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Featured Application: The application of the proposed research is to select service based on opti-
mized results achieved in this research article.

Abstract: The growing demand for cloud technology brings several cloud service providers and their
diverse list of services in the market, putting a challenge for the user to select the best service from
the inventory of available services. Therefore, a system that understands the user requirements and
finds a suitable service according to user-customized requirements is a challenge. In this paper, we
propose a new cloud service selection and recommendation system (CS-SR) for finding the optimal
service by considering the user’s customized requirements. In addition, the service selection and
recommendation system will consider both quantitative and qualitative quality of service (QoS)
attributes in service selection. The comparison is made between proposed CS-SR with three existing
approaches analytical hierarchy process (A.H.P.), efficient non-dominated sorting-sequential search
(ENS-SS), and best-worst method (B.W.M.) shows that CR-SR outperforms the above approaches in
two ways (i) reduce the total execution time and (ii) energy consumption to find the best service for
the user. The proposed cloud service selection mechanism facilitates reduced energy consumption at
cloud servers, thereby reducing the overall heat emission from a cloud data center.

Keywords: quality of service (QoS); cloud computing; cloud services; A.H.P.; optimal service;
smart buildings

1. Introduction

Cloud computing is based on distributed technology and offers different types of
computational resources such as hardware, operating system, and applications to its cus-
tomers through the Internet on a 24/7 basis and from anywhere in the world [1]. The I.T.
giants such as I.B.M., Microsoft, H.P., Google, Amazon, etc., are seen in the cloud market
either as a provider or consumer [2]. Cloud technology facilitates its customers to opt for
services and reduces the total up-front cost of buying and maintaining the complete infras-
tructure [3]. There are three main cloud service models: infrastructure as a service (IaaS),
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software as a service (SaaS), and platform as a service (PaaS) [4] and the cloud services
taken from the provider in the form of “as a service”. Through cloud services, databases
can be built and accessed for various research areas, e.g., environmental pollution [5], food
authentication [6], and building sector [7,8]. In addition, the requirements of each customer
are different; therefore, a generalized cloud service selection approach will not be efficient
as compared to the customized selection approach, which will incorporate an individual’s
requirements.

Moreover, the user requirements also depend on multiple criteria, which are, in most
cases, often conflicting in nature [9–11]. Therefore, selecting cloud services by considers
various conflicting criteria at the same time is also a challenge [12]. Cloud services are a
tedious part of adopting cloud technology [13,14].

The performance of any cloud service is measured through the value of its quality of
service (QoS) parameters [15]. The Service Measurement Index (S.M.I.) [16] has recognized
seven QoS attributes and sub-attributes for each cloud service. Some of the attributes
mentioned here include reliability, availability, maintainability, agility, accountability, cost,
privacy, security, usability, etc. [17]. The QoS attributes are classified into two types:
qualitative and quantitative attributes [18,19], which simplifies the identification and
recommendation of the service according to user-customized requirements. The service
selection process includes the comparison of the services to each other for finding the
best service. If in case there are two or more attributes, then the services should consider
all the attributes for comparison. The service selection process is directly proportional
to the number of services and the number of attributes. Therefore, if the number of
services increases or the number of attributes increases, then it becomes a tedious and
time-consuming task to compare the services. Thus, a need for a decision-making system
that analyzes the services by considering multiple attributes and recommends the best
service to the customer [20]. Evolutionary algorithms [21] are found efficient in finding
services in selecting services in case of multi-criteria optimization [22]. Existing work
proposed by different researchers using an evolutionary algorithm for selecting cloud
services is shown in the work of [23–26]. Some of the papers consider single or limited QoS
attributes [27–29], while some articles consider multi-criteria [30–32] for cloud selecting
and ranking cloud services.

In the cloud, there is an enormous list of available services, and all of these services
might not be useful for consideration in the process of service selection [33]. Therefore, if
the user requirements are taken in advance, then unnecessary services can be filtered in
the initial step itself. Even in the case of multiple criteria, the candidate services can be
filtered [34–37] by considering user requirements for all the mentioned criteria.

To support the decision-making process of service selection and recommendation, the
contribution in this paper is as follows:

1. The novel algorithm called cloud service selection and recommendation (CS-SR)
is proposed. The algorithm entails four phases, including filtration, evaluation,
integration, and last is selection and recommendation. The outcome of CS-SR is
two-fold. (a) Offering a QoS-based service selection, (b) reducing overall execution
time required to find optimal service;

2. The filtration phase will reduce unnecessary comparison by filtering out candidate
services;

3. The proposed approach makes use of quantitative and qualitative attributes that will
improve the overall efficiency of our selection and recommendation approach;

4. The proposed CS-SR is compared with the analytical hierarchy process (A.H.P.) [38], ef-
ficient non-dominated sorting-sequential search (ENS-SS) [39], and best-worst method
(B.W.M.) [40] on the performance parameter: total execution time and the energy
consumption used in selecting and recommending the cloud service. The result shows
that CS-SR outperforms the compared method. The three existing algorithms are
chosen because all three algorithm deals with multi-criteria decision making and
finds the optimal solution among the list of available solutions.
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The research is based on providing energy-efficient cloud service selection recommen-
dation system. The proposed work, in general, is a step toward saving energy through
the cloud servers at large and a step toward efficient cloud service selection and ranking
system. The research paper’s main objective is to improve the performance of the proposed
algorithm CS-SR in two areas; energy consumption and execution time. Multiple studies in
the past have presented negative impacts of data centers on climate change. It is believed
that the carbon footprint of data centers is equivalent to that of the aviation industry.
According to a report, there will be approximately 7.2 million operational data centers by
2021 across the world. Talking in terms of heat emission, data centers could contribute 3.2%
of the total worldwide carbon emission by 2025 [41]. Therefore, the energy-efficient mecha-
nism proposed in our manuscript ensures a reduction in carbon emission and supports
sustainable smart cities.

This paper is planned as follows: Section 2 briefly discusses different approaches
proposed by authors. In Section 3, the CS-SR architecture is proposed. Section 4, the CS-SR
algorithm, is presented. In Section 5, an illustration of the working of the CS-SR approach
with an example is given. In Section 6, the implementation and analysis of the proposed
algorithm are discussed. Finally, Section 7 provides an inference drawn, limitation, and
future research ideas.

2. Related Work

The increasing demand for cloud services motivates researchers to explore the research
in the area of service selection and ranking. The existing literature discussed below shows
the proposed algorithms and approaches for selecting cloud services.

Zheng et al. [42] proposed a ranking framework using QoS in identifying relevant
cloud services and also by finding similar users for predicting quality of services values to
use time effectively.

Rajkumar et al. [43] designed a SMICloud (Service Measurement Index), and De-
wangan et al. proposed WARMS [44], where Ishizaka et al. presented analytic hierarchy
process [45] framework using (A.H.P.) [46] to rank services. The ranking process occurs
in the following manner: gathered requirements, assigning weightage to attributes, and
ranking services.

Jahani and Mohammad Khanli [47] proposed (NSGA SR) to select candidate services
and rank them for the multi-objective optimization problem. However, a rank [48] is
developed later for improving the ranking process NSGA_SR [49] and also for finding
candidate services meeting user’s requirements.

Zhang et al. [50] proposed a proficient approach for sorting the solutions for the
primary objective function, and the other objective functions can be ignored.

In [51], McClymont et al. use the climbing sorting and deductive approach. In both
methods, the deductive sort is found more efficient than the climbing approach.

Roy et al. [52] provided a new approach, known as best order sort (B.O.S.), for selecting
and ranking services. The approach depends on two steps for the complete working of the
approach. Firstly, all the solutions are sorted for each objective, and secondly, ranks are
assigned to the solution. Tang et al. [53] developed a strategy based on the arena’s principle
for identifying a non-dominated solution to a front. The dominating solution is selected
one by one and is placed in the arena, and is known as the arena host. The dominating
solution will be the new arena host and will replace the existing solution; otherwise, it is
ignored.

In the work of [54], Godse and Mulik talked about some essential parameters required
for SaaS selection. The service selection is made using the A.H.P. technique implemented
for the case study of salesforce automation. Limam and Boutaba in the work of [55]
consider the QoS parameter, such as cost, for designing a trust-based framework to rank
SaaS services.



Appl. Sci. 2021, 11, 9394 4 of 17

Garg et al. [56] considers cloud services as an MCDM problem and proposed an
A.H.P.-based approach for ranking cloud services. In the work of [57], Rehman et al. use
the same case study for selecting services in infrastructure as a service (IaaS).

In the work of [58], Sun et al. provided a service selection methodology for MCDM
attributes. The author uses a fuzzy-based technique for determining and consolidating
relations between the mentioned criteria. In addition, Alabool et al. [59] did a systematic
literature survey for different approaches proposed under MCDM.

Whaiduzzaman et al. [60] conducted an extensive literature survey and also compared
several multi-criteria decision analysis methods and showed the work through the taxo-
nomic classification of cloud service selection. Mingrui et al. [61] use both the qualitative
and quantitative parameters in cloud service selection. The priority related to QoS is also
taken into consideration for finding service. The A.H.P. approach is used in the research.
The limitation of AHP is that the efficiency of this approach is reduced when this approach
is applied for multi-objective optimization problems.

In [62], Jatoth et al. talk about an updated super-efficiency data envelopment analysis
for service selection of cloud services, and the evaluation of the ranking process is based
on user preferences. In [63], the author extends a gray technique for order of preference
and assigns ranks to the services based on the QoS parameter.

The autonomic nature of the cloud [64,65] can result in seamless service selection and
address consumer requests efficiently without minimum or no human intervention.

The works illustrated in papers [66–72] discuss the nature of energy-efficient cloud
computing and depict ways and architectures for ensuring energy saving in a cloud
ecosystem.

Authors Zhang X et al. developed an efficient non-dominated sequential sorting
algorithm ENS-SS [40], achieved multi-objective optimization for QoS service selection.
The drawback of this approach is that it provides an efficient solution in case of bi-objectives
or problems with three objectives, but if the number of services or objectives is increased,
this approach does not yield efficiency. Nawaz F. et al. proposed the best-worst method
BWM in cloud service selection to achieve multi-objective optimization by Markov-chain
technique [39]. The limitation of BWM is that it does not identify an optimal solution in
case of multiple objectives as it will produce varying criteria, non-unique weights that
may affect the final decision result though this approach is considered better than the AHP
approach.

The literature survey shows that the existing methods are efficient in finding services
for the users when the number of services or attributes is less. If the existing approach is
applied to a large number of services or multiple criteria are taken, then the efficiency in
finding optimal service decreases.

3. Proposed Architecture: CS-SR

The proposed architecture of cloud service selection and recommendation system
CS-SR is shown in Figure 1. The CS-SR has three main objectives: First, it involves a
decision-making system (D.M.S.) that takes the request of the user for services, processes
the request, and returns the appropriate service to the user. Secondly, our proposed method
prevents unnecessary comparison of the services and ranks them. Thirdly, our approach
reduces the overall execution time taken to find the best services and also evaluates the
energy consumption used in finding optimal service according to customer requirements.

The working of the proposed architecture CS-SR is as follows: the user will send the
request for the required services to the decision-making system [D.M.S.]. The request of
the user consists of two parameters: QoS attributes range and priority for QoS attributes.
The user requirement helps the decision-making system (D.M.S.) to understand the user
requirements expected from the offered services. The D.M.S. will filter out those services
that fit into the range from the service list [1 to N]. The service list is made available to
the D.M.S. by the cloud service providers [1 to S]. The services offered by the provider
also consist of the QoS parameter value and the feedback received from the experience
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customers. The D.M.S. in CS-SR architecture helps in reducing the total execution time by
removing services that do not fit in the range taken from the user. The Cs-SR architecture
also increases the overall accuracy of the service selection and ranking because it considers
using both quantitative and qualitative QoS attributes for selecting and ranking of service.
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Figure 1. The cloud service selection and recommendation architecture.

The decision-making system (D.M.S.) helps in ranking the service and provide the
optimal service to the user, as shown in Figure 2. The D.M.S. system will act as the central
coordinating point by maintaining the request of all the users and concurrently finding
out the service for each customer. The D.M.S. gets activated as soon as the user request
the service. The user requirements are taken through, and the QoS attributes are taken in
range (min, max), and the user priority is related to the QoS attributes. The D.M.S. system
is comprised of four phases, i.e., (1) filtration, (2) evaluation, (3) integration and ranking,
(4) selection and recommendation. Figure 2 shows the internal working of CS-SR, and the
detailed discussion of each stage in CS-SR discussed below.

3.1. Filtration Step

The first step where requirements and the priority for the QoS objective taken from the
user. The outcome of the filtration step is (1) this step will significantly reduce unnecessary
services from the list; (2) this step will help decision-makers in finding optimal service
quickly; (3) the filtered candidate service are only those who fit into the user requirements;
therefore, it significantly improves the efficiency of the decision maker.

3.2. Evaluation of the Fitness Function

The second step involves identifying and assessing the fitness function separately
for both the objective and the subjective attributes [59]. The computation of the fitness
function is the crucial step for deciding as it has a direct influence on the ranking of the
service. The fitness function is calculated for objective function using the QoS attribute,
and the priority of the attribute entered by the user and the fitness function in the case of
the subjective attribute is the QoS attribute and the feedback collected from the experienced
user regarding the service. The feedback of all the services are taken and stored is shared
by the provider to the D.M.S.
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3.3. Integration and Ranking

This step integrates the fitness function computed for both objective and subjective
attributes for each service. The rank of the service will depend upon the final value received
after the integration of both objective fitness function and subjective fitness function.

3.4. Selection

This step helps in selecting the appropriate service from candidate services. The
candidate service having the highest rank is taken as an appropriate or the best service
according to the user requirements.

The decision-making system (D.M.S.) will pick the highest-ranked service and will
pass the service as the execution to the cloud user.

4. Assumption Involved in CS-SR

The entities involved in the proposed algorithm (CS-SR) in Section 3 include users,
cloud service providers, and the decision-making system. The primary objective of the
algorithm is to filter out the candidate services and rank those services.

4.1. Modeling Variables Used in CS-SR

The variables used in the CS-SR method are the requirements taken from the user
in the pre-defined range (with the minimum and the maximum) QoS attributes [23]. The
priority of the QoS attributes requested is also given in numeric form.
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The number of cloud users is shown in Equation (1):

U = < u1, u2, . . . , uq, . . . , uQ >, U ∈ [1, Q], (1)

where U is the set containing the number of users in which uQ is one of the users from the
is the total number of users Q requesting the cloud services.

The requirements raised by one of the cloud users are shown in Equation (2):

Ur = < u1[min,max], u2[min,max], . . . , ur[min,max], . . . , M >Ur ∈ [1, M], (2)

where Ur refers to the requirements of the user in the given range [min, max]. The
uqr[min,max] represents the qth user requirements for the rth attribute taken in range, and
M represents the total number of attributes. The QoS priority given by the cloud user is
shown in Equation (3).

Pu = < p1, p2, . . . , pi, . . . , pM >Pu ∈ [1, M]. (3)

The priority is taken from the user for each attribute because some attributes are more
critical to the user. The attributes with the lowest priority are considered more important
than others.

The total number of services is N stored in the service set S, and Sj is one of the services
from the total services from 1 to N. The service Sj also has QoS attributes associated with
the service, and there can be total M QoS attributes for the service Sj. The QoS attribute
qm is one of the QoS attributes for service Sj. The cloud services and their QoS attributes
offered by the provider are shown in Equations (4) and (5):

S =
{

s1, s2, . . . , sj, . . . , sN
}

, j ∈ [1, N], (4)

sj = < q1, q2, . . . , qm, . . . , qM >, j ∈ [1, M], (5)

The candidate set C.S. containing the list of candidate services received after the filtra-
tion step, and the feedback associated with each candidate service is shown in Equation (6).
sjqj f j represents the jth service with the qm QoS attribute, and Fj is the feedback for the
service taken from an experienced user.

CS =
{

s1q1 f 1, s2q2 f 2, . . . , sjqm f j, . . . , sNqM f N

}
j ∈ [1, M], (6)

4.2. Filtration of Candidate Service in CS-SR

The user sent the requirement and priority to the decision-making system. The D.M.S.
will check the user requirements from the available service list and will return the candidate
service, and will store their feedback collected from the service provider. The filtration of
the required candidate services is shown in Algorithm 1.

Algorithm 1: Filtration of Candidate Services

Input : Ur, Sj, Pu
Ensure : candidate services CSj, feedback (fnSn);
1 : for all services in Sj list do
2 : if Sj found in a user-specified range of Ur
3 : add Sj to set of candidate services
4: end if
5: end for
6: return candidate set and feedback to D.M.S.

The above Algorithm 1 shows that every available service is checked to find if the
service matches the user requirement, then it is shown in lines 1 and 2. In case if the
available service falls in the required range, it is included in the candidate services set



Appl. Sci. 2021, 11, 9394 8 of 17

shown in line 3. Lastly, the candidate services with respective feedback are stored in D.M.S.
for further action.

4.3. Evaluation of Candidate Service in CS-SR

The candidate service received from the filtration step will go for the evaluation
step. Here fitness function is evaluated for candidate services by considering both the
quantitative and qualitative assessment.

The quantitative assessment of the fitness function is performed using the QoS value
of the service assigned, and the priority given by the provider is shown below:

Fitness function FFqn = f (x) = ∑M
1

(
CSj ∗ Puj ∗ qj

)
(7)

The qualitative assessment of the fitness function is performed using the feedback
collected for the service:

Fitness function FFql = ∑M
1

(
CSj ∗ qj ∗ f j

)
(8)

4.4. Integration and Ranking of Candidate Service in CS-SR

As mentioned in Algorithm 2 steps, the total fitness function is calculated by adding
FFqn and FFql from Equations (7) and (8). The ranking of the services is performed based
on the service value received from the full fitness function:

Total fitness function TFFSi = FFqn ∗ FFql = ∑M
1

(
CSj ∗ Puj ∗ qj

)
∗ ∑M

1

(
CSj ∗ qj ∗ f j

)
(9)

Algorithm 2: Integration and Ranking Candidate Services by D.M.S.

Require : FFqn, FFql
Ensure Total Fitness function TFFSi, Ranked services (RSi );
1 : Summing up.

(
TFFSi = FFqn + FFql )

2 : r = 1;
3 : for services Si
4 : if TFFSi> = compared services
5: set Service Rank to R1 and remove service from comparison
6 : r = r + 1
7: repeat step 3–6 for remaining services
8: end if
9: end for
10: return the rank of candidate services

4.5. Selection of Candidate Service in CS-SR

The value of the computed TFFSi for the service will decide its ranking. The service
having the highest TFFSi is considered to be the appropriate service or the best service
according to the customer requirements.

5. Illustration of CS-SR through Example

This section shows the overall working of CS-SR. Suppose we have a total of 10 services
(s1, s2, . . . , s10). This service list is provided by different cloud providers and only one
active user. Each service has at least two quality attributes, and the feedback stored for all
these 10 services, which is shown in Table 1.

The user requirements are taken range from them for their desired attributes; for
example, in the above Table 1, the range for Attribute 1 given by the user is in between
(96–110), and the range for Attribute 2 mentioned by the user ranges between (6–10). In
case the user mentioned the priority for any QoS attributes, he can also mention that in case
if there are only two attributes, the user can give only priority high priority to any one of
them. In case if we have three attributes, then there should be three priorities represented
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in the numerical form (1, 2, and 3). In this example, Attribute 1 is given priority 1, and
Attribute 2 is given 2nd priority.

Table 1. List of services with two attributes and their feedback.

S. No. Services Attribute 1 Attribute 2 Feedback (1–10) in Range

1. S1 100 10 7

2. S2 110 6 3

3. S3 90 8 5

4. S4 95 7 6

5. S5 105 9 4

6. S6 115 12 9

7. S7 80 5 8

8. S8 92 7.5 7

9. S9 102 8 5

10. S10 85 6.5 4

Step 1: As shown in Table 2, we have four filtered candidate services from step 1. These
candidate services carry their quality attributes and feedback, and later these candidate
services will be used as input for further steps and finally ranking the service Attribute 1
(96–110) and for Attribute 2 (6–10).

Table 2. Candidate services.

S. No. Services Attribute 1 Attribute 2 Feedback (1–10)

1. S1 100 10 7

2. S2 110 6 3

3. S5 105 9 4

4. S9 102 8 5

Step 2: Table 3 shows the fitness function applied for qualitative and quantitative
assessment on the filtered services shown in Table 2. The feedback is used for the qualitative
evaluation, and QoS are used for the quantitative assessment.

Table 3. Fitness function is evaluated for qualitative and quantitative attributes.

S. No. Services Attr.1 Attr.2
Fitness Function

FFqn =
M
∑
1
(csi× pi× qi)

Feedback
[1–10]

Fitness Function

FFql =
M
∑
1
(csi× qifeedback)

1. S1 100 10 100× 2 + 10× 1 = 210 7 100× 7 + 10× 7 = 770

2. S2 110 6 110× 2 + 6× 1 = 226 3 110× 3 + 6× 3 = 348

3. S5 105 9 105× 2 + 9× 1 = 219 4 105× 4 + 9× 4 = 456

4. S9 102 8 102× 2 + 8× 1 = 212 5 102× 5 + 8× 5 = 550

Step 3: Table 4 calculates the total fitness value of each candidate service, and rank is
assigned to the service. The service that has the highest total fitness value will be ranked 1,
and the process continues till all the candidate services are entrusted to their respective
rank.
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Table 4. Integration and ranking of the services.

S. No. Services Attribute 1 Attribute 2 Fitness Function
TFFSi = FFqn × FFql

Rank (TFFSi)

1. S1 100 10 210× 770 = 161, 700 Rank 1-S1

2. S2 110 6 226× 348 = 78, 648 Rank 4-S2

3. S5 105 9 219× 456 = 99, 864 Rank 3-S5

4. S9 102 8 212× 550 = 116, 600 Rank 2-S9

Step 4: Based on the total fitness function and ranking of the services, we can see that
the S1 has the highest fitness function; therefore, rank 1 is assigned to S1, and S2 has the
lowest rank shown in Table 4, and the D.M.S. will send an execution to the user.

6. Experimental Work
6.1. Implementation Details

To validate the performance of the CS-SR algorithm, we compare CS-SR with three
known algorithms from the literature: A.H.P., ENS-SS [39], and B.W.M. The experiments
were carried out on a Windows 10 P.C. with a 3.30 GHz Intel i5 processor and 4 G.B. of
RAM. There are two experiments conducted for all four algorithms: In the first experiment,
the number of candidate services is increased from [10–160] with an increment of 10, and
the execution time is calculated for bi-objective [m = 2]. In the second experiment, the
number of candidate services is [10–160] with an increment of 10, and execution time for
multi-objective [m = 5]. The data set used to evaluate the execution time calculated in
(milliseconds) is taken from Github. The proposed algorithm CS-SR will find the optimal
services even if the number of services or number of objectives is increased.

The performance analysis of the proposed CS-SR approach is performed for two
parameters

(a) Execution Time: Execution time is the time the user request for the service and the
execution (optimal service) the user gets from the system.

(b) Energy Computation:—The total amount of energy or power consumed for finding
services through execution time.

6.2. Analysis of CS-SR through Execution Time

The CS-SR algorithm is compared with three existing approaches A.H.P., ENS-SS, and
B.W.M. algorithm [70]. Table 5 shows that the CS-SR algorithm has the lowest execution
time as compared to the other three algorithms. The execution time of A.H.P., ENS-SS, and
B.W.M. increases with the increase in the number of objectives and number of services.
CS-SR shows better performance for execution time when compared with other algorithms.

Tables 5 and 6 represent the execution time for bi-objective [m = 2] and multi-objective
[m = 5]. The number of candidate services ranges from [10–160] with an increment of 10.

Table 5 represents the total execution time the CS-SR approach takes in finding the best
services according to the user requirements. The execution time increases if the number of
candidate services increases. Therefore, we can see from Table 5 and the graph in Figure 3
that for the bi-objective problem, there is a linear increase in the execution time.

Table 6 represents the total execution time for all four approaches A.H.P., ENS-SS,
B.W.M., and CS-SR for m = 5. Each approach is executed separately for the same number
of candidate services from [10–160], and the execution time is noted for them.
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Table 5. Execution time [M = 2].

Candidate Services AHP ENS-SS BWM CS-SR

10 0.85 0.8 0.7 0.5

20 1.4 1 0.9 0.7

30 1.7 1.2 1 0.8

40 2 1.4 1.2 1

50 2.4 1.7 1.5 1.2

60 2.5 1.9 1.7 1.4

70 2.8 2.1 1.9 1.7

80 3.1 2.4 2.2 1.9

90 3.3 2.7 2.4 2.1

100 3.6 2.9 2.7 2.4

110 3.8 3 2.9 2.6

120 4 3.2 3.1 2.8

130 4.2 3.5 3.3 3.1

140 4.4 3.7 3.6 3.2

150 4.6 4 3.9 3.5

160 4.7 4.2 4.1 3.7

Table 6. Execution time [M = 5].

Candidate Services AHP ENS-SS BWM CS-SR

10 1.3 0.9 0.7 0.5

20 1.7 1.1 0.9 0.7

30 1.9 1.3 1.1 0.9

40 2.3 1.6 1.4 1.1

50 2.6 1.9 1.7 1.3

60 2.9 2.2 1.9 1.6

70 3.1 2.6 2.1 1.8

80 3.4 2.9 2.5 2.1

90 3.6 3.2 2.8 2.4

100 3.8 3.4 2.9 2.6

110 4.2 3.7 3.1 2.8

120 4.4 3.9 3.3 2.9

130 4.7 4.2 3.6 3.2

140 5 4.6 4 3.6

150 5.3 4.9 4.4 3.8

160 5.6 5.3 4.7 4.1

Table 6 represents the total execution time the CS-SR approach takes in finding the best
services according to the user requirements. The execution time increases if the number of
candidate services increases. Therefore, we can see from Table 5 and the graph in Figure 3
that for the multi-objective [M = 5] problem, there is a linear increase in the execution time.
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6.3. Analysis of CS-SR through Energy Consumption

The energy consumption required for finding the optimal service can be calculated
through the execution time. Therefore, the amount of energy consumed using a constant
of proportionality calculated using an execution time is obtained in Equation (10). Table 7
shows the energy consumption in (Joules) for each of the algorithms for the service [10–160].

E =
∫ N

n=1
α ∗ R.T. (10)

where E is the energy consumption, T is the execution time, and α is the constant of
proportionality, in this case, α = 1.

Table 7. Energy consumption.

S. No. M = 2 M = 5

AHP 49.35 55.8

ENS-SS 39.7 47.7

BWM 37.1 41.1

CS-SR 32.6 35.4

The above Tables 5–7 shows that for m = 2, A.H.P. has the highest energy consumption
and highest execution time, and CS-SR has the lowest energy consumption and lowest
execution time. In addition, for M = 5, the CS-SR approach outperforms the other three
existing approaches in terms of energy consumption and execution time.

The following Figure 4 is a graph plotted for the energy consumption for four ap-
proaches that shows that A.H.P. consumes the maximum energy for both m = 2 and
m = 5. CS-SR approach is found as an efficient approach as compared to the other three
approaches.
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The experiment was conducted on CS-SR, A.H.P., and ENS_SS by using a sample
size of services from [10–160] with 10 jumps. The total execution time taken by all three
algorithms is shown in Figures 3 and 5 and measured against service. The experiments
conducted for two attributes in Figure 3 and five attributes in Figure 5, the execution time
is evaluated for both the scenario with an increasing number of services. The experiment
results in Figure 3 depict the ENS-SS approach is capable of responding initially to the
smaller number of services, but the execution time increases later. The A.H.P. approach is
also efficient with a lesser number of services but not with a large number of services, and
it needs more time to respond and find service. The CS-SR selects are found to be efficient
as compared to A.H.P. and ENS-SS in finding an optimal service by reducing execution
time.
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Moreover, CS-SR is energy efficient in comparison with A.H.P. and ENS-SS as it
reduces energy consumption in context to Jules. The proposed service selection and
recommendation model supports QoS along with ensuring reduced execution time and
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use of idle cloud servers. Henceforth, the CS-SR model is proficient to total execution time
helps in creating an energy-efficient and economically sustainable cloud ecosystem.

7. Conclusions and Future Scope

The research paper proposed a novel algorithm (CS-SR) that is based in D.M.S. for
finding appropriate cloud service that meets user requirements. The proposed approach
aims to lower down the total execution time in finding the service. The proposed approach
CS-SR also reduced the unnecessary comparison using the filtration step. In addition,
CS-SR used both the quantitative and qualitative parameters to find the result and turned
out to be an efficient approach.

The proposed approach finds the total fitness value by using qualitative and quanti-
tative parameters. The research considers the feedback taken from an experienced user
to calculate the fitness value for qualitative parameters. The user feedback can be biased
sometimes, and in such cases, the result we obtain by using biased values will not provide
an accurate result and can be considered the limitation of the proposed approach. More-
over, the proposed cloud service selection mechanism ensures energy conservation and
facilitates reduced carbon emission at cloud data center levels, thus resulting in sustainable
smart cities.

The research work can be expanded by classifying the user requirements into essen-
tial and non-essential requirements [63–65]. The consideration of different parameters
improves the accuracy level and improves the trust between the provider and service
user. In addition, the research work can be extended to the optimal composition of service,
which will further assist the user is not only in identifying a single service but the group of
services.
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