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Abstract: This paper presents an uncontrolled intersection-passing algorithm with an integrated ap-
proach of stochastic model-predictive control and prediction uncertainty estimation for autonomous
vehicles. The proposed algorithm is designed to utilize information from sensors mounted on the
autonomous vehicle and high-definition intersection maps. The proposed algorithm is composed of
two modules, namely target state prediction and a motion planner. The target state prediction module
has predicted the future behavior of intersection-approaching vehicles based on human driving data.
The recursive covariance estimator has been utilized to estimate the prediction uncertainty for each
approaching vehicle. The desired driving mode has been determined based on the uncontrolled
intersection theory. The estimated prediction uncertainty has been used to define the probability
distribution of the stochastic model-predictive controller to cope with time-varying uncertainty
characteristics of the perception algorithm. The constrained stochastic model-predictive controller
based on safety indexes has determined the desired longitudinal acceleration. The proposed robust
intersection-passing algorithm has been evaluated via computer simulation based on Monte Carlo
simulation with a sensor model. The simulation results showed that the proposed algorithm guaran-
tees the minimum safety constraints and improves the ride comfort at uncontrolled intersections by
estimating the uncertainty of sensors and prediction.

Keywords: autonomous driving; intelligent driver model; recursive covariance estimator; stochastic
model predictive control; intersection motion planning

1. Introduction

Autonomous or self-driving vehicles are attracting attention as a solution for trans-
portation due to their various advantages such as improved safety, increased traffic effi-
ciency, decrease in pollution, and equitable access to mobility. The coverage of autonomous
driving has been extended from the motorway to urban roads to spread these advantages.
In this process, uncontrolled intersections are one of the most dangerous driving situations
because there is no traffic signal to control the traffic participants. In particular, the accident
rate and fatality rate at uncontrolled intersections are higher than in other driving environ-
ments [1,2]. Several studies tried to figure out the important factors related to the geometric
and traffic-related elements that affect the accident rates of intersections [3,4]. Based on
the achievements of accident analysis in intersections, situation awareness, decision mak-
ing, and motion planning become important issues to pass an uncontrolled intersection
safely and comfortably. Various algorithms have been proposed for autonomous driving at
uncontrolled intersections.

Various approaches have been used for decision making and motion planning for
uncontrolled intersections. In many previous studies, decision making at intersections has
been designed based on pre-defined policies. The Markov Decision Process (MDP) has been
utilized as a policy-based motion planning algorithm. In particular, the partially observable
Markov decision process was introduced to overcome the limitations of unmeasurable
variables from the sensors and communication [5–8]. In these studies, the uncertainty of

Appl. Sci. 2021, 11, 9397. https://doi.org/10.3390/app11209397 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9193-7349
https://doi.org/10.3390/app11209397
https://doi.org/10.3390/app11209397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209397
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209397?type=check_update&version=2


Appl. Sci. 2021, 11, 9397 2 of 19

the surrounding vehicles was considered at the maneuver level, which affects the driving
policy decisions of the autonomous vehicles. The Bayesian network was also utilized
for probabilistic decision making at intersections. A time window for observation was
considered to improve the performance of the Bayesian network [9]. The rule-based
approach was applied to select the optimal rule from the pre-defined rule sets [10]. The
MDP and the deep Q-network algorithm were established to obtain the optimal driving
policy based on traffic image analysis using convolution neural networks [11].

In addition to the decision-making problem, there have been studies focused on
determining the driving path and acceleration command for the autonomous vehicle. The
combined approach of Gaussian processes regression and a rapidly exploring random
tree was used to generate a desired local path to guide the autonomous vehicle through
the intersection [12]. The robust Model Predictive Control (MPC) was used for optimal
velocity planning under the assumption that all target information is available [13]. The
loosely coupled low-complexity MPC was formulated for automated yield maneuvers [14].
The linear MPC with target vehicle motion prediction and driving mode decision was
employed to achieve human-like behavior at uncontrolled intersections [15]. In addition,
the cooperative scheduling method of all intersection-approaching vehicles was proposed
under the assumption of a connected autonomous vehicle [16–19]. In particular, virtual
platooning was introduced, in which vehicles traveling on each branch are transferred to
the same road [17].

In order to improve the performance of the decision-making and motion-planning al-
gorithm, various studies have been conducted on traffic modeling and predictions on
surrounding vehicles at intersections. The prediction can be classified as maneuver-
level [5–8,19,20] and trajectory-level prediction [9,21] based on the output of the pre-
dictor. A game theory was used to model the vehicle interactions in unsignalized inter-
sections [20]. The map-based prediction was used to provide the lane-level prediction
results [9]. A learning-based approach, such as the support vector machine and the long
short-term memory-based recurrent neural network [21,22], was also utilized to predict
the future behavior of surrounding vehicles. However, predictions based on the per-
ception results inevitably have uncertainties in perception information. Many studies
have assumed that Vehicle to Vehicle (V2V) can provide the true values of target states
withou uncertainty [10,16–19,23,24].

According to a careful review of the previous studies, various approaches have been
introduced to develop the prediction and motion-planning algorithm for intersections.
Many studies focused on the maneuver decision of the autonomous vehicle among the
pre-defined policies. In particular, MDP-based approaches were frequently utilized to select
the optimal policy. However, the computational burden of MDP is an obstacle to achieving
real-time implementation. MPC was also employed to calculate the desired acceleration
to pass the intersection. When using MPC, the target states were often provided by V2V
communication to overcome the limitations of perception caused by blind spots and sensor
uncertainty. A robust motion planner that can manage the perception and prediction
uncertainty has not been addressed much in previous studies.

In this paper, the motion planner based on SMPC with prediction uncertainty esti-
mation is proposed and evaluated. The objectives of the proposed algorithm are ensuring
safety, robustness to sensor uncertainty, and minimizing control efforts. Prediction uncer-
tainty of the prediction algorithm is estimated using the recursive covariance estimator to
improve the Intelligent Driver Model (IDM)-based prediction algorithm. The estimated
uncertainty is used to define the probability distribution of the chance constraint for the
SMPC problem, which improves the performance under changes in sensor noise. The
desired longitudinal acceleration is decided by solving the SMPC problem. The proposed
algorithm has been evaluated via computer simulation using MATLAB/Simulink and
FORCES solver.
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2. Overall Architecture of Proposed Algorithm

The core functions of autonomous driving can be categorized into four categories,
namely perception, localization, motion planning, and control, with the interactions be-
tween the autonomous vehicle and the environments depicted in Figure 1. The perception
module has a role to detect the surrounding objects around the autonomous vehicle. In
this study, a geometric model-free approach [25] has been used to process the LiDAR
point clouds from the six IBEO Lux sensors. This algorithm provides the local position,
heading angle, and velocity of the moving objects with a grid-base static obstacle map.
The localization module estimates the current global position and heading angle of the au-
tonomous vehicle with respect to the high-definition map. A map-matching algorithm with
a multi-rate Kalman filter has been used based on the measurement of GPS/INS sensors,
LiDAR, and an around-view camera. The control module determines the steering-wheel
angle, throttle, and brake inputs to track the desired path and acceleration.

Appl. Sci. 2021, 11, 9397 3 of 20 
 

In this paper, the motion planner based on SMPC with prediction uncertainty 
estimation is proposed and evaluated. The objectives of the proposed algorithm are 
ensuring safety, robustness to sensor uncertainty, and minimizing control efforts. 
Prediction uncertainty of the prediction algorithm is estimated using the recursive 
covariance estimator to improve the Intelligent Driver Model (IDM)-based prediction 
algorithm. The estimated uncertainty is used to define the probability distribution of the 
chance constraint for the SMPC problem, which improves the performance under changes 
in sensor noise. The desired longitudinal acceleration is decided by solving the SMPC 
problem. The proposed algorithm has been evaluated via computer simulation using 
MATLAB/Simulink and FORCES solver. 

2. Overall Architecture of Proposed Algorithm 
The core functions of autonomous driving can be categorized into four categories, 

namely perception, localization, motion planning, and control, with the interactions 
between the autonomous vehicle and the environments depicted in Figure 1. The 
perception module has a role to detect the surrounding objects around the autonomous 
vehicle. In this study, a geometric model-free approach [25] has been used to process the 
LiDAR point clouds from the six IBEO Lux sensors. This algorithm provides the local 
position, heading angle, and velocity of the moving objects with a grid-base static obstacle 
map. The localization module estimates the current global position and heading angle of 
the autonomous vehicle with respect to the high-definition map. A map-matching 
algorithm with a multi-rate Kalman filter has been used based on the measurement of 
GPS/INS sensors, LiDAR, and an around-view camera. The control module determines 
the steering-wheel angle, throttle, and brake inputs to track the desired path and 
acceleration. 

 
Figure 1. Overall architecture of the autonomous driving system. 

The last module, motion planning, is mainly discussed in this article. The architecture 
of the proposed motion-planning algorithm for an uncontrolled intersection is shown in 
Figure 2. The motion-planning algorithm consists of two parts with three sub-modules. 
The first part, target state prediction with uncertainty estimation, is composed of the three 
sub-modules intention inference, state prediction, and the recursive covariance estimator. 
These modules have been utilized to predict the future trajectory of the approaching 
targets and estimate the prediction uncertainty based on the result of driving intention 
inference and a recursive covariance estimator. The second part, the robust motion 
planner for intersection passing, consists of the three sub-modules driving mode decision, 

Figure 1. Overall architecture of the autonomous driving system.

The last module, motion planning, is mainly discussed in this article. The architecture
of the proposed motion-planning algorithm for an uncontrolled intersection is shown in
Figure 2. The motion-planning algorithm consists of two parts with three sub-modules.
The first part, target state prediction with uncertainty estimation, is composed of the three
sub-modules intention inference, state prediction, and the recursive covariance estimator.
These modules have been utilized to predict the future trajectory of the approaching targets
and estimate the prediction uncertainty based on the result of driving intention inference
and a recursive covariance estimator. The second part, the robust motion planner for
intersection passing, consists of the three sub-modules driving mode decision, defining
MPC constraint decision, and solving SMPC. The driving mode of the autonomous vehicle
has been determined among ‘Cross’, ‘Yield’, and ‘Stop’ modes according to the uncontrolled
intersection theory. Depending on the driving mode, predicted states of the target, and
estimated prediction uncertainty, the hard and chance constraints for the SMPC problem
have been defined to satisfy the safety index thresholds, which are derived from the human
driving data. Finally, the desired acceleration is calculated by the SMPC.
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Before proceeding further with the discussion in this paper, the safety indexes for
the intersection scenario have been defined as shown in Figure 3. From both a safety and
performance perspective, the clearance and time to collision (TTC) have been widely used
as an important index for the research of advanced driving-assistant systems (ADAS) and
autonomous vehicles. However, the driving situation of an intersection is quite different
from nominal driving conditions. Therefore, the clearance and TTC have been modified to
consider the conflict point between intersection-approaching vehicles as follows:

Ccon f = dDTC,ego + dDTC,target

TTCcon f =
dDTC,ego

vego
+

dDTC,target
vtarget

(1)

where ‘conf ’ and ‘DTC’ are the abbreviation of ‘conflict point’ and ‘distance to conflict point’.
dDTC,ego and dDTC,target represent the remaining distance to the conflict point of ego and the
target vehicle. vego and vtarget are the velocity of the ego and target vehicle, respectively.
In addition, the proposed safety index considers the trade-off of cross priority between two
vehicles encountered at an intersection. The trade-off relationship of each term in TTCconf
applies equally to Cconf. Therefore, Cconf and TTCconf is the suitable safety index that can be
utilized for all driving situations. In addition, the remaining distance to the stop line of the
intersection is denoted as dDTI, where ‘DTI’ means the distance to the intersection. dDTI is
used to depict an evaluation result in the distance domain.
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3. Target State Prediction with Uncertainty Estimation

The state prediction of the surrounding objects is generally used in autonomous
driving research for motion planners because autonomous vehicles should act like human
drivers, who have intuition to be aware of the driving situation. In this research, the
objective of state prediction is to provide the information for the driving mode and desired
acceleration decision, which are robust to sensor and prediction uncertainty. Therefore, the
prediction algorithm has the rule to infer the driving intention and predict the future states
of the intersection-approaching vehicles with uncertainty prediction.
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3.1. Intention Inference and State Prediction

Because the behavior of the approaching vehicles can vary widely, it is difficult to
express the future behavior with a few models without compromising the continuity of
behavior. However, if too many models are used to overcome this problem, the computa-
tional load becomes too burdensome to achieve real-time performance. This study utilized
the interacting multiple model (IMM) filter to estimate the probability of each behavior
model, which is used to fuse each behavior model. A block diagram of the proposed
IMM-based target intention inference algorithm is described in Figure 4. The purpose of
the IMM filter is to define the fused behavior model by integrating the behavior model of
the local extended Kalman filter (EKF) based on probability.
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The first step of designing the IMM filter is defining the behavior model for local EKF.
The ‘Cross’, ‘Yield’, and ‘Stop’ models are defined based on the collected driving data.
The data were collected at Midan City, Incheon, South Korea. The velocity profiles of the
collected driving data are described in Figure 5. As shown in Figure 5, am asymmetric
characteristic of the acceleration usage has been observed, which is biased to braking.
Therefore, the IDM has been selected to model the asymmetric acceleration profile [26].
The IDM is composed of two terms, namely the desired velocity tracking term and the
car-following behavior term, as follows:

.
x = v

.
v = amax

(
1−

(
v

vdes

)δ
−
(

s∗(v, ∆v)
sdes

)2
)

with s∗(v, ∆v) = s0 + v · T + v·∆v
2
√

amaxb

(2)

where amax is the maximum acceleration. v and vdes are the vehicle velocity and desired
velocity. s, s*, and ∆v are the clearance, desired clearance, and relative velocity to the
preceding vehicle. Parameters T, b, and δ are the desired time headway, comfortable
braking deceleration, and acceleration exponent.
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The collected velocity profiles should be converted to the desired velocity profiles to
use the IDM as a process update model of the local EKF. The desired velocity tracking term
of the IDM has been rearranged to calculate vdes from the v profile. The rearranged IDM is
as follows:

vdes,i(s) =
vi(s)

δ

√
1− .

vi(s)/amax

(3)

where i is the data index of each profile. The generated desired velocity profiles are
presented in Figure 5 as a red dotted line. Parameters amax of 5.0 m/s2 and δ of 4 have been
used to calculate the vdes,i(s). The derived vdes,i(s) profiles have been clustered by K-means
clustering to define the behavior model as depicted in Figure 6. As mentioned before,
these three vdes,i(s) profiles have been named ‘Cross’, ‘Yield’, and ‘Stop’ models and used to
determine the process update model of local EKF.
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The local filters have been designed as an IDM-based EKF to use ‘Cross’, ‘Yield’, and
‘Stop’ models. The state vector x and measurement vector z of the IDM-based EKF has been
defined as follows:

x =
[

p v a
]T , z =

[
pmeas vmeas

]T (4)

where p, v, and a are the dDTC, velocity, and acceleration, respectively. Parameters pmeas
and vmeas represent the measurement of the dDTC and velocity from the sensor of the
autonomous vehicle. The process update of IDM-based EKF is defined as follows:

x̂k|k−1 = f (x̂k−1|k−1, uk)

=
[

pk|k−1 vk|k−1 ak|k−1
]T

where,
pk|k−1 = pk−1|k−1 + vk−1|k−1 · dt
vk|k−1 = vk−1|k−1 + ak−1|k−1 · dt

ak|k−1 = ak−1|k−1

(
1− dt

τx

)
+ amax

[
1−

(
vk−1|k−1

vdes(pk−1|k−1)

)δ
]
· dt

τx

(5)

Pk|k−1 = FkPk−1|k−1Fk
T + Qk

where,

Fk =

 1 dt 0
0 1 dt
0 Fk,(3,2) 1− dt/τx


Fk,(3,2) = −amaxδ

(
vk−1|k−1

δ−1

vdes(pk−1|k−1)
δ

)
· dt

τx

(6)

where the parameters dt of 0.1 s and τx of 0.5 s are the sampling time and acceleration delay
constant of the IDM-based EKF. The probabilities of each local filter are estimated by using



Appl. Sci. 2021, 11, 9397 7 of 19

the probability update process of the IMM filter. First, the mixing probability of the i-th
model is calculated as follows:

µi|j(k− 1|k− 1) =
1
cj

pijµi(k− 1) (7)

where cj is the normalizing factor and µi is the i-th model probability. pij is the transition
probability from the i-th model to the j-th model under the assumption of the Markov
chain. The mixed state is calculated as follows:

x̂oj(k− 1|k− 1) =
m

∑
i=1

x̂i(k− 1|k− 1) × µi|j(k− 1|k− 1)) (8)

Based on the mixed state, filtering using the IDM-based EKF is performed. The model
probability is updated with the likelihood ratio Λj,k as follows:

µj,k =
1
c Λj,k∑

i
pi,jµi,k−1

where, Λj,k = N(rj,k; 0, Sj,k)
(9)

In Equation (9), rj,k is the residual of the j-th model, and Sj,k is the covariance matrix of
the residual. The remaining parts and details of the IMM filter can be found in [27].

The process update of each IDM-based EKF has been conducted within the prediction
horizon to predict the future states of the target vehicle. In this study, the fused behavior
model has been derived by using the individual behavior model based on the estimated
probability of each model. Therefore, the desired velocity profile of the fused behavior
model has been defined as follows:

vdes, f used(s) = ∑
j

µj·vdes,j(s) (10)

The fused behavior model, vdes,fused(s), has been used as a desired velocity profile of
the IDM to predict the future state of the target vehicle based on the sensor measurements.
The example of state prediction with an estimated probability is summarized in Figure 7.
As shown in Figure 7, the proposed predictor provides more accurate prediction results
than the single model prediction case.
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3.2. Recursive Uncertainty Estimation

In the previous chapter, the target state prediction with the intention inference al-
gorithm has been proposed based on the IMM approach. Because the future states are
predicted based on the present and past information, the prediction uncertainty inevitably
exists regardless of the prediction methods. In addition, the level of uncertainty is depen-
dent on the prediction algorithm and the quality of the object data from the perception
algorithm. Therefore, a proper algorithm for uncertainty estimation is required to increase
the safety and control performance of the prediction-based motion planner. In this study, a
recursive covariance estimator has been used to estimate the prediction uncertainty of the
prediction results [28]. Because the prediction algorithm is based on the process update
model of the EKF using IDM, the recursive covariance estimator is applicable to estimate
the process noise of each state, such as the position and velocity. The basic concept of the
prediction uncertainty estimation is a comparison between the current true states and pre-
dicted states derived from the true states of the previous step. The graphical representation
of the relationships is described in Figure 8.
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The recursive covariance estimator assumes that the measurement noise is stationary.
As mentioned in the previous chapter, the position of the target vehicle is defined in a
fixed global coordinate, not a local coordinate of the autonomous vehicle. In other words,
dDTC, the position of the state vector, is defined with respect to the conflict point on the
intersection map. Therefore, the proposed prediction algorithm satisfies the assumption
of the recursive covariance estimator. Since EKF is already used, the process update and
measurement can be written in the linearized equation as follows:

xk = Ak−1xk−1 + Bk−1wk−1
yk = Cxk + vk

(11)

where wk−1 and vk are the covariances of the prediction model and perception module.
Ak−1, Bk−1, and C are the system matrix, input matrix, and output matrix, respectively. In this
study, Ak−1 is the same matrix Fk in the previous section. In Equation (11), xk−1 is the vehicle
state at (k−1), and xk is the predicted state using the prediction model. This means that xk is
the first-step prediction results from the true state xk−1 using the above-linearized equation.

yk can be represented in terms of xk−1 as follows:

yk = CAk−1xk−1 + CBk−1wk−1 + vk (12)
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xk−1 is represented in terms of yk−1 as follows:

xk−1 = [CTC]−1CTyk−1 − [CTC]−1CTvk−1
= M yk−1 −M vk−1

where, M = [CTC]−1CT
(13)

yk can be represented as follows by substituting (13) into (12):

yk = CAk−1M yk−1 − CAk−1M vk−1 + CBk−1wk−1 + vk (14)

In Equation (14), the only unknown term is wk−1. Because yk and yk−1 are the mea-
surement from the perception algorithm, vk and vk−1 are the same measurement noise
under the assumption of stationary. Therefore, the recursive estimator for wk−1 can be
defined by multiplying M to (14) and introducing the new notations ξk and Vk:

Myk − AMyk−1 = Bwk−1 + Mvk + AMvK−1
ξk = Bwk−1 + Vk
where, ξk = Myk − AMyk−1

Vk = Mvk − AMvk−1

(15)

The covariance of wk−1 is estimated as a recursive form as follows:

Covk(ξ) =
k−1

k Covk(ξ) +
1
k ξkξk

T

Covk(Bw) = Covk(ξ) + Cov(V)
(16)

Using (16), the covariance of the process noise wk is estimated.

4. Target State Prediction with Uncertainty Estimation

It is necessary to consider the uncertainty of the prediction in order to improve the
safety and performance of autonomous vehicles on urban roads. Therefore, this study
integrates the SMPC approach with the prediction uncertainty estimator to improve the
performance of SMPC by updating the probability distribution of chance constraints every
moment. Before discussing SMPC, the driving mode and constraints are properly defined
based on the predicted states of intersection-approaching vehicles. Therefore, the robust
motion planner for intersection passing is composed of three sub-modules: The driving
mode decision, the defining prediction-based constraint, and solving SMPC. The details of
each module will be discussed in the following sections.

4.1. Driving Mode Decision

Constraints for SMPC are highly related to the driving mode because intersection
cross priority decides the boundaries of constraints. Therefore, the driving mode should
be determined before defining the constraints for SMPC. In this study, driving modes are
composed of three modes: ‘Approach’, ‘Cross’, and ‘Yield’. The approach mode is prepared
to provide safe approaching behavior at the uncontrolled intersection until the target is
detected. It means that the driver’s deceleration characteristics are reflected in autonomous
driving as an approach mode to avoid the inevitable collision with targets appearing from
a blind spot. The deceleration command of the approach mode is determined based on
the shape of the occluded region, the possible target-appearing position, and the nominal
braking characteristics of the human driver.

Meanwhile, the cross and yield modes are declared when the autonomous vehicles
detect other intersection-approaching targets. In these driving modes, the risk caused by
the target vehicle should be properly managed by the interaction between the autonomous
vehicle and targets. Then, an SMPC-based motion planner is used to determine the desired
acceleration. Particularly, yield mode is the replacement of the stop mode of the previous
studies to cover most driving situations except when the ego vehicle has a cross priority.
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Therefore, an autonomous vehicle in yield mode does not simply stop but determines
various behaviors according to the driving situation.

A mode transition condition between the cross and yield modes is defined based on
the uncontrolled intersection theory. The uncontrolled intersection theory has been used
to analyze the driving behavior of human drivers who are interacting with each other
in uncontrolled intersections. The concepts of critical gap and follow-up gap have been
used to define the mode transition condition between the cross and yield modes. In the
uncontrolled intersection theory, the critical gap is the threshold for the time gap between
higher-rank stream vehicles. It means that no driver will split the vehicle stream from a
higher-rank road unless the gap between the vehicle in a higher priority stream is at least
equal to the critical gap. The follow-up gap is the threshold to follow the preceding vehicle
that enters the intersection. The driver will enter the intersection if the headway time with
a preceding vehicle is less than the follow-up gap.

This concept has been modified to define the mode transition condition for the pro-
posed driving-mode decision algorithm. First, the approaching targets have been classified
into three groups, primary, secondary, and in-lane targets, as shown in Figure 9. The
first vehicle entering the intersection from other branches of the ego vehicle is denoted
as a primary target. Then, the next vehicle immediately following the primary target is
classified as a secondary target. The in-lane target means the preceding target of the ego
vehicle. Based on the target classification, a time gap between primary and secondary
targets is compared to the critical gap. A headway time between the in-lane target and ego
vehicle is compared to the follow-up gap. When calculating the time gap and headway
time, the predicted states of the ego and the target vehicle have been used to overcome the
limitations of the constant velocity assumption.
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The driving mode is changed to yield mode if one of the following conditions is
satisfied: (1) The remaining time to the intersection is larger than the primary target,
(2) the time gap between primary and secondary target is smaller than the critical gap
threshold, or (3) the headway time to the preceding vehicle is larger than the follow-up
gap threshold. On the contrary, the cross mode is only declared if the opposites of the
aforementioned conditions are all satisfied simultaneously. This hard condition for the
cross mode is introduced to prevent a dangerous situation caused by misjudgment of the
driving mode. In this study, a critical gap threshold of 4 s and a follow-up gap threshold of
2 s has been used [29–31]. In addition, the transition margin of a 1s base has been added to
avoid chattering between driving modes.
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4.2. Stochastic Model Predictive Controller

The first step of designing the SMPC-based motion planner is defining the plant
model [32]. The state-space model of the longitudinal dynamics is defined by considering
the characteristics of the longitudinal actuator. The delay of the acceleration and braking
can be modeled as a first-order delay model. Therefore, the first-order input delay model
has been employed to define a longitudinal model. The state and input vectors are defined
as follows:

x[k] =
[

p[k] v[k] a[k]
]T

, u[k] = ades,[k] (17)

where p[k], v[k], and a[k] are the position, velocity, and acceleration of the ego vehicle on
the curvilinear coordinate along the desired trajectory of the ego vehicle. ades,[k] is the
longitudinal acceleration input, which is determined by solving the SMPC problem. Based
on the state and input vectors, the longitudinal dynamics are defined as follows: p[n+1]

v[n+1]
a[n+1]

 =

 1 dt 0
0 1 dt
0 0 1− dt/τx

 p[n]
v[n]
a[n]

+

 0
0

dt/τx

u[k] (18)

where dt and τx are the sampling time of the SMPC solver and the acceleration delay
constant of the actuator.

The next step is defining the constraints for the SMPC problem. The concept of
intersection motion planning is described in Figure 10. The example scenario is the primary
target-only case where a single conflict point region is predicted inside the intersection
as shown in Figure 10a. This conflict point region can be defined based on the prediction
time vs. the predicted station plane as shown in Figure 10b. When defining the conflict
point region, the prediction results of the ego vehicle under the assumption of the cross
mode and the predicted states of the approaching target using the proposed predictor have
been used to find the most probable conflict position and time. The constraints have been
determined to avoid the conflict point region while considering the prediction uncertainty.
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Constrains for the SMPC problem are categorized as chance constraints and determin-
istic constraints. The constraints related to the predicted states of the targets are defined
as chance constraints. Meanwhile, the dynamics, actuator limitation, and initial condition
correspond to the deterministic constraints. As mentioned before, the predicted states of
the target are used to define the conflict point region. Therefore, the position constraint
should consider the uncertainty of target state prediction. In other words, the position
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constraint is designed as a chance constraint. The inequalities of the position constraint are
defined as follows:

Yield Mode : 0 ≤ p[k] and p[k] ≤ Pego,[k] − c[k]
Cross Mode : Pego,[k] + c[k] ≤ p[k]
where,

c[k] =
(

TTCcon f ,min −
x[k], 1
x[k], 2

)
· v[k] + Ccon f ,min

(19)

where TTCconf,min and Cconf,min are the minimum value of TTCconf and Cconf from the human
driving data analysis. x[k],1 and x[k],2 are the predicted position and velocity of the target
vehicle, which have uncertainty. Pego is the base constraint that follows the predicted states
of the ego vehicle, which is represented as a green dotted line in Figure 10b. c[k] is the
coupled term between the optimal state of the ego vehicle and the predicted state of the
target vehicle. Therefore, (19) has a stochastic variable as a form of an inequality constraint.
In other words, (19) is the chance constraint of the SMPC problem. Therefore, the position
constraints are redefined as follows:

Yield Mode : Pr(p[k] ≤ Pego,[k] − c[k]) > β

Cross Mode : Pr(Pego,[k] + c[k] ≤ p[k]) > β
(20)

where β is the lower boundary for the probability of the inequality equations. The standard
deviation of the probability distribution is defined as an estimation result of the recur-
sive covariance matrix. It means that the inequality constraints are adaptively adjusted
according to the perception performance and the accuracy of the behavior predictor.

The position constraint is defined differently for the corresponding driving mode. For
the yield mode, the ego vehicle avoids the collision using braking, which means an upper
limit is assigned. For the cross mode, the ego vehicle has a priority to pass the conflict point first
then the target vehicle. In this case, a lower limit has been applied to the position constraint.

The constraints for v[k], a[k], and
.
a[k] are defined as a deterministic constraint as follows:

0 ≤ v[k] ≤ min
([

vmax vcurve
])

amin ≤ a[k] ≤ amax
|a[k+1]−a[k]|

dt ≤ .
amax

(21)

where vmax and vcurve are the velocity limit and velocity derived from the maximum
lateral acceleration and road curvature. amin, amax, and

.
amax are the minimum acceleration,

maximum acceleration, and maximum jerk for longitudinal motion, respectively. The
parameters used for the SMPC problem are summarized in Table 1.

Table 1. Parameters for SMPC problem.

Symbol Values Symbol Values

dt 0.2 s vmax 50 km/h
τx 0.5 s amax 1 m/s2

Np 25 amin −5 m/s2

TTCconf,min 2.0 s
.
amax 2 m/s3

Cconf,min 5.0 m β 0.95

The initial conditions are defined as the current states of the ego vehicle.

p[1] = 0, v[1] = vego, a[1] = aego (22)
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Based on these constraints, the SMPC problem has been designed to calculate the
desired longitudinal acceleration. The cost function for the SMPC problem is formulated
as follows:

J =
Np

∑
k=1

E
(
‖x[k] − xre f ,[k]‖

2
Q
+ ‖u[k]‖

2
R

)
(23)

where xref,[k] is the ego vehicle prediction results, which are depicted as a green dotted line
in Figure 10b. Q and R are the weighting matrices of the cost function. Np is the size of
the prediction horizon of the SMPC problem. The cost function is designed to minimize
the deviation from the ego vehicle prediction results and control effort. Therefore, the
SMPC problem calculates the control inputs that minimize the change of behavior of the
cross mode and the acceleration usage. The solver FORCES is utilized to solve the SMPC
problem in the MATLAB/Simulink environment [33].

5. Results

The proposed motion planner based on SMPC with a recursive uncertainty estimator
has been evaluated through computer simulation for a Left-Turn Across-Path–Opposite
Direction (LTAP-OD) scenario and the arbitrary scenario with multi-traffic. For simulation
under the arbitrary scenario, the Monte Carlo simulation approach has been used to
randomly generate the initial condition and driving route of target vehicles. The simulation
environment has been constructed based on MATLAB/Simulink R2021a and CarSim 8.02.

5.1. Case Study

The simulation scenario for the case study is described in Figure 11. The LTAP-OD
scenario has been used for the evaluation of the proposed and base algorithms. The SMPC
without an uncertainty estimator is denoted as a base algorithm in this chapter. In the
conventional LTAP-OD scenario, the subject vehicle tries to turn left while oncoming targets
are going straight. In this study, LTAP-OD has been modified to swap the driving route
of the ego and target vehicles. In other words, the target vehicle turns left while the ego
vehicle attempts to pass straight through the intersection. The values of initial dDTI,ego of
80 m, initial dDTI,target of 60 m, the initial velocity of 45 km/h, and the maximum velocity of
50 km/h have been used as an initial condition. The difference in the initial condition of
dDTI was intended to make the target vehicle enter the intersection first, which creates the
situation where the ego vehicle will yield. Under the same initial condition, the simulation
has been performed three times for each algorithm with different levels of sensor noise.
In each of the three simulation runs, the measurement noise of the environment sensor
and perception algorithm has been assumed to be a normal distribution. The standard
deviation of the sensor noise has been set to 0.5-times, 1 time, and 2 times the reference
value from the quantitative analysis of the previous study [25].
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The simulation results of the proposed and base algorithms have been summarized in
Figures 12 and 13, respectively. A history of the variables has been represented with respect
to the dDTI to prevent the misinterpretation caused by a different driving time. As shown in
Figures 12 and 13, the behavior changes of the ego vehicle occurred at dDTI = 30 m, where
the target vehicle was detected by the sensor model for the first time. The driving mode
of all simulations was transitioned to yield mode after target detection. As a result of
the simulation, it can be confirmed that the TTCconf and Cconf were maintained above the
TTCconf,min and Cconf,min in all simulation cases. However, the difference in behavior shown
in the simulation results was significant.
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From the simulation results of the proposed algorithm shown in Figure 12, it can
be confirmed that the response to the perception and prediction uncertainty has been
effectively made. The magnitude of the deceleration command is proportional to the sensor
noise level because the probability distribution of the chance constraint is adapted to the
uncertainty estimate from the recursive covariance estimator. Specifically, the amount
of the deceleration is increased to respond to large uncertainty of the σsensor = 2 σini case.
Then, in a situation where the influence of uncertainty is reduced due to the decrease in
Cconf, the acceleration command is generated earlier than the σsensor = σini case because the
safety margin is already secured. In the case of σsensor = 0.5 σini, the SMPC can trust the
prediction results more than other cases, because the prediction algorithm estimates the
small uncertainty. Therefore, the risk caused by approaching targets can be managed at
a point close to the conflict point region. The braking command is generated at a later
moment than the other two cases. As the proposed algorithm can actively respond to the
uncertainty of the sensor, the trajectories of TTCconf vs. Cconf show a similar shape while
complying with the constraints for TTCconf and Cconf.
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The simulation result of the base algorithm shows the opposite tendency to the
proposed algorithm, and it can be seen that more deceleration is utilized to manage the
risk. Because the covariance of the chance constraint is set to σini, the simulation result of
the σsensor = σini case is the same as the proposed algorithm. However, the sensor noise
differed from the σini, and different behavior was observed as shown in Figure 13. In the
case of σsensor = 2 σini, the predicted states of the target are overly trusted, which means the
delayed braking is close to the conflict point region. On the other hand, the uncertainty
is excessively considered in the σsensor = 0.5 σini case, which causes deceleration to occur
earlier. In both simulation cases, the minimum safety specifications TTCconf,min and Cconf,min
were satisfied, but the base algorithm was unable to respond to changes of perceived
uncertainty and showed discomfort behavior for passengers and surrounding vehicles.
In short, the simulation results for the LTAP-OD scenario have shown that the proposed
algorithm can manage the uncertainty of perception and prediction when passing through
the uncontrolled intersection.
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5.2. Monte Carlo Simulation

Monte Carlo simulation has been conducted to evaluate the proposed algorithm
in various situations. The test scenario has been generated by randomly selecting the
sensor noise level, initial position, initial velocity, maximum velocity, and the driving
route of the target vehicles. Five target vehicles have been used when configuring the test
scenarios. Sets of the sensor noise, initial position, initial velocity, and maximum velocity
are generated by using a normal distribution as follows:

σsensor = N(0.3 m, 0.05 m)
dDTI,ini = N(100 m, 20 m)
vini = N(40 km/h, 10 km/h)
vmax = N(50 km/h, 5 km/h)

(24)

The example case of the Monte Carlo simulation scenario is shown in Figure 14.
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A total of 100 simulations were performed for both algorithms. The distributions of the
simulation result on the TTCconf vs. Cconf plane are depicted in Figure 15. As the two vehicles
approach the intersection, the TTCconf and Cconf decrease, and trajectories are headed to the
origin of the TTCconf vs. Cconf plane. Then, the motion planner applied braking inputs to
manage the risks caused by approaching targets and prevent the reduction of TTCconf. After
the target vehicle passing through the intersection, TTCconf and Cconf increase to the right
top of the TTCconf vs. Cconf plane. From this point of view, it can be seen that the proposed
algorithm maintains its control performance robustly against changes in sensor uncertainty
from the distribution toward the top right side of the TTCconf vs. Cconf plane. On the other
hand, the results of the base algorithm show that few trajectories are heading to the top
right. This shows that the base algorithm does not have the ability to respond to changes
in sensor uncertainty. In particular, since the risk was not properly assessed, the braking
input was increased only after TTCconf,min and Cconf,min were exceeded. In other words, the
results of the proposed algorithm were maintained above the safety constraints TTCconf,min
and Cconf,min. However, the base algorithm cannot guarantee the safety constraints, even
though more deceleration was used.

In order to analyze the ride comfort of both algorithms, the histogram of the acceler-
ation usage is illustrated in Figure 16. The acceleration usage of the proposed algorithm
was concentrated near 0 m/s2 and most of it is in the range of −3 to 1 m/s2, which is the
typical range of human drivers. However, the histogram of the base algorithm is evenly
distributed between −3 to 1 m/s2. In addition, hard braking below −3 m/s2 is often
used. This difference can be explained based on the shape difference of the trajectory on
the TTCconf vs. Cconf plane shown in Figure 15. As mentioned before, the base algorithm
does not guarantee the minimum constraints, and in this situation, maximum deceleration
is generated. As a result, hard braking below −3 m/s2 occurs frequently as shown in
Figure 16b. Meanwhile, the proposed algorithm proactively applies braking before the risk
increases, and risk is appropriately managed with minimal hard braking. Therefore, the
proposed algorithm achieves both safety and ride comfort compared to the base algorithm.
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From the perspective of computational time, the proposed SMPC-based motion plan-
ner was able to determine the desired acceleration within 30 ms even though the algorithm
was implemented in MATLAB/Simulink environments. When implemented on an au-
tonomous vehicle, a velocity controller calculates the throttle and brake inputs with much
faster sampling to track the target acceleration determined by the proposed algorithm. In
addition, since the speed of the vehicle is not fast in the uncontrolled intersection driving
situation, the error caused by the calculation time of 30 ms is not significant. Furthermore,
since the 30 ms is shorter than the typical LiDAR or camera sensor processing time, a sam-
pling time of 30 ms is fast enough to determine the target motion based on environmental
information. For example, the LiDAR-based environment perception system used to collect
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driving data in this study has a sampling time of 40 ms. Therefore, the proposed algorithm
can be applied to an autonomous vehicle.

6. Conclusions

A stochastic model predictive control-based motion-planning algorithm for uncon-
trolled intersections has been developed and evaluated with computer simulation. The
proposed SMPC problem has been improved by integrating it with a prediction uncertainty
estimator. The future states of target vehicles have been predicted using an interacting
multiple-model filter based on human behavior models. The intelligent driver model has
been used to define the behavior model and process update of the IMM filter. The uncer-
tainty of the sensor measurement and prediction has been estimated by using the recursive
covariance estimator. The driving mode has been determined using the estimated time to
arrive at the intersection, the critical gap, and the follow-up gap. The desired acceleration of
autonomous vehicles has been determined using the SMPC approach considering the safety
indexes, predicted states of ego and target vehicles, prediction uncertainty, and driving
mode. Simulation studies have been conducted to evaluate the proposed algorithm. The
results of the left-turn across-path–opposite direction scenario showed that the integrated
approach of an uncertainty estimator and SMPC improve the robustness of perception
performance. The results of the Monte Carlo simulation showed the proposed algorithm to
guarantee the minimum safety level and improve the ride comfort compared to the base
algorithm without uncertainty estimation.

The proposed integrated approach can be extended to situations where prediction
uncertainty can affect the performance of the motion planning of autonomous driving. For
example, decision and motion planning for lane changing, overtaking, and roundabout
scenarios can improve the safety and performance of an autonomous vehicle driving with
human drivers. In future studies, the proposed motion planner for intersections will be
extended to the path-planning algorithm within the intersection as well as the prediction
error estimation for lateral motion. In other words, the algorithm for an uncontrolled
intersection will cover the prediction of the surrounding vehicles and motion planning in
both directions, longitudinally and laterally. In addition, the model-based predictor will
be improved by introducing learning-based approaches to effectively reflect the driving
characteristics of the drive.
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