 × 10−6 9.120 × 10−4 3.055 × 10−3

ε
p
xy 2.264 × 10−3 1.629 × 10−3 5.210 × 10−3 3.159 × 10−3 5.054 × 10−3 3.080 × 10−3 4.622 × 10−5 1.332 × 10−3 4.497 × 10−3

ε
p
yy 1.107 × 10−3 1.030 × 10−3 4.921 × 10−3 2.734 × 10−3 6.821 × 10−3 1.971 × 10−3 9.399 × 10−7 9.202 × 10−4 3.085 × 10−3

ε
p
zz 1.229 × 10−7 1.208 × 10−7 2.362 × 10−3 4.012 × 10−4 4.558 × 10−7 7.910 × 10−8 8.205 × 10−11 9.964 × 10−8 2.878 × 10−7

σxx 2.769 × 104 1.265 × 104 8.502 × 103 3.001 × 103 7.121 × 104 6.602 × 103 9.414 × 10−1 1.144 × 104 6.028 × 104

σxy 2.415 × 104 2.233 × 104 5.559 × 103 4.987 × 102 3.128 × 104 6.161 × 103 1.225 × 101 1.052 × 104 4.045 × 104

σyy 1.760 × 105 1.776 × 105 7.428 × 104 3.722 × 103 2.474 × 105 4.010 × 104 3.734 × 101 6.835 × 104 3.478 × 105

σzz 3.808 × 104 3.630 × 104 7.501 × 103 1.538 × 102 6.179 × 104 1.124 × 104 4.943 1.886 × 104 8.433 × 104

u 4.605 × 10−1 4.704 × 10−1 1.569 × 10−1 1.096 × 10−2 8.999 × 10−1 1.527 × 10−1 1.342 × 10−4 1.235 × 10−1 7.358 × 10−1

v 3.434 × 10−1 2.660 × 10−1 6.647 × 10−2 8.887 × 10−4 1.410 1.934 × 10−1 1.240 × 10−5 9.955 × 10−2 2.117

Table A19. Detailed results for the block compression use case Simulation 13.

SIMULATION 13

MLP PINN SVR GBDTR KNNR GPR
mean std mean std mean std

R2

εt
xx 0.7511 2.314 × 10−1 −4.3817 2.685 −0.2933 0.5204 9.591 × 10−4 0.7164 0.0857

εt
xy 0.5801 3.853 × 10−1 −0.9114 1.065 × 10−1 −0.1797 0.2623 2.829 × 10−3 0.6314 0.0485

εt
yy 0.7517 2.319 × 10−1 0.1125 9.052 × 10−2 −0.2646 0.5280 1.380 × 10−3 0.7186 0.0873

ε
p
xx 0.7547 2.273 × 10−1 −2.1130 9.596 × 10−1 −0.2740 0.5357 4.099 × 10−4 0.7131 0.0826

ε
p
xy 0.5616 4.021 × 10−1 0.5356 2.972 × 10−2 −0.1116 0.2250 7.643 × 10−3 0.6277 0.0480

ε
p
yy 0.7556 2.269 × 10−1 −0.4174 3.678 × 10−1 −0.2741 0.5217 8.630 × 10−4 0.7142 0.0830

ε
p
zz 0.6959 2.525 × 10−1 0.4548 2.042 × 10−1 −0.4013 0.4990 7.038 × 10−5 0.7267 0.0912

σxx 0.4251 5.887 × 10−1 0.9077 3.046 × 10−3 −0.4988 0.7847 3.553 × 10−4 0.8620 0.2942
σxy −0.0088 8.836 × 10−1 0.8314 3.051 × 10−3 0.1802 0.4255 6.447 × 10−4 0.6805 0.1513
σyy 0.6042 4.473 × 10−1 0.6678 8.365 × 10−4 −0.0250 0.7608 5.706 × 10−6 0.8418 0.1470
σzz 0.6356 3.848 × 10−1 0.9351 1.247 × 10−3 0.0788 0.6999 1.686 × 10−4 0.8282 0.1321
u 0.9627 2.725 × 10−2 0.9392 4.615 × 10−3 0.3676 0.9467 1.345 × 10−4 0.9625 0.4940
v 0.9478 5.094 × 10−2 0.9805 3.346 × 10−3 0.7270 0.9521 1.989 × 10−5 0.9697 0.5572

mean 0.6475 3.326 × 10−1 −0.1122 3.265 × 10−1 −0.0745 0.5894 1.579 × 10−4 0.7687 0.1771

MSE

εt
xx 1.412 × 10−3 1.313 × 10−3 3.054 × 10−2 1.523 × 10−2 7.339 × 10−3 2.721 × 10−3 5.442 × 10−6 1.609 × 10−3 5.188 × 10−3

εt
xy 2.253 × 10−3 2.067 × 10−3 1.025 × 10−2 5.715 × 10−4 6.329 × 10−3 3.958 × 10−3 1.518 × 10−5 1.977 × 10−3 5.105 × 10−3

εt
yy 1.422 × 10−3 1.328 × 10−3 5.080 × 10−3 5.182 × 10−4 7.239 × 10−3 2.702 × 10−3 7.900 × 10−6 1.611 × 10−3 5.225 × 10−3

ε
p
xx 1.389 × 10−3 1.288 × 10−3 1.763 × 10−2 5.436 × 10−3 7.217 × 10−3 2.630 × 10−3 2.322 × 10−6 1.625 × 10−3 5.197 × 10−3

ε
p
xy 2.107 × 10−3 1.933 × 10−3 2.232 × 10−3 1.428 × 10−4 5.342 × 10−3 3.724 × 10−3 3.673 × 10−5 1.789 × 10−3 4.575 × 10−3

ε
p
yy 1.398 × 10−3 1.299 × 10−3 8.111 × 10−3 2.104 × 10−3 7.291 × 10−3 2.737 × 10−3 4.939 × 10−6 1.635 × 10−3 5.247 × 10−3

ε
p
zz 7.358 × 10−8 6.111 × 10−8 3.120 × 10−3 1.168 × 10−3 3.391 × 10−7 1.212 × 10−7 1.703 × 10−11 6.614 × 10−8 2.199 × 10−7

σxx 2.766 × 104 2.832 × 104 4.438 × 103 1.466 × 102 7.211 × 104 1.036 × 104 1.709 × 101 6.640 × 103 3.395 × 104

σxy 1.954 × 104 1.711 × 104 3.266 × 103 5.908 × 101 1.588 × 104 1.113 × 104 1.249 × 101 6.187 × 103 1.644 × 104

σyy 1.214 × 105 1.372 × 105 1.019 × 105 2.565 × 102 3.143 × 105 7.333 × 104 1.750 4.851 × 104 2.615 × 105

σzz 2.089 × 104 2.205 × 104 3.720 × 103 7.147 × 101 5.280 × 104 1.720 × 104 9.664 9.844 × 103 4.974 × 104

u 1.395 × 10−1 1.019 × 10−1 2.273 × 10−1 1.726 × 10−2 2.365 1.992 × 10−1 5.028 × 10−4 1.401 × 10−1 1.892
v 2.707 × 10−1 2.644 × 10−1 1.011 × 10−1 1.737 × 10−2 1.417 2.487 × 10−1 1.032 × 10−4 1.573 × 10−1 2.299
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