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Abstract: Hydraulic pumps are commonly used; however, it is difficult to predict their remaining
useful life (RUL) effectively. A new method based on kernel principal component analysis (KPCA)
and the just in time learning (JITL) method was proposed to solve this problem. First, as the research
object, the non-substitute time tac-tail life experiment pressure signals of gear pumps were collected.
Following the removal and denoising of the DC component of the pressure signals by the wavelet
packet method, multiple characteristic indices were extracted. Subsequently, the KPCA method
was used to calculate the weighted fusion of the selected feature indices. Then the state evaluation
indices were extracted to characterize the performance degradation of the gear pumps. Finally, an
RUL prediction method based on the k-vector nearest neighbor (k-VNN) and JITL methods was
proposed. The k-VNN method refers to both the Euclidean distance and angle relationship between
two vectors as the basis for modeling. The prediction results verified the feasibility and effectiveness
of the proposed method. Compared to the traditional JITL RUL prediction method based on the
k-nearest neighbor algorithm, the proposed prediction model of the RUL of a gear pump presents a
higher prediction accuracy. The method proposed in this paper is expected to be applied to the RUL
prediction and condition monitoring and has broad application prospects and wide applicability.

Keywords: gear pump; wavelet packet denoising; kernel principal component analysis (KPCA); just
in time learning (JITL); remaining useful life (RUL) prediction

1. Introduction

With the rapid development of science and technology and the modern manufacturing
industry, the structures and functions of mechanical equipment are gradually shifting
toward achieving integration, intelligence, refinement, and comprehensiveness. For a
mechanical system, a high integration level and high complexity of the structure and
function are associated with a high probability of failure. A fault in one of the mechanical
components, or even in a tiny part, if not found and repaired in time, may cause the entire
system to fail (so that the machine is unable to operate normally) or lead to property
damage or even casualties [1].

A gear pump has the advantages of a small volume, lightweight, good technicality, and
strong self-suction. It is commonly used in construction engineering, metallurgy, aerospace,
automobile manufacturing, shipping, and other fields. As the “heart” of a hydraulic
transmission system, the stable operation of a gear pump is an important requirement for
its normal operation. Therefore, conducting appropriate monitoring and maintenance and
providing warnings of early failures of gear pumps are highly significant [2].

At present, the methods of signal analysis, monitoring, and fault diagnosis of me-
chanical equipment are becoming increasingly mature, practical, and specialized. The
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methods of monitoring and fault diagnosis of mechanical equipment that are extensively
used worldwide mainly include vibration analysis, sound analysis, oil sample analysis,
and temperature monitoring [3]. Among them, fault diagnosis methods based on vibration
monitoring and analysis have the following main advantages: (1) Under the condition in
which early failure of mechanical equipment is not evident, the collected vibration signals
can still be analyzed to determine its position, degree, and cause. For example, Jiang
et al. accurately identified the fault degree of rolling bearings based on a deep learning
method [3]; (2) there are various methods for analyzing vibration signals, and the analysis
results are intuitive and reliable. Sinao et al. proposed a new method for vibration-based
techniques to detect, monitor, and prevent pump cavitations [4]; (3) different characteristic
parameters of mechanical equipment vibration signals have different sensitivities to dif-
ferent types of faults, and they have practical physical relevance. Gajjar et al. proposed a
Tennessee Eastman process fault detection and diagnosis method using sparse principal
component analysis [5]. Therefore, in the vibration analysis and fault diagnosis of me-
chanical equipment, fault diagnosis methods based on vibration monitoring and analysis
have attracted increasing attention of researchers. Lei et al. pointed out that machinery
intelligent fault diagnosis is a promising tool to deal with mechanical big data. [6]. In 2019,
Jiang et al. first proposed a fault identification method for axial piston pump based on
voiceprint characteristics, which solved the problem of inconvenient installation of vibra-
tion sensors under special conditions [7]. Because of the uniqueness of a hydraulic system,
the installation method and location of a vibration sensor affect the signal acquisition.
Moreover, a vibration sensor is frequently installed by pasting or using a magnetic base,
which is inconvenient in some cases. Pressure is an important parameter of a hydraulic
system, and pressure signals can be conveniently collected. The outlet pressure pulsation
of a hydraulic pump is mostly related to its vibration. Therefore, this study considers the
outlet pressure signals of a pump as the research object.

In the process of collecting the vibration signals of mechanical equipment, there is
frequent interference from noise signals. To analyze a vibration signal accurately and yield
the correct diagnosis result, it is necessary to alleviate the associated noise and interference.
Zhang et al. [8] applied the wavelet packets transform method to the fault diagnosis of
rolling bearings and achieved good diagnosis results. Choe et al. [9] defined wavelet packet
transform modulus (WPTM) and presented a WPTM-based PQD feature detection method;
experiments show that WPTM has advantages in feature detection. Zhu et al. [10] proposed
an adaptive extraction method based on extreme-point symmetric mode decomposition;
it was applied to the trend term of machinery signal analysis, and good results were
obtained. Hu et al. [11] applied ensemble empirical mode decomposition to rolling bearing
fault feature extraction. At the same time, many signal decomposition methods have been
applied to signal denoising. For example, Jiang et al. [12] applied local mean decomposition
method to hydraulic pump fault signals demodulation. Naeem et al. [13] applied weighted
singular value decomposition to enhance the detection performance of a vibration sensor.

Because of its good time–frequency localization analysis ability, wavelet analysis
based on Fourier analysis is commonly used in signal processing and other fields. Based
on an improved wavelet packet transform method, Huang Yuqing et al. [14] proposed
the improved denoising method of fractional wavelet packet transformation, which was
subsequently used for filtering and reducing noise signals and showed to have good noise
reduction effects. Su Xiuhong [15] combined the denoising method of EMD with the
wavelet threshold method, which presents a remarkable signal denoising effect. Tang
Ying et al. [16] calculated the maximum singular value modulus of impact signals after
wavelet transformation to determine their singular values and subsequently suppressed
the maximum singular value to eliminate noise. Yi et al. [17] proposed a novel signal
adaptive decomposition algorithm processed in TF domain, which provides adequate
information about the time-varying instantaneous frequency. Based on the wavelet theory,
Zhang Guangtao et al. [18] proposed the method of multi-wavelet analysis and denoising,
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which solves the correlation problem of multi-wavelet transform coefficients well and has
a good denoising effect.

A pressure signal contains a large amount of useful information [19,20]. Accurate ex-
traction of the key information is not only the basis for hydraulic pump fault diagnosis but
also for determining the accuracy of the diagnosis results [21]. The main purpose of feature
extraction is to extract and filter out the useful information that can accurately characterize
the fault characteristics of a hydraulic pump from pressure signals. At present, the extrac-
tion methods of mechanical equipment fault characteristic parameters mainly include time,
frequency, and time–frequency domain analysis methods, with the last one combining time
and frequency domain features [22]. Because time and frequency domain analyses of gear
pumps have the advantages of simple form and convenient calculation, the corresponding
characteristic parameters are extensively studied and adopted for identifying the operating
state of a gear pump [23,24].

If the maintenance personnel who repair a mechanical equipment can timely and
accurately determine its remaining useful life (RUL), then a scientific and appropriate
maintenance plan can be formulated and the property losses and casualties caused by
untimely monitoring and maintenance can also be effectively avoided [25,26]. Therefore, it
is essential to predict the RUL of mechanical equipment on time and accurately.

In recent years, with the rapid approach of the artificial intelligence and data “big
bang” era, computer and information technologies have been frequently developed and
integrated and artificial intelligence and machine learning methods are being constantly
innovated and advanced [27]. In the current research on the analysis and prediction of
the RUL of mechanical equipment, artificial intelligence has become a prominent topic [6].
Tan Yuanyuan et al. [28] combined collected field data with accelerated life testing data
and introduced conversion and environmental difference factors to improve the prediction
and evaluation method of RUL. Sim et al. [29] established a set of RUL prediction and
evaluation models for gears and bearings. Kong Guojie et al. [30] established an RUL
prediction and evaluation model for artillery barrels and verified its accuracy with a large
amount of actual data.

Just in time learning (JITL), a commonly used nonlinear modeling method [31], is also
known as lazy learning [32] and locally weighted learning [33]. It uses process data to build
local models to achieve high prediction accuracy. Therefore, the JITL modeling method can
effectively solve the modeling problems of strongly nonlinear and time-varying industrial
processes, and it has been extensively used in the industry [34]. Wang Li et al. [35] first
grouped variables by principal component analysis (PCA), subsequently selected similar
sample data for each group of variables using the JITL method, and finally predicted
the output by Gaussian process regression. The simulation and experimental results
showed that the proposed method has good prediction performance. Qi Cheng et al. [36]
proposed a JITL method based on second-order similarity, and simulations and experiments
verified that it can improve the prediction accuracy of a model. Jin et al. [37] proposed
an integrated soft-sensing modeling framework for JITL based on an evolutionary multi-
objective optimization method. The experimental results showed the effectiveness and
excellence of this method. Guo et al. [38] proposed a JITL framework based on a variational
adaptive encoder to solve the problem of non-consideration of the variable uncertainty in
industrial processes, and showed the effectiveness of the method based on experiments.

Although the JITL method is commonly recognized, its utilization for predicting
the RUL of mechanical equipment is rarely reported. Therefore, this study proposes a
prediction method based on JITL to predict the RUL of mechanical equipment on time
and accurately.

The evolution processes of many equipment faults follow a certain change rule. To
detect faults on time, appropriate methods can be adopted to monitor the operating state
of a mechanical equipment and observe the real-time changes in the equipment state [39].

The performance of a mechanical equipment tends to decline during operation, and the
performance degradation process is frequently irreversible. The performance degradation
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of mechanical equipment makes their continuous operation impossible. Timely early
warning of machinery equipment failure can be provided using appropriate monitoring
methods to monitor the working state of machinery and equipment in real time. This
will not only help equipment users to establish an appropriate maintenance and repair
plan to prevent unexpected shutdowns of the mechanical equipment during use but also
effectively prolong its normal operation time and avoid the economic losses caused by
unexpected equipment failures.

The most major feature of data-driven prediction is that it does not require establishing
a complex mathematical model for the prediction and evaluation of mechanical equipment.
It only needs collection of a large amount of data generated in the industrial field, based
on which a model is built. The establishment of a data-driven model can utilize the real-
time measurement data sampled by sensors; therefore, the characteristic parameters of
the prediction model can be modified on time to accurately reflect the changes in the
measured data. Data-driven prediction models mainly include the time-series prediction
method [40], artificial neural networks [41], and support vector regression [42]. In this
study, the established data-driven prediction model mainly predicts the RUL of a gear
pump from two aspects: determining the performance degradation index and constructing
an RUL prediction model of a gear pump.

The main research steps of this study are shown in Figure 1. First, the gear pump
pressure signals at a pressure port were collected by a pressure sensor. After eliminating
the DC component of the collected pressure signals, the wavelet packet denoising method
was used to denoise the signals. After denoising, the time- and frequency-domain char-
acteristic indices of the signals were extracted and preliminarily screened. Subsequently,
the kernel PCA (KPCA) was used to analyze the screened time- and frequency-domain
characteristic indices. The first and second principal components were extracted to identify
the performance degradation index of a gear pump. Finally, based on the degradation
index, a prediction model based on the k-vector nearest neighbor (k-VNN) JITL method
was established for the RUL prediction of a gear pump. The method proposed in this
paper was compared to the traditional JITL method based on k-nearest neighbor (k-NN).
The results show that the proposed RUL prediction model of a gear pump has a higher
prediction accuracy than the traditional method.
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Figure 1. The RUL prediction process of gear pump.

2. Wavelet Packet Denoising Method and KPCA Method

In actual field applications or industrial production, when a gear pump fails, the
pressure pulsation of its oil pressure port changes. Moreover, most of the gear pump fault
information is frequently contained in these pressure pulsations and impacts, such as gear
pump fault type, fault location, and fault degree. The pressure signals of a gear pump
collected by a sensor contain not only the effective state information but also the noise
signals; the latter are unrelated to the state information of the gear pump. Therefore, to
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extract effective characteristic information from sampled original pressure signals, the first
step is to denoise them.

2.1. Wavelet Packets Denoising Method

The wavelet packet transform analysis method is a technical improvement of the
wavelet transform analysis method. It is a joint signal analysis method based on time and
frequency domains. Compared with the signal analysis method of wavelet transform, the
wavelet packet transform analysis method can decompose the low- and high-frequency
parts of the upper layer simultaneously. Thus, it overcomes the deficiency of the wavelet
transform analysis method, which only analyzes the low-frequency part of a signal.

The method of wavelet packet decomposition and denoising can perform orthogonal
decomposition of the collected signals in all frequency bands. An orthonormal basis that
can reflect the original characteristics of the signals can be obtained by reasonably selecting
the optimal wavelet packet basis function and the decomposition layer number. As shown
in Figure 2a, after the original signal is decomposed by wavelet decomposition, the low-
frequency coefficients will be decomposed again. As shown in Figure 2b, wavelet packet
decomposition not only re-decomposes the low-frequency decomposition coefficients after
each layer decomposition, but also re-decomposes the high-frequency coefficients. So, the
wavelet packet denoising method is more refined and has better localization ability in the
frequency domain than the wavelet denoising method.
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In multiresolution analysis, L2(R) = ⊕
j∈Z

Wj indicates that it is based on different scale

factors j. The Hilbert space, L2(R), is decomposed into the orthogonal sums of all subspaces
Wj(j ∈ Z). Following signal filtering, the signals are expanded based on the wavelet packet
basis. Specifically, the signal, f (n), to be analyzed is filtered through a low-pass filter H
and a high-pass filter G, and thus, a group of low- and high-frequency signals is obtained.
Each signal decomposition further decomposes the l-th frequency band of the upper layer,
j + 1, into two sub-bands 2l-th and (2l + 1)-th of the lower layer, j.

Wavelet packet decomposition method:
{

d2l
j,k

}
k∈Z

and
{

d2l+1
j,k

}
k∈Z

are calculated from{
dl

j+1,k

}
k∈Z

, and the wavelet packet decomposition formula is


d2l

j,k = ∑
m∈Z

hm−2kdl
j+1,m

d2l+1
j,k = ∑

m∈Z
gm−2kdl

j+1,m
, (1)

where {hk}k∈Z denotes the low-pass filter coefficients, {gk}k∈Z denotes the high-pass filter
coefficients, and gk = (−1)kh1−k.
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Wavelet packet reconstruction method:
{

dl
j+1,k

}
k∈Z

is calculated from
{

d2l
j,k

}
k∈Z

and{
d2l+1

j,k

}
k∈Z

, and the wavelet packet reconstruction formula is

dl
j+1,m = ∑

k∈Z

[
hm−2kd2l

j,k + gm−2kd2l+1
j,k

]
, (2)

where Daubechies 4 wavelet is selected for wavelet packet decomposition.
The steps of the wavelet packet denoising process are as follows:

(1) Optimal wavelet packet decomposition basis determination. The optimal wavelet
packet decomposition basis is calculated based on the entropy standard.

(2) Wavelet packet decomposition of the signal. The number of decomposition layers, M,
is determined, and the signal, f (n), is decomposed by an M-layer wavelet packet. In
this study, the number of decomposition layers, M, is 3.

(3) Threshold quantization of the wavelet packet decomposition coefficients. An ap-
propriate threshold is selected to quantify each set of wavelet packet decomposition
coefficients. In this study, the default threshold is used to denoise the signals.

(4) Wavelet packet reconstruction. After the threshold quantization processing in Step 3,
the wavelet packet decomposition coefficients are reconstructed using the wavelet
packet reconstruction method. Subsequently, after denoising, the time-domain signal,
fdn(n), is obtained.

2.2. Determining Performance Degradation Evaluation Index

Owing to the different types and degrees of hydraulic pump faults, the extracted
pressure signal characteristic parameters in the time domain are also different. In general,
dimensionless indicators are not directly affected by the operating state of a mechanical
equipment; they are only determined by its corresponding probability density functions.
However, dimensional indicators are directly affected by the operating state of a mechanical
equipment. Both dimensional and dimensionless indicators can directly or indirectly reflect
the changing trend of gear pump performance degradation during operation. The time-
domain characteristic parameter calculation methods of pressure signals are tabulated in
Table 1, where fdn(n) represents the denoised pressure signal obtained after the wavelet
packet denoising, where n = 1, 2, 3, . . . , N and N is the length of the original signal.

Table 1. Time-domain characteristic parameters.

Characteristic Parameter Formula Characteristic Parameter Formula

Mean value X = 1
N

N
∑

i=1
fdn(i) Absolute mean value |X| = 1

N

N
∑

i=1
| fdn(i)|.

Variance σ2 = 1
N−1

N
∑

i=1

[
fdn(i)− X

]2 Standard deviation σ =

√
1
N

N
∑

i=1

[
fdn(i)− X

]2
Root-mean-square value Xrms =

√
1
N

N
∑

i=1
fdn(i)

2 Shape factor Sf =
Xrms

|X|

Kurtosis K = 1
N

N
∑

i=1
fdn(i)

4 Crest factor Cf =
Xmax
Xrms

Peak value Xmax = max[| fdn(i)|] Impulse factor If =
Xmax

|X|
Root amplitude Xr =

[
1
N

N
∑

i=1

√
| fdn(i)|

]2
Kurtosis index Kv = K

X4
rms

Peak-to-peak value Xpp = max[ fdn(i)]−min[ fdn(i)] Clearance factor CLf =
Xmax

Xr

Feature extraction methods based on the time domain are frequently unable to accu-
rately determine the performance degradation trend of mechanical equipment. Therefore,
an extraction method based on frequency-domain features is used. First, the power spectral
density of the collected mechanical equipment time-domain signals is calculated. Subse-
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quently, the frequency-domain characteristics of the time-domain signals are calculated
based on the power spectral density; therefore, the performance degradation trend of the
mechanical equipment can be determined more intuitively and accurately. The calculation
methods of the characteristic parameters in the relevant frequency domain are summarized
in Table 2.

Table 2. Frequency-domain characteristic parameters.

Characteristic Parameter Formula Characteristic Parameter Formula

Gravity frequency
CF =

fmax
∑

f=0
[ f×S( f )]

fmax
∑

f=0
S( f )

Frequency variance FV = MSF− (CF)2

Mean square frequency
MSF =

fmax
∑

f=0
[ f 2×S( f )]

fmax
∑

f=0
S( f )

Average power
f1 =

fmax
∑

f=0
S( f )

fmax

The fmax is the upper limit of the analysis frequency band and S( f ) is the amplitude
of the power spectrum at frequency f .

2.3. KPCA Method

In traditional methods, as a gear pump performance degradation characteristic index,
a single time- or frequency domain-characteristic index is frequently used as the basis.
Owing to the variability and complexity of the gear pump operation process, a single index
cannot accurately and comprehensively represent the faults and performance degrada-
tion information during its operation. Therefore, it is necessary to consider and extract
multiple appropriate features to achieve comprehensive characterization of a gear pump
performance degradation trend. For obtaining the performance degradation characteristic
index of a gear pump, in this study, multiple characteristic parameters from the time
and frequency domains are selected, including variance, root-mean-square value, peak
value, root amplitude, peak-to-peak value, absolute mean value, standard deviation, shape
factor, clearance factor, and average power. Subsequently, the dimensionality reduction
calculation is performed for the selected multiple characteristic indicators. Finally, the
characteristics after the dimensionality reduction are used as the performance degradation
evaluation index of the gear pump.

PCA [43] is a traditional mathematical linear transformation analysis method. The
basic principle of the PCA method is the linear transformation of the original variables with
some correlation into a set of uncorrelated variables, during which process the total variance
remains unchanged. The KPCA method extracts the principal components from the original
data information by a nonlinear transformation by some technical improvements of the
PCA method. First, the input space is transformed into a high-dimensional space by a
nonlinear transformation. Subsequently, the principal components in the information are
nonlinearly analyzed in the high-dimensional space. The specific method is as follows:

Let the training sample set be X = {xi|i = 1, 2, . . . , P}, where xi ∈ RQ is a column
vector and P is the number of training samples. The KPCA method nonlinearly maps a
Q-dimensional original vector from the original input space, RQ, to a high-dimensional
space, F, represented as ϕ : RQ → F . The sample in F is represented as ϕ(xi), and it satisfies
∑P

i=1 ϕ(xi) = 0. Therefore, the sample covariance matrix in the F space can be expressed as

C =
1
P

P

∑
i=1

ϕ(xi)ϕ(xi)
T . (3)

The eigen decomposition of the covariance matrix, C, can be obtained as follows:

λivi = Cvi, i = 1, 2, · · · , P, (4)
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where vi is the eigenvector corresponding to the eigenvalues, λi, in the F space, and all
eigenvalues of C are non-negative. Without the loss of generality, 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λP
are set, and the corresponding eigenvectors, v1, v2, . . . , vP, can be expanded by the sample,
ϕ(xi), in the F space as follows:

vr =
P

∑
i=1

αr
iϕ(xi), (5)

where αi(i = 1, 2, . . . , P) are the correlation coefficients.
The inner product of each sample ϕ(xi) with Equation (4) is obtained as follows:

λr〈ϕ(xi), vr〉 = 〈ϕ(xi), Cvr〉, i, r = 1, 2, . . . , P. (6)

Based on Equations (5) and (6), the following can be obtained:

λr

P

∑
i=1

αr
i 〈ϕ(xr), ϕ(xi)〉 =

1
P

P

∑
i=1

αr
i

〈
ϕ(xr),

P

∑
q=1

ϕ(xq)

〉〈
ϕ(xq), ϕ(xi)

〉
, (7)

where r, q = 1, 2, . . . , P.
A P × P-dimensional matrix K is defined, where kiq =

〈
ϕ(xi), ϕ(xq)

〉
and i, q =

1, 2, . . . , P. Because K is a symmetric matrix, kiq = kqi, Equation (7) can be expressed as

Pλrαr = Kαr, (8)

where Pλr is the eigenvalue of K and αr = [αr
1, αr

2, . . . , αr
P]

T is the corresponding eigenvector.
Let the eigenvectors corresponding to the eigenvalues greater than zero be αa, αa+1, . . . , αP,
respectively. vr(r = a, a + 1, . . . , P) is normalized to obtain Pλr〈αr, αr〉 = 1; therefore, the
projection of sample ϕ(x) on vr is

tr(x) = 〈vr, ϕ(x)〉 =
P

∑
i=1

αr
i 〈ϕ(xi), ϕ(x)〉, (9)

where tr(x) is the r-th nonlinear principal component corresponding to ϕ. All principal
components are combined into vector t(x) = [ta(x), ta+1(x), . . . , tP(x)]

T as the sample
feature.

To overcome the problem that the high-dimensional F space makes solving tr(x)
difficult, based on the Mercer theorem [44], a kernel function K1(xi, x) = 〈ϕ(xi), ϕ(x)〉 is
used to replace the dot product operation of the F space. Therefore,

tr(x) = 〈vr, ϕ(x)〉 =
P

∑
i=1

αr
i K1(xi, x). (10)

To solve the problem that the sampled data do not satisfy ∑P
i=1 ϕ(xi) = 0, sample

ϕ(xi) in the F space can be replaced by Equation (11).

ϕ̃(xi) =ϕ(xi)−
1
P

P

∑
i=1

ϕ(xi). (11)

The kernel matrix, K, in Equation (8) is replaced by K.

K = K− IPK−KIP + IPKIP, (12)

where IP is a P× P-dimensional identity matrix with coefficient 1/P.
The radial basis function (RBF) kernel function has many advantages, such as wide

convergence range, good positive definiteness of the transformation matrix, few parameters,
and simple calculation. In data processing, the accuracy and speed of the RBF kernel



Appl. Sci. 2021, 11, 9389 9 of 27

function are better than those of other kernel functions. Therefore, the RBF kernel function
is selected as the kernel function in the KPCA method as

K1(x, xi) = exp[−‖x− xi‖2

2σ2 ]. (13)

The cumulative percent variances (CPVs) of the principal components are calculated
to select the components that meet the conditions. Finally, the number of principal compo-
nents is determined based on the actual requirements.

The method and process using the CPVs as the basis for selecting the principal com-
ponents are as follows: First, the corresponding initial data samples are calculated and
processed to obtain the covariance matrix. Subsequently, the corresponding eigenvectors
are sorted in descending order of the corresponding eigenvalues, and finally, the number
of principal components that meets the requirements is selected. The variance contribution
rate of a single principal component is

ζr =
λr

∑ P
r=1λr

(r = 1, 2, . . . , P), (14)

where ζr represents the percent variance of the r-th principal component.
The CPV calculation method of the first s principal components is as follows:

CPV =
∑ s

r=1λr

∑ P
r=1λr

× 100% (s < P), (15)

where P is the total number of eigenvectors.
The CPV size is typically set based on the operating states of the system when using

the KPCA method to analyze and calculate the data information. Among the current
KPCA methods, CPV is the most extensively used for selecting the number of principal
components, and it is relatively easy to implement. In general, to simplify the number
of variables in the original sample, reduce the complexity of the data structure, and
simultaneously maximize the retention of most useful information in the original sample,
the CPV is generally set as at least 85%.

3. Principle of JITL Method

The principle of the JITL method is “similar input data produce similar output data.”
Its basic workflow is to store a large amount of sample information in the sample data
memory. Based on the actual input data, data similar to the input sample data are found in
the sample data storage, and subsequently the corresponding output data of the input data
are obtained from the sample data information.

For a nonlinear mapping of multiple inputs and single output, f : Rn → R , it is
assumed that the input and output data of the system (i.e.,

{
xq, yq

}V
q=1, where V is the

number of training samples) can be measured. Moreover, the input and output data have
the following functional relationship:

yq = f
(
xq
)
+ ξq, (16)

where xq =
{

xi,q
∣∣i = 1, 2, . . . , T, q = 1, 2, . . . , V

}
represents the input sample data and T

is the dimension of the input sample data. The output sample data are yq ∈ R. ξq is an
independent random variable with a zero mean and a variance of σ2.

The JITL method establishes a model in a certain space by recursion to predict the
output. The input and output relationship of the established model is described as follows:

f
(
xq, θ

)
= xT

q θ = θ0 + x1,qθ1 + x2,qθ2 + . . . + xT,qθT , (17)
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where θ = [θ0, θ1, . . . , θT ]
T represents the sub-model parameters. Combined with a histori-

cal database, mapping in the local space is established to obtain the model output value, ŷq.
Therefore, the predicted output problem can be solved using an optimal solution, and the
formula is as follows:

min ∑
(xq ,yq)∈Ωk

[
yq − f (xq, θ)

]2wq, (18)

where Ωk is the local space consisting of k sample data near xq. f is the mapping relationship
between input data xq and output data yq. wq is the weight corresponding to the q-th
historical sample data, which represents the weight of the influence of the q-th sample data
contained in the local sample space on the model output.

The selection of the local space has a significant influence on the accuracy of the
sub-models. For the input data, xq, the selected local space is used to select the appropriate
historical data. These historical data consist of k samples that are most similar to the input
data, xq. To select historical data similar to the input vector, xq, some scholars have proposed
k-NN, k-surrounding neighbors, k-bipartite neighbors, and other methods to screen the
modeling data. However, these methods mainly refer to the Euclidean distance as the basis
for modeling, which is insufficient for fully exploring the internal relationships among the
input and nearest data. In [45], the k-VNN method was proposed, which considers both
the Euclidean distance and angle relationship between two vectors. Therefore, the k-VNN
method is used as the neighborhood selection criterion in this study.

As we all know, k-VNN considers both the Euclidean distance and angle relationship
between two vectors, while k-NN mainly refers to the Euclidean distance as the basis
for modeling, which is insufficient for fully exploring the internal relationships among
the input and nearest data. Therefore, sample selection method based on k-VNN of the
RUL prediction method can significantly improve the prediction accuracy of the RUL
prediction model.

Assuming that the data in the historical database are xi and the input data of the model
are denoted by xq; the Euclidean distance, d(xi, xq); and the two vector angles, β(xi, xq),
between the input data, xq, and the historical data, xi, can be expressed as{

d(xi, xq) = ‖xi − xq‖2

β(xi, xq) = cos−1(
xT

i xq
‖xi‖2·‖xq‖2

)
, (19)

When constructing the neighborhood, Ωk, of the input vector, xq, the relationship
between the Euclidean distance and the angle of the data information, xi and xq, are
comprehensively considered.

When the angle between xi and xq is large (i.e., cos β(xi, xq) < 0), it is considered that
the information vector of the sample data deviates from the current input vector, xq, and
does not meet the requirements of the local modeling of the system. Therefore, the sample
data information should not be used to construct the modeling neighborhood. When the
angle between xi and xq is small (i.e., cos β(xi, xq) > 0), it is considered that the information
vector of the sample data is close to the current input vector, xq, and meets the requirements
of the local modeling of the system. Therefore, the sample data information is used to
construct the modeling neighborhood.

The neighborhood selection criterion, D(xi, xq), of input vector is constructed as follows:

D(xi, xq) = γ · e−d(xi ,xq) + (1− γ) · cos β(xi, xq), (20)

where γ is the weight factor and γ ∈ [0, 1]. Because d(xi, xq) ≥ 0 and cos β(xi, xq) ∈ [0, 1],
D(xi, xq) ∈ [0, 1].

Equation (20) indicates that D(xi, xq) considers not only the Euclidean distance of the
vectors but also the angle information between the vectors. Considering the Euclidean
distance and the angle information, the similarity between vectors xi and xq can be more
comprehensively reflected. Two similar vectors imply large neighborhood selection criteria
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D(xi, xq). This indicates that the historical data, xi, have a significant influence on the
sub-model (i.e., the weight coefficient, wq, is large). Therefore, the following is set:

D(xi, xq) = wq, (21)

that is,
min ∑

(xi ,yi)∈Ωk

[yi − f (xi, θ)]2D(xi, xq). (22)

It is considered that in the neighborhood of the input vector, xq, the local model of
the system can be represented by a linear polynomial. First, it is necessary to provide the
range size of the neighborhood, k, of the current input vector, xq; [km, kM] indicates that the
number of vectors required for the local modeling of the current input vector, xq, is at least
km and at most kM. D(xi, xq) is taken as a criterion for selecting samples, and the current
input vector, xq, is used to construct their neighborhood, Ωk. Because a large D(xi, xq)
implies high similarity degree between the vectors, the descending order arrangement
method is adopted to construct the neighborhood as follows:

Ωk = {(x1, y1), (x2, y2), . . . , (xk, yk)|D1 > D2 > . . . > Dk}. (23)

Therefore, the problem of solving Equation (18) is transformed into an optimal se-
lection problem of neighborhood k. To improve the prediction speed of the system, the
recursive least square algorithm [46] is used to calculate parameter θ̂k of the sub-models.

Vk = Vk−1 −
Vk−1xk D(xk ,xq)(xk)

TVk−1

1+D(xk ,xq)(xk)
TVk−1xk

rk = VkxkD(xk, xq)

ek = yk − (xk)
T θ̂k−1

θ̂k = θ̂k−1 + rkek

, (24)

where k ∈ {1, 2, 3, . . . , k}, Vk is a diagonal matrix, ek is the error between the predicted value
and the actual value of the k-th historical data during the establishment of the sub-model,
and rk is the pre-set error correction coefficient.

To examine the advantages and disadvantages of the model over time, the cross-
validation calculation method is selected to calculate the “leave-one-out error” [47] of the
model. Specifically, first, one sample is removed from all the samples, subsequently the
remaining samples are used for modeling, and finally, the removed sample is used to check
the current model. Based on the local model, θ̂k, and the matrix, Vk, the “leave-one-out
error” value [48] of the current model is obtained as follows:

eloo
j =

yi − xT
j θ̂k

1− xT
j VkxjD(xj, xq)

, j = 1, 2, . . . , k. (25)

Because there are a total of k samples in the model, there are k values of the “leave-
one-out error” as follows:

eloo =
{

eloo
j

}k

j=1
, k ∈ [km, kM]. (26)

Using the mathematical calculation method of mean square error, the following is
obtained:

MSEloo(k) =
∑k

j=1 D(xj, xq)(eloo
j )

2

∑k
j=1 D(xj, xq)

. (27)
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Thus, the range size of the optimal neighborhood, k, can be obtained using the follow-
ing formula:

kopt = argmin
k∈[km ,kM ]

[
MSEloo(k)

]
. (28)

In this case, θ̂ is the optimal model of the system in the neighborhood of xq.
When constructing the neighborhood of the input vector, xq, we can follow the stan-

dard formula in Equation (20), that is, the sample constructed in the neighborhood is sorted
in descending order based on the magnitude of the similarity coefficient. Arrangement
of the data information in the latter part has an adverse effect on the establishment of the
JITL model. Therefore, when a partial model of the system is obtained using the recursive
algorithm, the termination condition [49] of the recursive algorithm can be expressed by
Equation (29);

MSEloo(k + 1) > MSEloo(k). (29)

The above formula suggests that the accuracy of the local model has a tendency to
“deteriorate” when the recursive solution is used with the sample at k + 1. Therefore, in
the following modeling process, when the accuracy obtained using the samples with serial
numbers after k + 1 becomes increasingly worsened, the iteration should be terminated.

The specific steps to establish the improved JITL model are as follows [50]:

1. The input and output history database, {xi, yi}V
i=1, is built. All data contained in the

database should cover the actual operating states that may occur in the industrial
field maximally.

2. The range of k in the neighborhood of input data xq is determined (i.e., k ∈ [km, kM]).
The neighborhood, Ωk, of xq is constructed using the k-VNN method and arrange in
descending order.

3. The parameters in the recursive algorithm are initialized as follows: θ = 0 and
V0 = λI.

4. Samples (xk, yk) are added from the neighborhood set in order, and the model, θ̂k, is
obtained using Equation (24) by an iterative calculation.

5. Based on Equations (26) and (27), the “leave-one-out error” and mean square error of
the model can be calculated. If Equation (29) is satisfied, the model is output based
on step 6; otherwise, k = k + 1 is set and step 4 is conducted for iterative calculation
until Equation (29) is satisfied.

6. θ̂ = θ̂k, and the output of the model is obtained as follows: ŷq = xT
q θ̂.

4. Life-Cycle Test and Signal Acquisition of Gear Pump
4.1. Life-Cycle Signal Acquisition

The test system used in this study is a gear pump accelerated life test bed. The pump
outlet pressure was set to different stress levels in the test process, including 23 MPa,
25 MPa, and 27 MPa. The physical diagram of the test bed is shown in Figure 3. The test
bed can load four hydraulic pumps at the same time and use pressure sensors to collect
pressure signals at the outlet of hydraulic pumps. In order to prevent the damage of the
hydraulic pump air suction, four pumps are arranged in turn on the lower side of the
tank. The hydraulic system schematic of gear pump life-cycle test bed is shown in Figure 4.
Each gear pump has two circuits of high and normal pressure. The pressure of relief valve
10.1–10.4 of the rated working pressure circuit is set to 20 MPa. The pressure of relief valve
10.5–10.8 of the high-pressure acceleration circuit is set to different stress levels. The relief
valves 10.9–10.12 are safety valves.
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Figure 4. Hydraulic system schematic of gear pump life-cycle test bed: 1—Tank; 2—Liquid ther-
mometer; 3—Return oil filter; 4—Forced-air cooler; 5—Air filter; 6—Self suction oil filter; 7—Electric
motor; 8—Gear pump; 9—High-pressure hose; 10—Relief valve; 11—Pressure gauge; 12—Flow
meter; 13—Valve block; 14—Electromagnetic reversing valve; 15—High pressure filter; 16—Pressure
sensor; 17—Torque-speed transducer; and 18—Temperature sensor.

During the test, four gear pumps of the same model are operated simultaneously. A
pressure sensor is installed at the pressure outlet of each gear pump. A total of four pressure
sensors are installed based on the number of gear pumps. The models and performance
parameters of the main components used in the test bed are listed in Table 3.
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Table 3. Models and performance parameters of main components of test bed.

Serial Number Component Name Component Model Component Performance Parameter

1 Gear pump CBWF-304 Rated pressure: 20 MPa, rated speed: 2500 r/min,
theoretical displacement: 4 mL/r

2 Flowmeter MG015 Measuring range: 1–40 L/min
3 Pressure sensor PU5400 Measuring range: 0–400 bar
4 Torque-speed transducer CYT-302 Torque range: 0–20 Nm, speed range: 0–3000 r/min
5 Temperature sensor CWDZ11 Measuring range:−50–100 ◦C
6 Data acquisition card NI PXIe-6363 16 bits, 2 MS/s

The gear pump life-cycle test system is designed with four gear pumps, which are
loaded simultaneously during operation. Each gear pump has two circuits of high and
normal pressure. The high- and normal-pressure circuits are also called the high-pressure
acceleration branch and the rated working pressure branch, respectively. The pressure
of relief valve 10.5–10.8 of the high-pressure acceleration branch is set to different stress
levels. The pressure of relief valve 10.1–10.4 of the rated working pressure branch is set
to 20 MPa. In the actual operation of each gear pump, no flowmeter is installed on the
high-pressure acceleration branch. When the gear pumps operate in the high-pressure
acceleration branch for 59 min and 40 s, reversing valve 14 starts to work. Subsequently,
the gear pumps operate in the rated pressure branch for 20 s, and the gear pump signals
are collected in the last 2 s. The sampling frequency of the signal is set as 12 kHz.

During the test, a data acquisition program written using LabVIEW is used to collect
the vibration, pressure, and flow signals, of the gear pumps. The operation states of the
gear pumps are monitored throughout their life cycle.

In the gear pump stress loading, for the stress level, the method of pressure average
deployment is used, by which the acceleration pressure is set at the lowest value of 23 MPa
and the highest of 27 MPa. In the process of pump outlet pressure loading, the pressure of
relief valve 10.5–10.8 is set to different stress levels, including 23 MPa, 25 MPa, and 27 MPa.
The test method of the non-substitute time tac-tail life experiment is adopted [51–53]. After
300 h of operation at the first stress level (23 MPa), the stress level is increased to the second
stress level (25 MPa), and after 300 h of continuous operation, the stress level is changed to
the third stress level (27 MPa). A schematic of the step-stress acceleration degradation test
is shown in Figure 5.
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Figure 5. Schematic of step-stress acceleration degradation test. Figure 5. Schematic of step-stress acceleration degradation test.

During the life cycle test of the gear pumps, hazards such as a decrease in oil viscosity
and an increase in leakage can be caused by a high oil temperature. Therefore, when the
temperature of the hydraulic oil is above 49 ◦C, forced-air cooler 4 starts to work to reduce
the temperature of the hydraulic oil, and when the temperature of the hydraulic oil is below
30 ◦C, forced-air cooler 4 stops working. To ensure the safety of the test, the safety pressure
of direct-acting relief valves 10.9–10.12 is set as 30 MPa. To accelerate the performance
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degradation state of the gear pumps, in the life-cycle test bed, the step-stress acceleration
degradation test method is adopted. This method can effectively reduce the test time and
reduce the test cost compared to a constant-stress acceleration degradation test.

The hydraulic pumps were considered to be in a failure state when their volumetric
efficiency became lower than 70%, following which the test was stopped. The volumetric
efficiency changes of pumps 1–4 in the test were analyzed, as shown in Figure 6. When the
working time of the pumps exceeded 1050 h, their volumetric efficiencies were lower than
70%; therefore, the test was stopped. Therefore, 1050 sets of original signal data of pumps
1–4 were collected during the test, that is, each of the four gear pumps operated for 1050 h.
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To model and analyze the degradation process of the gear pumps, the following two
definitions are used. The first one is the start failure point, P, of the gear pump, the point
at which the volumetric efficiency of a gear pump is below the 80% line for the second
time or the subsequent volumetric efficiency is completely below the 80% line. The second
definition is the full failure point, F, which is the point at which the volumetric efficiency
of a gear pump is below the 70% line for the second time or the subsequent volumetric
efficiency is completely below the 70% line.

From Figure 6, the time points of the start and full failures of each gear pump can be
obtained, which are listed in Table 4. Figure 7 shows the following wear of each component
of gear pump 1 after 1050 h of operation: gear end-face wear, side plate wear, and pump
body wear.

Table 4. Start and full failure times of each gear pump.

Series Number Time of Start
Failure/h (Point P)

Time of Full
Failure/h (Point F) Time of F-P/h

1 699 1033 334
2 698 1030 332
3 496 1025 529
4 565 1034 469



Appl. Sci. 2021, 11, 9389 16 of 27

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 27 
 

Table 4. Start and full failure times of each gear pump. 

Series Number Time of Start Failure/h (Point P) Time of Full Failure/h (Point F) Time of F-P/h 

1 699 1033 334 

2 698 1030 332 

3 496 1025 529 

4 565 1034 469 

 

  

(a) (b) 

  

(c) (d) 

Figure 7. Wear of each component of gear pump: (a) End-face wear of driving gear; (b) End-face 

wear of driven gear; (c) Side plate wear; and (d) Pump body wear. 

4.2. Extraction of Gear Pump Performance Degradation Features 

When extracting the features of the gear pump pressure signals, first, after removing 

the DC component of the collected pressure signals of gear pumps 1–4, the wavelet packet 

denoising method is used to remove the influence of noise. Subsequently, 14 time-domain 

and 4 frequency-domain characteristic indices of a denoised gear pump pressure signal 

are extracted. After the DC component is removed, the trends of the changes in the time- 

and frequency-domain characteristic parameters of the pressure signal with time are 

shown in Figures 8 and 9, respectively. 

Figure 7. Wear of each component of gear pump: (a) End-face wear of driving gear; (b) End-face
wear of driven gear; (c) Side plate wear; and (d) Pump body wear.

4.2. Extraction of Gear Pump Performance Degradation Features

When extracting the features of the gear pump pressure signals, first, after removing
the DC component of the collected pressure signals of gear pumps 1–4, the wavelet packet
denoising method is used to remove the influence of noise. Subsequently, 14 time-domain
and 4 frequency-domain characteristic indices of a denoised gear pump pressure signal are
extracted. After the DC component is removed, the trends of the changes in the time- and
frequency-domain characteristic parameters of the pressure signal with time are shown in
Figures 8 and 9, respectively.

Based on the analysis of Figures 8 and 9, the trends of the characteristic parameters
changes with time are different. Focusing only on a certain characteristic parameter
or a certain part of the characteristic, parameters cannot fully reflect the performance
degradation trends shown in the life-cycle test of the gear pumps. In the actual working
process of a gear pump, the tendency of its performance degradation is objective. Over time,
its performance continues to degrade. Therefore, for selecting the time- and frequency-
domain characteristic parameters, it is necessary to first consider whether the selected
characteristic parameter curves can show distinct change characteristics over time. In
addition, to more accurately determine the performance degradation initial time of a gear
pump, the selected characteristic parameters should meet the requirement that when the
gear pump starts to fail, the corresponding curve presents clear tendency changes. Among
the 14 time-domain characteristic parameters, which are shown in Figure 8, the mean value,
kurtosis, crest factor, impulse factor, and kurtosis index do not show clear changes with
the performance degradation of the gear pumps. There are no distinct changes in the early
failure of the gear pumps. Among the four-frequency domain characteristic parameters,
which are displayed in Figure 9, only the average power shows clear changes with the
performance degradation of the gear pumps. Therefore, for the preliminary screening of
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gear pump characteristic parameters, the characteristic parameters that do not meet the
requirements are removed.
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After the preliminary extraction and screening of the characteristic parameters, the re-
maining time- and frequency-domain characteristic parameters still present different trends
with gear pump performance degradation. It is impossible to accurately determine which
characteristic parameter is more suitable for the performance degradation evaluation of the
gear pumps. Simultaneously, a single characteristic parameter is relatively biased and can-
not fully reflect the trend of gear pump performance degradation. Therefore, it is necessary
to obtain a state evaluation index that can fully characterize the performance degradation
trend of a gear pump and is sufficiently sensitive to early failure. Therefore, the KPCA
method is proposed in this paper to analyze and calculate the time- and frequency-domain
characteristic parameters after screening, and the first and second principal components
are taken as the state evaluation indices of the gear pump performance degradation.

The RBF kernel is selected as the kernel function in the analysis and calculation using
the KPCA method. The kernel parameter, σ, values are taken as 250, 350, 450, 550, and 650,
respectively. The number and CPVs of the principal components that meet the requirements
(CPV ≥ 85%) are listed in Table 5.
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Table 5. CPV and number of kernel principal components corresponding to different kernel parameters.

Series Number of
Gear Pump Kernel Parameter

CPV of First and
Second Principal
Components (%)

Number of Principal
Components that

Meet Requirements

1

250 92.8786 2
350 93.3271 2
450 93.5788 2
550 85.7281 1
650 86.5944 1

2

250 90.7480 2
350 91.2361 2
450 91.5465 2
550 91.8763 2
650 85.0722 1

3

250 91.3048 2
350 91.7811 2
450 92.0776 2
550 92.3472 2
650 85.5821 1

4

250 90.0859 2
350 90.6843 2
450 91.0544 2
550 91.4361 2
650 92.0065 2

As can be seen from Table 5, as the selected kernel parameters are increased, the CPVs
of the principal components satisfying CPV ≥ 85% initially increase and subsequently
decrease. To reduce the information loss of the original data and ensure the maximum
CPVs for the first and second principal components, the size of the kernel parameter is
selected as 450 in this study.

Taking gear pump 1 as an example, after the selected time- and frequency-domain
feature indices are analyzed and processed by the KPCA method, the first and second
principal components are extracted, which are shown in Figure 10.
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Figure 10. First and second principal components obtained by KPCA method.

The first principal component obtained by the KPCA method shows a clear upward
trend with the gear pump performance degradation. At the beginning of the failure of the
gear pump (approximately 700 h), the first and second principal components present clear
changes. At the full failure of the gear pump (approximately 1033 h), both first and second
principal components reach their maximum values, as shown in Figure 10. Therefore, the
first and second principal components can be extracted by the KPCA method to reflect
the performance degradation trend of the gear pump. This method has good sensitivity
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to the beginning of the failure and presents a stable change trend with the performance
degradation of the gear pump.

5. RUL Prediction Method of Hydraulic Pump Based on KPCA and JITL

When repairing and maintaining mechanical equipment, if the maintenance personnel
can timely and accurately determine their RUL, a scientific and appropriate maintenance
plan can be formulated, and the property losses and casualties caused by their untimely
maintenance can be avoided. Therefore, it is extremely essential to predict the RUL of
mechanical equipment on time and accurately. As the core of a hydraulic system, it is
highly important to predict the RUL and manage the health of a hydraulic pump. Therefore,
an RUL prediction method of a hydraulic pump based on KPCA and JITL is proposed in
this paper.

The KPCA method was used to perform the weighted fusion calculation of the selected
characteristic parameters, and the first and second principal components were extracted
as the evaluation indices representing the performance degradation of a gear pump. Sub-
sequently, the RUL prediction model of a hydraulic pump based on KPCA and JITL was
established using the RUL prediction method of JITL based on k-VNN.

The KPCA method was used to analyze the time- and frequency-domain characteristic
parameters of the gear pump pressure signals. Based on Table 5, when the kernel parameter
is σ = 450, the CPVs of the first and second principal components of the four gear pumps
exceed 90%. Therefore, in this study, the first and second principal components of tested
gear pump 1–3 were selected as the training samples in the modeling. Moreover, the data
of tested gear pump 4 were chosen as the test samples to verify the accuracy of the model.

As aforedescribed, the selected minimum neighborhood, km, and the weight factor,
γ, in the JITL method have different effects on the predicted results. Among them, the
maximum relative error (MRE) is listed in Table 6.

Table 6. MREs of predicted results.

km γ 1.0 0.9 0.8 0.7 0.6 0.5

2 0.5340 0.7438 0.8205 0.8114 0.8114 0.8428
3 0.6644 0.7438 0.8205 0.8489 0.8495 0.8476
4 0.5681 0.7949 0.8243 0.8489 0.8495 0.8299
5 0.6184 0.7949 0.8243 0.8489 0.8495 0.8299
6 0.6184 0.8053 0.8243 0.8489 0.8495 0.8312
7 0.6192 0.8053 0.8243 0.8489 0.8495 0.8623

It can be observed from Table 6 that when the minimum neighborhood, km, is set as 2,
3, 4, and 5, respectively, the weight factors, γ, are 0.9 and 1.0; the corresponding MREs are
smaller than the other MREs. To further optimize the values of the above parameters, the
average relative errors (AREs) of the predicted results were compared, and the results are
tabulated in Table 7.

Table 7. AREs of predicted results.

γ km 2 3 4 5

0.9 15.8639 15.6194 15.4281 15.2987
1.0 15.9545 15.7997 15.3460 15.1547

Based on Table 7, when minimum neighborhood km = 5 and weight factor γ = 1.0,
the corresponding ARE is minimum. Therefore, in this study, parameters km and γ of the
model established are 5 and 1.0, respectively. The model was established based on the
life-cycle test data of gear pumps 1–3. The prediction results of the RUL of gear pump 4
obtained using the model are shown in Figure 11.
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Figure 11. RUL prediction of gear pump 4 based on JITL method proposed in this paper.

As can be seen from Figure 11, the gear pump is in a healthy state in the initial
operating state without any mechanical failure; therefore, its life is not changed significantly.
Over time, when the gear pump has operated for approximately 700 h, its RUL begins to
decrease gradually. The predicted values of the RUL basically coincides with the real values.

To illustrate the RUL prediction efficiency of the JITL method proposed in this paper,
the results are compared with those of the traditional JITL method based on k-NN, which
are shown in Figure 12. Table 8 compares the MREs and AREs of both methods.
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Table 8. Comparison of MRE and ARE of both methods.

Method MRE ARE

Proposed JITL method 0.6184 15.1547
JITL method based on k-NN 0.8962 16.2983

Table 8 indicates that both MRE and ARE of the gear pump RUL prediction method
proposed in this paper are better than those of the traditional k-NN-based RUL prediction
algorithm. The k-VNN method considers both the Euclidean distance and angle relation-
ship between two vectors, while k-NN mainly refers to the Euclidean distance as the basis
for modeling, which is insufficient for fully exploring the internal relationships among the
input and nearest data. Therefore, sample selection method based on k-VNN of the RUL
prediction method significantly improved the prediction accuracy of the RUL prediction
model. This shows that the RUL prediction model based on KPCA and JITL proposed in
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this paper has higher prediction accuracy than the traditional RUL prediction model based
on k-NN.

6. Conclusions

Aiming at the problem that the gear pump cannot be properly monitored and main-
tained in time, a mechanical equipment RUL prediction method based on the KPCA and
JITL methods is proposed in this paper, which can timely warn the performance degrada-
tion process of the gear pump and timely forecast the RUL of the gear pump. It is used
for the RUL prediction of gear pumps, and the prediction results show that the KPCA
method can effectively extract their performance degradation indices. Simultaneously,
the RUL prediction method based on JITL can effectively predict the RUL of the gear
pumps. Compared to the traditional RUL prediction method, the method proposed herein
exhibits a higher prediction accuracy. The method proposed in this paper is expected to
be applied to the RUL prediction and condition monitoring of axial piston pumps, gear-
boxes, rolling bearings, and other components, and has broad application prospects and
wide applicability.

1. For obtaining the gear pump performance degradation evaluation indices, the charac-
teristic parameters of the pressure signal include variance, root-mean-square value,
peak value, root amplitude, peak-to-peak value, absolute mean value, standard devia-
tion, shape factor, clearance factor, and average power, which have good sensitivity
to the performance degradation of the gear pump. Using the KPCA method can
effectively avoid the data redundancy caused by the correlations among various char-
acteristic parameters. With continuous performance degradation of the gear pumps,
the evaluation indices present a clear monotonic increasing trend. Simultaneously,
the evaluation indices have good sensitivity to the early failure performance of the
gear pumps.

2. In the process of similar sample selection for the JITL method, the sample selection
method based on k-VNN comprehensively considers the Euclidean distance and
the angle between the information vectors, which can obviously reduce the MRE
and ARE parameters of the RUL prediction method and significantly improve the
prediction accuracy of the RUL prediction model. The feasibility and effectiveness of
this method in the gear pump RUL prediction model are illustrated.

3. The KPCA method and a k-VNN-based JITL method are combined and used for the
RUL prediction of gear pumps. The method proposed in this paper is compared to
the traditional k-NN-based JITL method. The results show that the RUL prediction
model proposed in this paper has a higher prediction accuracy for the RUL prediction
of gear pumps. The method proposed in this paper comprehensively considers
multiple characteristic parameters of gear pump pressure signals, which are of great
significance for improving the RUL prediction accuracy of a gear pump.
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